Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macrophages in cardiac remodelling after myocardial infarction

Abstract

Myocardial infarction (MI), as a result of thrombosis or vascular occlusion, is the most prevalent cause of morbidity and mortality among all cardiovascular diseases. The devastating consequences of MI are compounded by the complexities of cellular functions involved in the initiation and resolution of early-onset inflammation and the longer-term effects related to scar formation. The resultant tissue damage can occur as early as 1 h after MI and activates inflammatory signalling pathways to elicit an immune response. Macrophages are one of the most active cell types during all stages after MI, including the cardioprotective, inflammatory and tissue repair phases. In this Review, we describe the phenotypes of cardiac macrophage involved in MI and their cardioprotective functions. A specific subset of macrophages called resident cardiac macrophages (RCMs) are derived from yolk sac progenitor cells and are maintained as a self-renewing population, although their numbers decrease with age. We explore sophisticated sequencing techniques that demonstrate the cardioprotective properties of this cardiac macrophage phenotype. Furthermore, we discuss the interactions between cardiac macrophages and other important cell types involved in the pathology and resolution of inflammation after MI. We summarize new and promising therapeutic approaches that target macrophage-mediated inflammation and the cardioprotective properties of RCMs after MI. Finally, we discuss future directions for the study of RCMs in MI and cardiovascular health in general.

Key points

  • Macrophages are one of the most active cell types participating in the cardiac remodelling events that occur during the inflammatory, proliferative and reparative phases after a myocardial infarction (MI).

  • Immediately after an MI, macrophages that accumulate in the infarcted heart tissue are derived from either the bone marrow or splenic reservoirs and produce cytokines that mediate inflammation.

  • Resident cardiac macrophages have an essential role in the development and functioning of the normal heart, whereas after an MI, the surviving resident cardiac macrophages act to offset the inflammatory response mediated by recruited macrophages.

  • In the infarcted heart, macrophages interact with several cell types, including cardiomyocytes, endothelial cells, fibroblasts and lymphocytes, that contribute to the cardiac remodelling that occurs after an MI.

  • A deeper understanding of the role of macrophages in the infarcted heart might lead to macrophage-specific therapeutic approaches to mitigate tissue damage after an MI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approximate timeline of events after myocardial infarction.
Fig. 2: Relationship between cardiac macrophages and surrounding cells.

Similar content being viewed by others

References

  1. Benjamin, E. J. et al. Heart disease and stroke statistics — 2019 update: a report from the American Heart Association. Circulation 139, e56–e528 (2019).

    Article  PubMed  Google Scholar 

  2. Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P. & Al-Lamee, R. Mortality from ischemic heart disease. Circ. Cardiovasc. Qual. Outcomes 12, e005375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ambrose, J. A. & Dangas, G. Unstable angina: current concepts of pathogenesis and treatment. Arch. Intern. Med. 160, 25–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Newby, D. E. & Fox, K. A. A. Unstable angina: the first 48 hours and later in-hospital management. Br. Med. Bull. 59, 69–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Braunwald, E. Unstable angina and non-ST elevation myocardial infarction. Am. J. Respir. Crit. Care Med. 185, 924–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Swap, C. J. & Nagurney, J. T. Value and limitations of chest pain history in the evaluation of patients with suspected acute coronary syndromes. JAMA 294, 2623–2629 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Amsterdam, E. A. et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 130, 2354–2394 (2014).

    Article  PubMed  Google Scholar 

  8. Bagai, A., Dangas, G. D., Stone, G. W. & Granger, C. B. Reperfusion strategies in acute coronary syndromes. Circ. Res. 114, 1918–1928 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Crea, F. & Libby, P. Acute coronary syndromes: the way forward from mechanisms to precision treatment. Circulation 136, 1155–1166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gerber, Y. et al. Contemporary trends in heart failure with reduced and preserved ejection fraction after myocardial infarction: a community study. Am. J. Epidemiol. 178, 1272–1280 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ezekowitz, J. A. et al. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J. Am. Coll. Cardiol. 53, 13–20 (2009).

    Article  PubMed  Google Scholar 

  12. Chen, J., Hsieh, A. F., Dharmarajan, K., Masoudi, F. A. & Krumholz, H. M. National trends in heart failure hospitalization after acute myocardial infarction for Medicare beneficiaries: 1998–2010. Circulation 128, 2577–2584 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Velagaleti, R. S. et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118, 2057–2062 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Milanlouei, S. et al. A systematic comprehensive longitudinal evaluation of dietary factors associated with acute myocardial infarction and fatal coronary heart disease. Nat. Commun. 11, 6074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, E., Malik, V. S. & Hu, F. B. Cardiovascular disease prevention by diet modification: JACC health promotion series. J. Am. Coll. Cardiol. 72, 914–926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, X. H., Fu, Y. C., Zhang, D. W., Yin, K. & Tang, C. K. Foam cells in atherosclerosis. Clin. Chim. Acta 424, 245–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Seidman, M. A., Mitchell, R. N. & Stone, J. R. Cellular and Molecular Pathobiology of Cardiovascular Disease Ch. 12 (eds Willis, M. S., Homeister, J. W. & Stone, J. R.) 221–237 (Elsevier, 2014).

  19. Seimon, T. & Tabas, I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res. 50, S382–S387 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martinet, W., Schrijvers, D. M. & De Meyer, G. R. Necrotic cell death in atherosclerosis. Basic Res. Cardiol. 106, 749–760 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. de Villiers, W. J. & Smart, E. J. Macrophage scavenger receptors and foam cell formation. J. Leukoc. Biol. 66, 740–746 (1999).

    Article  PubMed  Google Scholar 

  22. Chistiakov, D. A., Bobryshev, Y. V. & Orekhov, A. N. Macrophage‐mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med. 20, 17–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Dohi, T. et al. Non-fibroatheroma lesion phenotype and long-term clinical outcomes: a substudy analysis from the PROSPECT study. JACC Cardiovasc. Imaging 6, 908–916 (2013).

    Article  PubMed  Google Scholar 

  24. Hansson, G. K., Libby, P. & Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 278, 483–493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, A. J. et al. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat. Rev. Cardiol. 13, 210–220 (2016).

    Article  PubMed  Google Scholar 

  27. Huang, X. et al. 3D MRI-based multicomponent thin layer structure only plaque models for atherosclerotic plaques. J. Biomech. 49, 2726–2733 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Virmani, R., Kolodgie Frank, D., Burke Allen, P., Farb, A. & Schwartz Stephen, M. Lessons from sudden coronary death. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Verma, S. et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 105, 2332–2336 (2002).

    Article  PubMed  Google Scholar 

  31. Naito, H. et al. Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med. Surg. 7, e501 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hausenloy, D. J. & Yellon, D. M. Myocardial ischemia–reperfusion injury: a neglected therapeutic target. J. Clin. Invest. 123, 92–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heusch, G. et al. Coronary microembolization. Circulation 120, 1822–1836 (2009).

    Article  PubMed  Google Scholar 

  34. Ito, H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. 3, 499–506 (2006).

    Article  PubMed  Google Scholar 

  35. Visan, I. Myocardial infarct inflammation. Nat. Immunol. 19, 99 (2018).

    PubMed  Google Scholar 

  36. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van der Borght, K. & Lambrecht, B. N. Heart macrophages and dendritic cells in sickness and in health: a tale of a complicated marriage. Cell. Immunol. 330, 105–113 (2018).

    Article  PubMed  Google Scholar 

  38. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Halade, G. V., Norris, P. C., Kain, V., Serhan, C. N. & Ingle, K. A. Splenic leukocytes define the resolution of inflammation in heart failure. Sci. Signal. 11, eaao1818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee, W. W. et al. PET/MRI of inflammation in myocardial infarction. J. Am. Coll. Cardiol. 59, 153–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jung, K. et al. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ. Res. 112, 891–899 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Heidt, T. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 115, 284–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bajpai, G. et al. Tissue resident CCR2 and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sager, H. B. et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 119, 853–864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. van der Laan, A. M. et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35, 376–385 (2014).

    Article  PubMed  Google Scholar 

  47. Hilgendorf, I. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114, 1611–1622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sutton, M. G. S. J. & Sharpe, N. Left ventricular remodeling after myocardial infarction. Circulation 101, 2981–2988 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Pinto, A. R., Godwin, J. W. & Rosenthal, N. A. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res. 13, 705–714 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Yamasaki, S. et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat. Immunol. 9, 1179–1188 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    PubMed  PubMed Central  Google Scholar 

  52. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thornley, T. B. et al. Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J. Clin. Invest. 124, 3443–3454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Honold, L. & Nahrendorf, M. Resident and monocyte-derived macrophages in cardiovascular disease. Circ. Res. 122, 113–127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marsh, S. A. et al. Rapid fall in circulating non-classical monocytes in ST elevation myocardial infarction patients correlates with cardiac injury. FASEB J. 35, e21604 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Tsujioka, H. et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J. Am. Coll. Cardiol. 54, 130–138 (2009).

    Article  PubMed  Google Scholar 

  62. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leid, J. et al. Primitive embryonic macrophages are required for coronary development and maturation. Circ. Res. 118, 1498–1511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grune, J. et al. Neutrophils incite and macrophages avert electrical storm after myocardial infarction. Nat. Cardiovasc. Res. 1, 649–664 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lim, G. B. Macrophages and neutrophils modulate arrhythmia risk after myocardial infarction. Nat. Rev. Cardiol. 19, 573 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. DeBerge, M. et al. MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia–reperfusion injury. Circ. Res. 121, 930–940 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Penberthy, K. K. & Ravichandran, K. S. Apoptotic cell recognition receptors and scavenger receptors. Immunol. Rev. 269, 44–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wan, E. et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 113, 1004–1012 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Howangyin, K.-Y. et al. Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation 133, 826–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Saljoughian, N. et al. Role of cardiac macrophages in controlling the infection and homeostasis of steady state heart function in aging [abstract]. J. Immunol. 204, 75.1 (2020).

    Article  Google Scholar 

  73. Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).

    Article  PubMed  Google Scholar 

  74. Pepine, C. J. New concepts in the pathophysiology of acute myocardial infarction. Am. J. Cardiol. 64, 2B–8B (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Salminen, A., Kaarniranta, K. & Kauppinen, A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell. Mol. Life Sci. 76, 1901–1918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kain, V. et al. Resolution agonist 15-epi-lipoxin A4 programs early activation of resolving phase in post-myocardial infarction healing. Sci. Rep. 7, 9999 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dewald, O. et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol. 164, 665–677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Celle, T. D. et al. Long-term structural and functional consequences of cardiac ischaemia–reperfusion injury in vivo in mice. Exp. Physiol. 89, 605–615 (2004).

    Article  PubMed  Google Scholar 

  82. Cabrera-Fuentes, H. A. et al. Regulation of monocyte/macrophage polarisation by extracellular RNA. Thromb. Haemost. 113, 473–481 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Simsekyilmaz, S. et al. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation 129, 598–606 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Arslan, F., de Kleijn, D. P. & Pasterkamp, G. Innate immune signaling in cardiac ischemia. Nat. Rev. Cardiol. 8, 292–300 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raggi, F. et al. Regulation of human macrophage M1–M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front. Immunol. 8, 1097 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Saxena, A. et al. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J. Immunol. 191, 4838–4848 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Kaikita, K. et al. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. 165, 439–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hayasaki, T. et al. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia–reperfusion in mice. Circ. J. 70, 342–351 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Dewald, O. et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881–889 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Liehn, E. A. et al. A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice. J. Am. Coll. Cardiol. 56, 1847–1857 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Majmudar, M. D. et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127, 2038–2046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Davies, L. C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 41, 2155–2164 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Calderone, A. p38 MAPK and the compromised regenerative response of the infarcted adult heart. Cardiovasc. Regen. Med. 3, e1508 (2018).

    Google Scholar 

  96. Leblond, A. L. et al. Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS ONE 10, e0137515 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kain, V., Prabhu, S. D. & Halade, G. V. Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res. Cardiol. 109, 444 (2014).

    Article  PubMed  Google Scholar 

  98. Huang, S. & Frangogiannis, N. G. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br. J. Pharmacol. 175, 1377–1400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol. 62, 24–35 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Huynh, M.-L. N., Fadok, V. A. & Henson, P. M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41–50 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dobaczewski, M., Chen, W. & Frangogiannis, N. G. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J. Mol. Cell. Cardiol. 51, 600–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Vajen, T. et al. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci. Rep. 8, 10647 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jadapalli, J. K. & Halade, G. V. Unified nexus of macrophages and maresins in cardiac reparative mechanisms. FASEB J. 32, 5227–5237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bournazou, I. et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J. Clin. Invest. 119, 20–32 (2009).

    CAS  PubMed  Google Scholar 

  106. Eghbalzadeh, K. et al. Compromised anti-inflammatory action of neutrophil extracellular traps in PAD4-deficient mice contributes to aggravated acute inflammation after myocardial infarction. Front. Immunol. 10, 2313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hashimoto, S., Suzuki, T., Dong, H. Y., Yamazaki, N. & Matsushima, K. Serial analysis of gene expression in human monocytes and macrophages. Blood 94, 837–844 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. McCurdy, S. M. et al. SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 301, H497–H505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schellings, M. W. et al. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J. Exp. Med. 206, 113–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang, W. et al. Molecular strategy to reduce in vivo collagen barrier promotes entry of NCX1 positive inducible pluripotent stem cells (iPSC(NCX¹+)) into ischemic (or injured) myocardium. PLoS ONE 8, e70023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dai, B. et al. Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function. J. Am. Coll. Cardiol. 58, 2118–2127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Knutson, A. K., Williams, A. L., Boisvert, W. A. & Shohet, R. V. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J. Clin. Invest. 131, e137557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Du, Y. et al. Hypoxia-inducible factor 1 alpha (HIF-1alpha)/vascular endothelial growth factor (VEGF) pathway participates in angiogenesis of myocardial infarction in muscone-treated mice: preliminary study. Med. Sci. Monit. 24, 8870–8877 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Neri, M., Riezzo, I., Pascale, N., Pomara, C. & Turillazzi, E. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017, 7018393 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Nag, A. C. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28, 41–61 (1980).

    CAS  PubMed  Google Scholar 

  117. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Tang, Y., Nyengaard, J. R., Andersen, J. B., Baandrup, U. & Gundersen, H. J. The application of stereological methods for estimating structural parameters in the human heart. Anat. Rec. 292, 1630–1647 (2009).

    Article  Google Scholar 

  119. Frangogiannis, N. G. et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 115, 584–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Gwechenberger, M. et al. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99, 546–551 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, S. et al. Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. J. Mol. Cell. Cardiol. 87, 171–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Monnerat, G. et al. Macrophage-dependent IL-1beta production induces cardiac arrhythmias in diabetic mice. Nat. Commun. 7, 13344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, B. et al. Macrophage-derived exosomal Mir-155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy. JACC Basic Transl. Sci. 5, 148–166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hu, J. et al. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur. J. Pharmacol. 857, 172449 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Almeida Paiva, R. et al. Ischaemia alters the effects of cardiomyocyte-derived extracellular vesicles on macrophage activation. J. Cell. Mol. Med. 23, 1137–1151 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Zlatanova, I. et al. Iron regulator hepcidin impairs macrophage-dependent cardiac repair after injury. Circulation 139, 1530–1547 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Wong, N. R. et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 54, 2072–2088.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Song, E. et al. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol. 204, 19–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Cao, B., Guo, Z., Zhu, Y. & Xu, W. The potential role of PDGF, IGF-1, TGF-beta expression in idiopathic pulmonary fibrosis. Chin. Med. J. 113, 776–782 (2000).

    CAS  PubMed  Google Scholar 

  130. Spiller, K. L. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35, 4477–4488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ferraro, B. et al. Pro-angiogenic macrophage phenotype to promote myocardial repair. J. Am. Coll. Cardiol. 73, 2990–3002 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Behzadian, M. A., Wang, X. L., Jiang, B. & Caldwell, R. B. Angiostatic role of astrocytes: suppression of vascular endothelial cell growth by TGF-beta and other inhibitory factor(s). Glia 15, 480–490 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, M. et al. Persistent inflammation subverts thrombospondin-1-induced regulation of retinal angiogenesis and is driven by CCR2 ligation. Am. J. Pathol. 180, 235–245 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Sato, N. et al. Actions of TNF and IFN-gamma on angiogenesis in vitro. J. Invest. Dermatol. 95, 85S–89S (1990).

    Article  CAS  PubMed  Google Scholar 

  135. Patterson, B. C. & Sang, Q. A. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem. 272, 28823–28825 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Falcone, D. J., Khan, K. M., Layne, T. & Fernandes, L. Macrophage formation of angiostatin during inflammation. A byproduct of the activation of plasminogen. J. Biol. Chem. 273, 31480–31485 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Lepidi, S. et al. MMP9 production by human monocyte-derived macrophages is decreased on polymerized type I collagen. J. Vasc. Surg. 34, 1111–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Zouggari, Y. et al. Regulatory T cells modulate postischemic neovascularization. Circulation 120, 1415–1425 (2009).

    Article  PubMed  Google Scholar 

  139. DeRuiter, M. C. et al. Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ. Res. 80, 444–451 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Kenswil, K. J. G. et al. Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell 28, 653–670.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Alonso-Herranz, L. et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. eLife 9, e57920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Huleihel, M., Douvdevani, A., Segal, S. & Apte, R. N. Regulation of interleukin 1 generation in immune-activated fibroblasts. Eur. J. Immunol. 20, 731–738 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Akbar, M. et al. Fibroblast activation and inflammation in frozen shoulder. PLoS ONE 14, e0215301 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Blythe, N. M. et al. Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion. J. Biol. Chem. 294, 17395–17408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sandanger, O. et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovasc. Res. 99, 164–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Ma, F. et al. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF beta/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS ONE 7, e35144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, C. et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol. Ther. 25, 192–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu, X. et al. miR-155 inhibits the formation of hypertrophic scar fibroblasts by targeting HIF-1alpha via PI3K/AKT pathway. J. Mol. Histol. 49, 377–387 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Yue, Y. et al. M2b macrophages regulate cardiac fibroblast activation and alleviate cardiac fibrosis after reperfusion injury. Circ. J. 84, 626–635 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Palmen, M. et al. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism. J. Am. Coll. Cardiol. 44, 1113–1123 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Dhingra, S., Sharma, A. K., Arora, R. C., Slezak, J. & Singal, P. K. IL-10 attenuates TNF-alpha-induced NFκB pathway activation and cardiomyocyte apoptosis. Cardiovasc. Res. 82, 59–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Korf-Klingebiel, M. et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med. 21, 140–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Cambier, L. et al. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol. Med. 9, 337–352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jung, M. et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res. Cardiol. 112, 33 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Simoes, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Haider, N. et al. Transition of macrophages to fibroblast-like cells in healing myocardial infarction. J. Am. Coll. Cardiol. 74, 3124–3135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ilatovskaya, D. V. et al. CD8+ T-cells negatively regulate inflammation post-myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 317, H581–H596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Patel, B. et al. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl. Sci. 3, 230–244 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Tang, T. T. et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol. 107, 232 (2012).

    Article  PubMed  Google Scholar 

  163. Saxena, A. et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol. 307, H1233–H1242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest 129, 4922–4936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bansal, S. S. et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139, 206–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Frantz, S., Bauersachs, J. & Ertl, G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc. Res. 81, 474–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Fujiwara, M. et al. Nanoparticle incorporating Toll-like receptor 4 inhibitor attenuates myocardial ischaemia–reperfusion injury by inhibiting monocyte-mediated inflammation in mice. Cardiovasc. Res 115, 1244–1255 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Gilbert, J. et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am. J. Cardiol. 107, 906–911 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Schroer, A. K. et al. Cadherin-11 blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction. JCI Insight 4, e131545 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wang, J. et al. Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction. Int. J. Nanomed. 13, 6441–6451 (2018).

    Article  CAS  Google Scholar 

  171. Wu, Z. et al. EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) nanoparticles as a carrier for the delivery of CCR2–shRNA to atherosclerotic macrophage in vitro. Sci. Rep. 10, 19636 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kubota, A., Suto, A., Suzuki, K., Kobayashi, Y. & Nakajima, H. Matrix metalloproteinase-12 produced by Ly6Clow macrophages prolongs the survival after myocardial infarction by preventing neutrophil influx. J. Mol. Cell. Cardiol. 131, 41–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Ogawa, H. et al. Adipolin/CTRP12 protects against pathological vascular remodelling through suppression of smooth muscle cell growth and macrophage inflammatory response. Cardiovasc. Res. 116, 237–249 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Takikawa, T. et al. Adipolin/C1q/Tnf-related protein 12 prevents adverse cardiac remodeling after myocardial infarction. PLoS ONE 15, e0243483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, W. et al. Calhex231 ameliorates myocardial fibrosis post myocardial infarction in rats through the autophagy–NLRP3 inflammasome pathway in macrophages. J. Cell. Mol. Med. 24, 13440–13453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cheng, Y. & Rong, J. Macrophage polarization as a therapeutic target in myocardial infarction. Curr. Drug. Targets 19, 651–662 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. ter Horst, E. N. et al. Modulators of macrophage polarization influence healing of the infarcted myocardium. Int. J. Mol. Sci. 16, 29583–29591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Courties, G. et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J. Am. Coll. Cardiol. 63, 1556–1566 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Jia, D. et al. Interleukin-35 promotes macrophage survival and improves wound healing after myocardial infarction in mice. Circ. Res. 124, 1323–1336 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Li, J. et al. CD226 deletion improves post-infarction healing via modulating macrophage polarization in mice. Theranostics 10, 2422–2435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ma, Y. et al. Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation. Circ. Res. 112, 675–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Shintani, Y. et al. IL-4 as a repurposed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: proof-of-concept data in mice. Sci. Rep. 7, 6877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zhou, L. S. et al. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. J. Inflamm. 12, 11 (2015).

    Article  CAS  Google Scholar 

  184. Peet, C., Ivetic, A., Bromage, D. I. & Shah, A. M. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc. Res. 116, 1101–1112 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Yang, M. et al. Deficiency of GATA3-positive macrophages improves cardiac function following myocardial infarction or pressure overload hypertrophy. J. Am. Coll. Cardiol. 72, 885–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang, S., Chen, R., Chakrabarti, S. & Su, Z. Resident macrophages as potential therapeutic targets for cardiac ageing and injury. Clin. Transl. Immunol. 9, e1167 (2020).

    Article  Google Scholar 

  187. Rao, D. D., Vorhies, J. S., Senzer, N. & Nemunaitis, J. siRNA vs. shRNA: similarities and differences. Adv. Drug Deliv. Rev. 61, 746–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. van Rooijen, N. & Hendrikx, E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol. Biol. 605, 189–203 (2010).

    Article  PubMed  Google Scholar 

  189. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Everett, B. M. et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am. Heart J. 166, 199–207.e15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Tong, D. C. et al. Colchicine in patients with acute coronary syndrome: The Australian COPS randomized clinical trial. Circulation 142, 1890–1900 (2020).

    Article  PubMed  Google Scholar 

  195. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Dalbeth, N., Lauterio, T. J. & Wolfe, H. R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther. 36, 1465–1479 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Riebeling, T. et al. Primidone blocks RIPK1-driven cell death and inflammation. Cell Death Differ. 28, 1610–1626 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Luo, P. et al. Bazedoxifene exhibits anti-inflammation and anti-atherosclerotic effects via inhibition of IL-6/IL-6R/STAT3 signaling. Eur. J. Pharmacol. 893, 173822 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Ramos, G. C. et al. Myocardial aging as a T-cell-mediated phenomenon. Proc. Natl Acad. Sci. USA 114, E2420–E2429 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ma, Y. et al. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc. Res. 106, 421–431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Esfahani, N. S. et al. Aging influences the cardiac macrophage phenotype and function during steady state and during inflammation. Aging Cell 20, e13438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Dick, S. A., Zaman, R. & Epelman, S. Using high-dimensional approaches to probe monocytes and macrophages in cardiovascular disease. Front. Immunol. 10, 2146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Willemsen, L. & de Winther, M. P. J. Macrophage subsets in atherosclerosis as defined by single-cell technologies. J. Pathol. 250, 705–714 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to L. N. Boisvert (John A. Burns School of Medicine, University of Hawaii, USA) for her expert editing of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to William A. Boisvert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Kristine Deleon-Pennell, Nikolaos Frangogiannis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, J., Irei, J., Lozano-Gerona, J. et al. Macrophages in cardiac remodelling after myocardial infarction. Nat Rev Cardiol 20, 373–385 (2023). https://doi.org/10.1038/s41569-022-00823-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00823-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing