Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism

Abstract

Sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.

Key points

  • Sodium–glucose cotransporter 2 (SGLT2) inhibitors have a direct cytoprotective effect on the failing heart that is mediated by SGLT2-independent actions to increase nutrient-deprivation signalling and autophagic flux, thereby reducing cellular stress, promoting mitochondrial health and renewal, and decreasing pro-inflammatory signalling and apoptosis.

  • The failing heart is characterized by upregulation of glucose transporter type 1 (GLUT1) levels, increased glycolysis and impaired glucose oxidation, which lead to cytosolic accumulation of deleterious glucose intermediates that can activate mechanistic target of rapamycin (mTOR) and suppress nutrient-deprivation signalling.

  • The failing heart has increased uptake but decreased oxidation of long-chain fatty acids, which impairs ATP production and leads to cytosolic accumulation of deleterious lipid intermediates that result from impaired mitochondrial function and nutrient-deprivation signalling; the cytosolic accumulation of amino acids can promote the activation of mTOR.

  • SGLT2 inhibitors reverse heart failure-related abnormalities in glucose, long-chain fatty acid and amino acid uptake and metabolism by inhibiting GLUT1 (potentially) and by promoting nutrient-deprivation signalling and restoring mitochondrial health and renewal, which increases nutrient oxidation and oxidative phosphorylation and reduces the cytosolic accumulation of deleterious glucose and lipid by-products.

  • The ketonaemia that accompanies SGLT2 inhibition does not act as an energy substrate for ATP production but might promote nutrient-deprivation signalling, reduce the activation of pro-inflammatory pathways and increase autophagic flux.

  • SGLT2 inhibitors might facilitate ATP and haemoglobin production by increasing the pool of bioreactive cytosolic Fe2+ as a result of the SGLT2 inhibitor-induced decrease in hepcidin and ferritin levels, thereby alleviating the state of inflammation-mediated functional iron deficiency that is observed in heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytoprotective effects of SGLT2 inhibitors are mediated through modulation of cardiac nutrient transport and metabolism and augmentation of nutrient-deprivation signalling.
Fig. 2: Mechanisms by which augmented autophagic flux reduces cellular stress.
Fig. 3: Cytotoxic effects of GLUT1 upregulation, increased glycolysis and impaired glucose oxidation in heart failure.
Fig. 4: Mechanisms and consequences of increased uptake and impaired oxidation of long-chain fatty acids in heart failure.
Fig. 5: Potential mechanisms by which increased ketogenesis during SGLT2 inhibition can have favourable effects on cellular health in heart failure.
Fig. 6: Mechanisms of SGLT2 inhibitor-mediated increase in cytosolic ferrous iron levels, enhanced erythrocytosis and augmented iron-facilitated ATP production in cardiomyocytes.

Similar content being viewed by others

References

  1. Giugliano, D. et al. SGLT-2 inhibitors and cardiorenal outcomes in patients with or without type 2 diabetes: a meta-analysis of 11 CVOTs. Cardiovasc. Diabetol. 20, 236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mordi, N. A. et al. Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure: the RECEDE-CHF trial. Circulation 142, 1713–1724 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scholtes, R. A. et al. The adaptive renal response for volume homeostasis during 2 weeks of dapagliflozin treatment in people with type 2 diabetes and preserved renal function on a sodium-controlled diet. Kidney Int. Rep. 7, 1084–1092 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zannad, F. et al. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights from the EMPEROR program. Eur. Heart J. 10.1093eurheartj/ehac495 (2022).

  5. Januzzi, J. L. Jr. et al. EMPEROR-reduced trial committees and investigators. Prognostic importance of NT-proBNP and effect of empagliflozin in the EMPEROR-reduced trial. J. Am. Coll. Cardiol. 78, 1321–1332 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Nassif, M. E. et al. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: results from the EMBRACE-HF trial. Circulation 143, 1673–1686 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Omar, M. et al. Effect of empagliflozin on blood volume redistribution in patients with chronic heart failure and reduced ejection fraction: an analysis from the Empire HF randomized clinical trial. Circ. Heart Fail. 15, e009156 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Petrie, M. C. et al. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA 323, 1353–1368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sayour, A. A. et al. Characterization of left ventricular myocardial sodium-glucose cotransporter 1 expression in patients with end-stage heart failure. Cardiovasc. Diabetol. 19, 159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marfella, R. et al. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol. Res. 184, 106448 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Packer, M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 146, 1383–1405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Packer, M. Cardioprotective effects of sirtuin-1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors. Circ. Heart Fail. 13, e007197 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Vallon, V. & Nakagawa, T. Renal tubular handling of glucose and fructose in health and disease. Compr. Physiol. 12, 2995–3044 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pessoa, T. D., Campos, L. C., Carraro-Lacroix, L., Girardi, A. C. & Malnic, G. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J. Am. Soc. Nephrol. 25, 2028–2039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, X. et al. Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J. Am. Heart Assoc. 10, e018298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Borges-Júnior, F. A. et al. Empagliflozin inhibits proximal tubule NHE3 activity, preserves GFR, and restores euvolemia in nondiabetic rats with induced heart failure. J. Am. Soc. Nephrol. 32, 1616–1629 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baartscheer, A. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60, 568–573 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Philippaert, K. et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation 143, 2188–2204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mustroph, J. et al. Empagliflozin inhibits cardiac late sodium current by Ca/calmodulin-dependent kinase II. Circulation 146, 1259–1261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vila-Petroff, M. et al. Ca2+/calmodulin-dependent protein kinase II contributes to intracellular pH recovery from acidosis via Na+/H+ exchanger activation. J. Mol. Cell. Cardiol. 49, 106–112 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Wagner, S. et al. Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ. Res. 108, 555–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung, Y. J. et al. Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovasc. Res. 117, 2794–2806 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Baker, H. E. et al. Acute SGLT-2i treatment improves cardiac efficiency during myocardial ischemia independent of Na+/H+ exchanger-1. Int. J. Cardiol. 363, 138–148 (2022).

    Article  PubMed  Google Scholar 

  25. Moopanar, T. R. et al. AICAR inhibits the Na+/H+ exchanger in rat hearts–possible contribution to cardioprotection. Pflug. Arch. 453, 147–156 (2006).

    Article  CAS  Google Scholar 

  26. Liao, W., Rao, Z., Wu, L., Chen, Y. & Li, C. Cariporide attenuates doxorubicin-induced cardiotoxicity in rats by inhibiting oxidative stress, inflammation and apoptosis partly through regulation of Akt/GSK-3β and Sirt1 signaling pathway. Front. Pharmacol. 13, 850053 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupta, A. et al. Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J. Clin. Invest. 122, 291–302 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Gupta, A. & Houston, B. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition. Heart Fail. Rev. 22, 825–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Carley, A. N. et al. Short-chain fatty acids outpace ketone oxidation in the failing heart. Circulation 143, 1797–1808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bedi, K. C. Jr et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133, 706–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferrannini, E., Mark, M. & Mayoux, E. C. V. protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39, 1108–1114 (2016).

    Article  PubMed  Google Scholar 

  33. Klip, I. T. et al. Iron deficiency in chronic heart failure: an international pooled analysis. Am. Heart J. 165, 575–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Hoes, M. F. et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur. J. Heart Fail. 20, 910–919 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Docherty, K. F. et al. Iron deficiency in heart failure and effect of dapagliflozin: findings from DAPA-HF. Circulation 146, 980–994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma, S. et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 18, 1692–1700 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Akkafa, F. et al. Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure. Redox Biol. 6, 169–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, B. et al. AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ. Res. 122, 712–729 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Faerber, G. et al. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction. J. Thorac. Cardiovasc. Surg. 141, 492–500 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Castillo, E. C. et al. Mitochondrial hyperacetylation in the failing hearts of obese patients mediated partly by a reduction in SIRT3: The involvement of the mitochondrial permeability transition pore. Cell Physiol. Biochem. 53, 465–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Yano, T. et al. Clinical impact of myocardial mTORC1 activation in nonischemic dilated cardiomyopathy. J. Mol. Cell Cardiol. 91, 6–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, D. et al. mTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Invest. 120, 2805–2816 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsushima, S. & Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309, H1375–H1389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, L. et al. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Front. Cell Dev. Biol. 10, 871357 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, G. et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int. J. Mol. Med. 45, 195–209 (2020).

    PubMed  Google Scholar 

  47. Tomczyk, M. M. et al. Mitochondrial sirtuin-3 (SIRT3) prevents doxorubicin-induced dilated cardiomyopathy by modulating protein acetylation and oxidative stress. Circ. Heart Fail. 15, e008547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Y. et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch. Biochem. Biophys. 558, 79–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Pires Da Silva, J. et al. SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy. Cells 9, 426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, T., Liu, C. F., Zhang, T. N., Wen, R. & Song, W. L. Overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α protects cardiomyocytes from lipopolysaccharide-induced mitochondrial damage and apoptosis. Inflammation 43, 1806–1820 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Mizushima, N. & Levine, B. Autophagy in human diseases. N. Engl. J. Med. 383, 1564–1576 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, B. et al. Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade. Aging 13, 14482–14498 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Han, Y. et al. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol. 34, 101538 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, Y., He, T., Zhang, Z. & Zhang, J. Activation of SIRT1 by resveratrol alleviates pressure overload-induced cardiac hypertrophy via suppression of TGF-β1 signaling. Pharmacology 106, 667–681 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Packer, M. Role of deranged energy deprivation signaling in the pathogenesis of cardiac and renal disease in states of perceived nutrient overabundance. Circulation 141, 2095–2105 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Packer, M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care 43, 508–511 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Ying, Y. et al. Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model. Aging 11, 2822–2835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koyani, C. N. et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol. Res. 158, 104870 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Lu, Q. et al. Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol. Cell Endocrinol. 501, 110642 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, C. Y. et al. TLR9 binding to Beclin 1 and mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. Biology 9, 369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kondo, H. et al. Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur. Heart J. 42, 4947–4960 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, C. C., Chen, W. T., Chen, S. Y. & Lee, T. M. Dapagliflozin attenuates arrhythmic vulnerabilities by regulating connexin43 expression via the AMPK pathway in post-infarcted rat hearts. Biochem. Pharmacol. 192, 114674 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Ren, F. F. et al. Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress. Acta Pharmacol. Sin. 43, 1721–1732 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Ren, C. et al. Sodium-glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front. Pharmacol. 12, 664181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun, P. et al. Canagliflozin attenuates lipotoxicity in cardiomyocytes and protects diabetic mouse hearts by inhibiting the mTOR/HIF-1α pathway. iScience 24, 102521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tian, G. et al. Empagliflozin alleviates ethanol-induced cardiomyocyte injury through inhibition of mitochondrial apoptosis via a SIRT1/PTEN/Akt pathway. Clin. Exp. Pharmacol. Physiol. 48, 837–845 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Yu, Y. W. et al. Sodium-glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating autophagy. Front. Cardiovasc. Med. 8, 768214 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. He, L. et al. An effective sodium-dependent glucose transporter 2 inhibition, canagliflozin, prevents development of hypertensive heart failure in Dahl salt-sensitive rats. Front. Pharmacol. 13, 856386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aragón-Herrera, A. et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem. Pharmacol. 170, 113677 (2019).

    Article  PubMed  Google Scholar 

  71. Li, X. et al. Direct cardiac actions of sodium-glucose cotransporter 2 inhibition improve mitochondrial function and attenuate oxidative stress in pressure overload-induced heart failure. Front. Cardiovasc. Med. 9, 859253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Packer, M. Mutual antagonism of hypoxia-inducible factor isoforms in cardiac, vascular, and renal disorders. JACC Basic Transl. Sci. 5, 961–968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen, R. et al. The acetylase/deacetylase couple CREB-binding protein/sirtuin 1 controls hypoxia-inducible factor 2 signaling. J. Biol. Chem. 287, 30800–30811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. He, X. et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J. Mol. Cell Cardiol. 112, 104–113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Z. et al. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2α signaling pathway in arrhythmogenic cardiomyopathy. FASEB J. 36, e22410 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Fitchett, D. et al. Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial. ESC. Heart Fail. 8, 4517–4527 (2021).

    Google Scholar 

  77. Umino, H. et al. High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci. Rep. 8, 6791 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wicik, Z. et al. Characterization of the SGLT2 interaction network and its regulation by SGLT2 inhibitors: a bioinformatic analysis. Front. Pharmacol. 13, 901340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mohamed, T. M. A., Abouleisa, R. & Hill, B. G. Metabolic determinants of cardiomyocyte proliferation. Stem Cell 40, 458–467 (2022).

    Article  Google Scholar 

  81. Shin, A. N. et al. SIRT1 increases cardiomyocyte binucleation in the heart development. Oncotarget 9, 7996–8010 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garbern, J. C. et al. Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation 141, 285–300 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, P., Shan, T., Liang, X., Deng, C. & Kuang, S. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice. Biochem. Biophys. Res. Commun. 452, 53–59 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sánchez-Díaz, M., Nicolás-Ávila, J. Á., Cordero, M. D. & Hidalgo, A. Mitochondrial adaptations in the growing heart. Trends Endocrinol. Metab. 31, 308–319 (2020).

    Article  PubMed  Google Scholar 

  85. Lehman, J. J. & Kelly, D. P. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29, 339–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Gong, G. et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kantor, P. F., Robertson, M. A., Coe, J. Y. & Lopaschuk, G. D. Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J. Am. Coll. Cardiol. 33, 1724–1734 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Bertrand, L. et al. Glucose transporters in cardiovascular system in health and disease. Pflug. Arch. 472, 1385–1399 (2020).

    Article  CAS  Google Scholar 

  89. Heilig, C. W. et al. Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc. Natl Acad. Sci. USA 100, 15613–15618 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nisr, R. B. & Affouritit, C. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation. Biochim. Biophys. Acta 1837, 270–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kato, T. et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 3, 420–430 (2010).

    Article  PubMed  Google Scholar 

  92. Pereira, R. O. et al. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J. Am. Heart Assoc. 2, e000301 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fillmore, N. et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol. Med. 24, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhabyeyev, P. et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc. Res. 97, 676–685 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Kutsche, H. S. et al. Alterations in glucose metabolism during the transition to heart failure: the contribution of UCP-2. Cells 9, 552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diakos, N. A. et al. Evidence of glycolysis up‐regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl. Sci. 1, 432–444 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bhaskar, P. T. et al. mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition. Mol. Cell Biol. 29, 5136–5147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sokolovska, J. et al. Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model. Arch. Physiol. Biochem. 116, 137–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Hölscher, M. et al. Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc. Res. 94, 77–86 (2012).

    Article  PubMed  Google Scholar 

  100. Yang, J. & Holman, G. D. Long-term metformin treatment stimulates cardiomyocyte glucose transport through an AMP-activated protein kinase-dependent reduction in GLUT4 endocytosis. Endocrinology 147, 2728–2736 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Li, X. et al. Enhancement of glucose metabolism via PGC-1α participates in the cardioprotection of chronic intermittent hypobaric hypoxia. Front. Physiol. 7, 219 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Murugasamy, K., Munjal, A. & Sundaresan, N. R. Emerging roles of SIRT3 in cardiac metabolism. Front. Cardiovasc. Med. 9, 850340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bersin, R. M. et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J. Am. Coll. Cardiol. 23, 1617–1624 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Clanachan, A. S. Contribution of protons to post-ischemic Na+ and Ca2+ overload and left ventricular mechanical dysfunction. J. Cardiovasc. Electrophysiol. 17, S141–S148 (2006).

    Article  PubMed  Google Scholar 

  105. Chen, Z. T. et al. Glycolysis inhibition alleviates cardiac fibrosis after myocardial infarction by suppressing cardiac fibroblast activation. Front. Cardiovasc. Med. 8, 701745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zheng, Z. et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J. Infect. Dis. 215, 1396–1406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sen, S. et al. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J. Am. Heart Assoc. 2, e004796 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Roberts, D. J. & Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 22, 248–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Tran, D. H. et al. Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat. Commun. 11, 1771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marsh, S. A., Powell, P. C., Dell’italia, L. J. & Chatham, J. C. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 92, 648–656 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Gelinas, R. et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat. Commun. 9, 374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chai, Q. et al. Knockdown of SGLT1 prevents the apoptosis of cardiomyocytes induced by glucose fluctuation via relieving oxidative stress and mitochondrial dysfunction. Biochem. Cell Biol. 99, 356–363 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Ferté, L. et al. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Am. J. Physiol. Heart Circ. Physiol. 320, H838–H853 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bhatt, D. L. et al. SOLOIST-WHF trial investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Santos-Gallego, C. G. et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol. 73, 1931–1944 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Lauritsen, K. M. et al. SGLT2 inhibition does not affect myocardial fatty acid oxidation or uptake, but reduces myocardial glucose uptake and blood flow in individuals with type 2 diabetes: a randomized double-blind, placebo-controlled crossover trial. Diabetes 70, 800–808 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Asrih, M., Lerch, R., Papageorgiou, I., Pellieux, C. & Montessuit, C. Differential regulation of stimulated glucose transport by free fatty acids and PPARα or -δ agonists in cardiac myocytes. Am. J. Physiol. Endocrinol. Metab. 302, E872–E884 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Yurista, S. R. et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail. 21, 862–873 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, H. et al. Empagliflozin decreases lactate generation in an NHE-1 dependent fashion and increases α-ketoglutarate synthesis from palmitate in type ii diabetic mouse hearts. Front. Cardiovasc. Med. 7, 592233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Verma, S. et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl. Sci. 3, 575–587 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Xie, B. et al. Empagliflozin restores cardiac metabolic flexibility in diet-induced obese C57BL6/J mice. Curr. Res. Physiol. 5, 232–239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Uthman, L. et al. Novel anti-inflammatory effects of canagliflozin involving hexokinase II in lipopolysaccharide-stimulated human coronary artery endothelial cells. Cardiovasc. Drugs Ther. 35, 1083–1094 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Joubert, M. et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes 66, 1030–1040 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Ducheix, S., Magré, J., Cariou, B. & Prieur, X. Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Front. Endocrinol. 9, 642 (2018).

    Article  Google Scholar 

  125. Hawley, S. A. et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65, 2784–2794 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Karlstaedt, A., Khanna, R., Thangam, M. & Taegtmeyer, H. Glucose 6-phosphate accumulates via phosphoglucose isomerase inhibition in heart muscle. Circ. Res. 126, 60–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Davogustto, G. E. et al. Metabolic remodeling precedes mTORC1-mediated cardiac hypertrophy. Mol. Cell Cardiol. 158, 115–127 (2021).

    Article  CAS  Google Scholar 

  128. Roberts, D. J., Tan-Sah, V. P., Ding, E. Y., Smith, J. M. & Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell 53, 521–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brainard, R. E. & Facundo, H. T. Cardiac hypertrophy drives PGC-1α suppression associated with enhanced O-glycosylation. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166080 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Bullen, J. W. et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 289, 10592–10606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Luiken, J. J. F. P., Nabben, M., Neumann, D. & Glatz, J. F. C. Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165775 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. van der Vusse, G. J., van Bilsen, M., Glatz, J. F., Hasselbaink, D. M. & Luiken, J. J. Critical steps in cellular fatty acid uptake and utilization. Mol. Cell Biochem. 239, 9–15 (2002).

    Article  PubMed  Google Scholar 

  133. Sorokina, N. et al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115, 2033–2041 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Warren, J. S. et al. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc. Natl Acad. Sci. USA 115, E7871–E7880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fukushima, A. & Lopaschuk, G. D. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim. Biophys. Acta 1861, 1525–1534 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Osorio, J. C. et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid x receptor-alpha in pacing-induced heart failure. Circulation 106, 606–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Doenst, T. et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc. Res. 86, 461–470 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Choi, Y. S. et al. Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J. Mol. Cell Cardiol. 100, 64–71 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Law, B. A. et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 32, 1403–1416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hunter, W. G. et al. Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J. Am. Heart Assoc. 5, e003190 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gupte, A. A. et al. Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ. Cardiovasc. Genet. 7, 266–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Previs, M. J. et al. Defects in the proteome and metabolome in human hypertrophic cardiomyopathy. Circ. Heart Fail. 15, e009521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dávila-Román, V. G. et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 40, 271–277 (2002).

    Article  PubMed  Google Scholar 

  144. Yan, J. et al. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119, 2818–2828 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Heather, L. C. et al. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc. Res. 72, 430–437 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C. & Lehman, J. J. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J. Mol. Cell Cardiol. 46, 201–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Knuuti, J. & Opie, L. H. The adrenergic-fatty acid load in heart failure. J. Am. Coll. Cardiol. 54, 1637–1646 (2009).

    Article  PubMed  Google Scholar 

  148. Pohl, J. et al. Fatty acid transporters in plasma membranes of cardiomyocytes in patients with dilated cardiomyopathy. Eur. J. Med. Res. 5, 438–442 (2000).

    CAS  PubMed  Google Scholar 

  149. Goldberg, I. J., Trent, C. M. & Schulze, C. Lipid metabolism and toxicity in the heart. Cell Metab. 15, 805–812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wu, Y., Song, P., Xu, J., Zhang, M. & Zou, M. H. Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J. Biol. Chem. 282, 9777–9788 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Smolka, C. et al. Cardiomyocyte-specific miR-100 overexpression preserves heart function under pressure overload in mice and diminishes fatty acid uptake as well as ROS production by direct suppression of Nox4 and CD36. FASEB J. 35, e21956 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. He, L. et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 126, 1705–1716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kolwicz, S. C. Jr. et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ. Res. 111, 728–738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shao, D. et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating Parkin-mediated mitophagy. Circulation 142, 983–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang, W. P. et al. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. Sci. Rep. 11, 1159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brigadeau, F. et al. The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J. Cardiovasc. Pharmacol. 49, 408–415 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, J. et al. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of type 1 diabetic mice. Clin. Sci. 130, 625–641 (2016).

    Article  CAS  Google Scholar 

  158. Ferreira, J. P. et al. Fenofibrate and heart failure outcomes in patients with type 2 diabetes: analysis from ACCORD. Diabetes Care 45, 1584–1591 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Supruniuk, E., Mikłosz, A. & Chabowski, A. The implication of PGC-1α on fatty acid transport across plasma and mitochondrial membranes in the insulin sensitive tissues. Front. Physiol. 8, 923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wang, S. Y. et al. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J. Mol. Med. 98, 245–261 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wen, D. T. et al. Endurance exercise resistance to lipotoxic cardiomyopathy is associated with cardiac NAD+/dSIR2/PGC-1α pathway activation in old Drosophila. Biol. Open. 8, bio044719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen, T. et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One 10, e0118909 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Turdi, S. et al. Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J. Mol. Cell Cardiol. 50, 712–722 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Sambandam, N. et al. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5’AMP-activated protein kinase (AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique. Eur. J. Biochem. 271, 2831–2840 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Bai, F. et al. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway. Lipids Health Dis. 18, 109 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Viglino, C., Foglia, B. & Montessuit, C. Chronic AICAR treatment prevents metabolic changes in cardiomyocytes exposed to free fatty acids. Pflug. Arch. 471, 1219–1234 (2019).

    Article  CAS  Google Scholar 

  168. Adrian, L. et al. AMPK prevents palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes. Lipids 52, 737–750 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Pettersen, I. K. N. et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 49, 97–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Zhu, Y. et al. Regulation of fatty acid metabolism by mTOR in adult murine hearts occurs independently of changes in PGC-1α. Am. J. Physiol. Heart Circ. Physiol. 305, H41–H51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Moellmann, J. et al. The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. Diabetes Obes. Metab. 24, 2263–2272 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Wei, D. et al. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci. 247, 117414 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Ferrannini, E. et al. Mechanisms of sodium-glucose cotransporter 2 inhibition: insights from large-scale proteomics. Diabetes Care 43, 2183–2189 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Furuhashi, M. et al. Possible increase in serum FABP4 level despite adiposity reduction by canagliflozin, an SGLT2 inhibitor. PLoS ONE 11, e0154482 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Grevengoed, T. J., Cooper, D. E., Young, P. A., Ellis, J. M. & Coleman, R. A. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. FASEB J. 29, 4641–4653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Crozier, S. J., Bolster, D. R., Reiter, A. K., Kimball, S. R. & Jefferson, L. S. Beta -oxidation of free fatty acids is required to maintain translational control of protein synthesis in heart. Am. J. Physiol. Endocrinol. Metab. 283, E1144–E1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Essop, M. F. et al. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice. Am. J. Physiol. Heart Circ. Physiol. 295, H256–H265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xiao, X. et al. Peroxisome proliferator-activated receptors gamma and alpha agonists stimulate cardiac glucose uptake via activation of AMP-activated protein kinase. J. Nutr. Biochem. 21, 621–626 (2010).

    Article  PubMed  Google Scholar 

  179. Liu, G. Z. et al. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway. Br. J. Pharmacol. 173, 1095–1109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Witham, W. G., Yester, K. A. & McGaffin, K. R. A high leucine diet mitigates cardiac injury and improves survival after acute myocardial infarction. Metabolism 62, 290–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Kaye, D. M., Parnell, M. M. & Ahlers, B. A. Reduced myocardial and systemic L-arginine uptake in heart failure. Circ. Res. 91, 1198–1203 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Kimura, Y. et al. Usefulness of plasma branched-chain amino acid analysis in predicting outcomes of patients with nonischemic dilated cardiomyopathy. Int. Heart J. 61, 739–747 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Sansbury, B. E. et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ. Heart Fail. 7, 634–642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Uddin, G. M. et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc. Diabetol. 18, 86 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Caragnano, A. et al. Autophagy and inflammasome activation in dilated cardiomyopathy. J. Clin. Med. 8, 1519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shao, D. et al. Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat. Commun. 9, 2935 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wang, W. et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 311, H1160–H1169 (2016).

    Article  PubMed  Google Scholar 

  189. Renguet, E. et al. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. Am. J. Physiol. Heart Circ. Physiol. 313, H432–H445 (2017).

    Article  PubMed  Google Scholar 

  190. Gong, Q. et al. SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. Biomed. Pharmacother. 152, 113222 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Kappel, B. A. et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136, 969–972 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Palm, C. L., Nijholt, K. T., Bakker, B. M. & Westenbrink, B. D. Short-chain fatty acids in the metabolism of heart failure - rethinking the fat stigma. Front. Cardiovasc. Med. 9, 915102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sun, W. et al. Alterations of the gut microbiota in patients with severe chronic heart failure. Front. Microbiol. 12, 813289 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Jóhannsson, E. et al. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104, 729–734 (2001).

    Article  PubMed  Google Scholar 

  195. Zhang, L. et al. Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism. J. Cell Mol. Med. 23, 8139–8150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhu, Y., Wu, J. & Yuan, S. Y. MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart. Cell Physiol. Biochem. 32, 663–674 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Zeng, Z. et al. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis. J. Cell Mol. Med. 20, 1381–1391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Saucedo-Orozco, H., Voorrips, S. N., Yurista, S. R., de Boer, R. A. & Westenbrink, B. D. SGLT2 inhibitors and ketone metabolism in heart failure. J. Lipid Atheroscler. 11, 1–19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lommi, J. et al. Blood ketone bodies in congestive heart failure. J. Am. Coll. Cardiol. 28, 665–672 (1996).

    Article  CAS  PubMed  Google Scholar 

  201. Nagao, M. et al. β-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes. Biochem. Biophys. Res. Commun. 475, 322–328 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Nielsen, R. et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 139, 2129–2141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yurista, S. R. et al. Ketone ester treatment improves cardiac function and reduces pathologic remodeling in preclinical models of heart failure. Circ. Heart Fail. 14, e007684 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Horton, J. L. et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 4, e124079 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Ho, K. L. et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc. Res. 115, 1606–1616 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Uchihashi, M. et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure. Circ. Heart Fail. 10, e004417 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Byrne, N. J. et al. Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure. Circ. Heart Fail. 13, e006573 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Liu, Y. et al. Cardioprotective roles of β-hydroxybutyrate against doxorubicin induced cardiotoxicity. Front. Pharmacol. 11, 603596 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Nakamura, M. et al. Dietary carbohydrates restriction inhibits the development of cardiac hypertrophy and heart failure. Cardiovasc. Res. 117, 2365–2376 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Oka, S. I. et al. β-Hydroxybutyrate, a ketone body, potentiates the antioxidant defense via thioredoxin 1 upregulation in cardiomyocytes. Antioxid 10, 1153 (2021).

    Article  CAS  Google Scholar 

  212. Kawakami, R. et al. Ketone body and FGF21 coordinately regulate fasting-induced oxidative stress response in the heart. Sci. Rep. 12, 7338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Xu, M. et al. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc. Res. 115, 530–545 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Thai, P. N. et al. Ketone ester D-β-hydroxybutyrate-(R)-1,3 butanediol prevents decline in cardiac function in type 2 diabetic mice. J. Am. Heart Assoc. 10, e020729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nilsson, M. I. et al. Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. Mol. Genet Metab. 137, 228–240 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Wallenius, K. et al. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis. J. Lipid Res. 63, 100176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wolf, P. et al. Gluconeogenesis, but not glycogenolysis, contributes to the increase in endogenous glucose production by SGLT-2 inhibition. Diabetes Care 44, 541–548 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Yang, X. et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte 9, 484–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Swe, M. T. et al. Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats. Clin. Sci. 133, 2415–2430 (2019).

    Article  CAS  Google Scholar 

  220. Erion, D. M. et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl Acad. Sci. USA 106, 11288–11293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hirschey, M. D., Shimazu, T., Capra, J. A., Pollard, K. S. & Verdin, E. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging 3, 635–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Velasco, G., Geelen, M. J. H. & Guzmán, M. Control of hepatic fatty acid oxidation by 5′-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch. Biochem. Biophys. 337, 169–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  223. Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100–1104 (2010).

    Article  CAS  PubMed  Google Scholar 

  224. McCarthy, C. G. et al. Ketone body β-hydroxybutyrate is an autophagy-dependent vasodilator. JCI Insight 6, e149037 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Ferrannini, E. et al. Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care 40, 771–776 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Heerspink, H. J. L. et al. DAPA-CKD trial committees and investigators. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Sahasrabudhe, V. et al. The effect of renal impairment on the pharmacokinetics and pharmacodynamics of ertugliflozin in subjects with type 2 diabetes mellitus. J. Clin. Pharmacol. 57, 1432–1443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pietschner, R. et al. Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure. Cardiovasc. Diabetol. 20, 219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Selvaraj, S. et al. Metabolomic profiling of the effects of dapagliflozin in heart failure with reduced ejection fraction: DEFINE-HF. Circulation 146, 808–818 (2022).

    Article  CAS  PubMed  Google Scholar 

  230. Marilly, E. et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia 65, 2000–2010 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Packer, M. et al. EMPEROR-reduced trial investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Oh, C. M. et al. Cardioprotective potential of an SGLT2 inhibitor against doxorubicin-induced heart failure. Korean Circ. J. 49, 1183–1195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Byrne, N. J. et al. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl. Sci. 2, 347–354 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Abdurrachim, D. et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13C magnetic resonance spectroscopy study. Diabetes Obes. Metab. 21, 357–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Kimura, T. et al. Inhibitory effects of tofogliflozin on cardiac hypertrophy in Dahl salt-sensitive and salt-resistant rats fed a high-fat diet. Int. Heart J. 60, 728–735 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Gaborit, B. et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc. Diabetol. 20, 57 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Tomita, I. et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 32, 404–419.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Papalia, F. et al. Cardiac energetics in patients with chronic heart failure and iron deficiency: an in-vivo 31P magnetic resonance spectroscopy study. Eur. J. Heart Fail. 24, 716–723 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Charles-Edwards, G. et al. Effect of iron isomaltoside on skeletal muscle energetics in patients with chronic heart failure and iron deficiency. Circulation 139, 2386–2398 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Haddad, S. et al. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur. Heart J. 38, 362–372 (2017).

    CAS  PubMed  Google Scholar 

  241. Long, M. et al. DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron depletion. EMBO J. 41, e109390 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Jang, S. et al. Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biol. 45, 102021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Tadokoro, T. et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 5, e132747 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Komai, K., Kawasaki, N. K., Higa, J. K. & Matsui, T. The role of ferroptosis in adverse left ventricular remodeling following acute myocardial infarction. Cells 11, 1399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Fang, X. et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ. Res. 127, 486–501 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Nemeth, E. & Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 122, 78–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kralova, B. et al. Developmental changes in iron metabolism and erythropoiesis in mice with human gain-of-function erythropoietin receptor. Am. J. Hematol. 97, 1286–1299 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Fang, X., Ardehali, H., Min, J. & Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-022-00735-4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Ito, J. et al. Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. eLife 10, e62174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Martínez-Ruiz, A. et al. Soluble TNFα receptor type I and hepcidin as determinants of development of anemia in the long-term follow-up of heart failure patients. Clin. Biochem. 45, 1455–1458 (2012).

    Article  PubMed  Google Scholar 

  252. Masini, G. et al. Criteria for iron deficiency in patients with heart failure. J. Am. Coll. Cardiol. 79, 341–351 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Ghanim, H. et al. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J. Clin. Endocrinol. Metab. 105, dgaa057 (2020).

    Article  PubMed  Google Scholar 

  254. Thiele, K. et al. Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: data from a randomized, placebo-controlled study. Diabetes Obes. Metab. 23, 2814–2818 (2021).

    Article  CAS  PubMed  Google Scholar 

  255. Xin, H. et al. Hydrogen sulfide attenuates inflammatory hepcidin by reducing IL-6 secretion and promoting SIRT1-mediated STAT3 deacetylation. Antioxid. Redox Signal. 24, 70–83 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Salazar, G. et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 16, 1092–1110 (2020).

    Article  CAS  PubMed  Google Scholar 

  257. Crane, F. L., Navas, P., Low, H., Sun, I. L. & de Cabo, R. Sirtuin activation: a role for plasma membrane in the cell growth puzzle. J. Gerontol. A Biol. Sci. Med. Sci. 68, 368–370 (2013).

    Article  CAS  PubMed  Google Scholar 

  258. Xu, W. et al. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 13, 533–545 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Lin, J. et al. Mitochondrial dynamics and mitophagy in cardiometabolic disease. Front. Cardiovasc. Med. 9, 917135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Cui, L. et al. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol. Lett. 275, 28–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  261. Li, X. et al. NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss. Blood 136, 2691–2702 (2020).

    PubMed  PubMed Central  Google Scholar 

  262. Berezovsky, B. et al. Effect of erythropoietin on the expression of murine transferrin receptor 2. Int. J. Mol. Sci. 22, 8209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Honda, H. et al. Associations among erythroferrone and biomarkers of erythropoiesis and iron metabolism, and treatment with long-term erythropoiesis-stimulating agents in patients on hemodialysis. PLoS ONE 11, e0151601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Waldman, M. et al. The role of heme oxygenase 1 in the protective effect of caloric restriction against diabetic cardiomyopathy. Int. J. Mol. Sci. 20, 2427 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Li, D. et al. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front. Pharmacol. 12, 808480 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Docherty, K. F. et al. Effect of dapagliflozin on anaemia in DAPA-HF. Eur. J. Heart Fail. 23, 617–628 (2021).

    Article  CAS  PubMed  Google Scholar 

  267. Yamada, T. et al. Analysis of time-dependent alterations of parameters related to erythrocytes after ipragliflozin initiation. Diabetol. Int. 12, 197–206 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Kanamori, H. et al. Impact of autophagy on prognosis of patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 79, 789–801 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Hahn, V. S. et al. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation 143, 120–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  270. Saito, T. et al. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis. Autophagy 12, 579–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Saito, T. et al. Long-term prognostic value of ultrastructural features in dilated cardiomyopathy: comparison with cardiac magnetic resonance. Esc. Heart Fail. 7, 682–691 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Watanabe, T. et al. Restriction of food intake prevents postinfarction heart failure by enhancing autophagy in the surviving cardiomyocytes. Am. J. Pathol. 184, 1384–1394 (2014).

    Article  CAS  PubMed  Google Scholar 

  273. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–1793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Nah, J. et al. Ulk1-dependent alternative mitophagy plays a protective role during pressure overload in the heart. Cardiovasc. Res. 118, 2638–2651 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Ghosh, R. et al. Chaperone mediated autophagy protects cardiomyocytes against hypoxic-cell death. Am. J. Physiol. Cell Physiol. 323, C1555–C1575 (2022).

    Article  CAS  PubMed  Google Scholar 

  276. Russo, M., Bono, E. & Ghigo, A. The interplay between autophagy and senescence in anthracycline cardiotoxicity. Curr. Heart Fail. Rep. 18, 180–190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Wang, K. et al. Cardioprotection of Klotho against myocardial infarction-induced heart failure through inducing autophagy. Mech. Ageing Dev. 207, 111714 (2022).

    Article  CAS  PubMed  Google Scholar 

  278. Li, Q. et al. Hypoxia acclimation protects against heart failure postacute myocardial infarction via Fundc1-mediated mitophagy. Oxid. Med. Cell Longev. 2022, 8192552 (2022).

    PubMed  PubMed Central  Google Scholar 

  279. Li, L. et al. ATP6AP2 knockdown in cardiomyocyte deteriorates heart function via compromising autophagic flux and NLRP3 inflammasome activation. Cell Death Discov. 8, 161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Deng, Z. et al. DNA methyltransferase 1 (DNMT1) suppresses mitophagy and aggravates heart failure via the microRNA-152-3p/ETS1/RhoH axis. Lab. Invest. 102, 782–793 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Packer.

Ethics declarations

Competing interests

During the past 3 years, M.P. has received consulting fees from AbbVie, Actavis, Amarin, Amgen, AstraZeneca, Boehringer Ingelheim, Caladrius, Casana, CSL Behring, Cytokinetics, Imara, Lilly, Moderna, Novartis, Reata, Relypsa and Salamandra, entirely related to the design and execution of clinical trials.

Peer review

Peer review information

Nature Reviews Cardiology thanks Gary Lopaschuk, Christoph Maack and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packer, M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 20, 443–462 (2023). https://doi.org/10.1038/s41569-022-00824-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00824-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing