Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic enhancers in cardiac development and disease

Abstract

The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the ‘non-coding genome’. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of ‘enhancers’ was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.

Key points

  • Genome-wide chromatin-profiling technologies have facilitated the mapping of regulatory regions in the cardiac genome, with high resolution and high throughput.

  • These assays have revealed how enhancer dynamics regulate or associate with transcriptomic changes observed in cardiac development and disease.

  • Genetic variants in regulatory enhancers can be implicated in disease pathogenesis and can help to identify pathways in disease development.

  • Targeting enhancers might open up new avenues for cardiac therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of genomic enhancers and 3D chromatin architecture.
Fig. 2: Signalling to the epigenome.

Similar content being viewed by others

References

  1. Levine, M. Transcriptional enhancers in animal development and evolution. Curr. Biol. 20, R754–R763 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ong, C. T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A. & Bejerano, G. Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    CAS  PubMed  Google Scholar 

  6. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tafessu, A. & Banaszynski, L. A. Establishment and function of chromatin modification at enhancers. Open Biol. 10, 200255 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeitlinger, J. Seven myths of how transcription factors read the cis-regulatory code. Curr. Opin. Syst. Biol. 23, 22–31 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

    CAS  PubMed  Google Scholar 

  11. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    CAS  PubMed  Google Scholar 

  12. Raiber, E.-A., Hardisty, R., van Delft, P. & Balasubramanian, S. Mapping and elucidating the function of modified bases in DNA. Nat. Rev. Chem. 1, 0069 (2017).

    CAS  Google Scholar 

  13. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  14. Angeloni, A. & Bogdanovic, O. Enhancer DNA methylation: implications for gene regulation. Essays Biochem. 63, 707–715 (2019).

    CAS  PubMed  Google Scholar 

  15. Blattler, A. & Farnham, P. J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288, 34287–34294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kolovos, P., Knoch, T. A., Grosveld, F. G., Cook, P. R. & Papantonis, A. Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 5, 1 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  18. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    CAS  PubMed  Google Scholar 

  19. Lee, D. P. et al. Robust CTCF-based chromatin architecture underpins epigenetic changes in the heart failure stress-gene response. Circulation 139, 1937–1956 (2019).

    CAS  PubMed  Google Scholar 

  20. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosa-Garrido, M. et al. High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation 136, 1613–1625 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein, D. C. & Hainer, S. J. Genomic methods in profiling DNA accessibility and factor localization. Chromosome Res. 28, 69–85 (2020).

    CAS  PubMed  Google Scholar 

  23. Hariprakash, J. M. & Ferrari, F. Computational biology solutions to identify enhancers-target gene pairs. Comput. Struct. Biotechnol. J. 17, 821–831 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kodzius, R. et al. CAGE: cap analysis of gene expression. Nat. Methods 3, 211–222 (2006).

    CAS  PubMed  Google Scholar 

  25. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    CAS  PubMed  Google Scholar 

  28. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Lee, D. et al. Human cardiac cis-regulatory elements, their cognate transcription factors, and regulatory DNA sequence variants. Genome Res. 28, 1577–1588 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng, Y. et al. Spatial epigenome sequencing at tissue scale and cellular level. Preprint at bioRxiv https://doi.org/10.1101/2021.03.11.434985 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gossett, L. A., Kelvin, D. J., Sternberg, E. A. & Olson, E. N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell Biol. 9, 5022–5033 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson, J. E., Wold, B. J. & Hauschka, S. D. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol. Cell Biol. 9, 3393–3399 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Arnold, H. H., Tannich, E. & Paterson, B. M. The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected primary cultures of chicken muscle. Nucleic Acids Res. 16, 2411–2429 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gustafson, T. A., Miwa, T., Boxer, L. M. & Kedes, L. Interaction of nuclear proteins with muscle-specific regulatory sequences of the human cardiac alpha-actin promoter. Mol. Cell Biol. 8, 4110–4119 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Minty, A., Blau, H. & Kedes, L. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol. Cell Biol. 6, 2137–2148 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mar, J. H., Antin, P. B., Cooper, T. A. & Ordahl, C. P. Analysis of the upstream regions governing expression of the chicken cardiac troponin T gene in embryonic cardiac and skeletal muscle cells. J. Cell Biol. 107, 573–585 (1988).

    CAS  PubMed  Google Scholar 

  37. Blow, M. J. et al. ChIP-seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 89–93 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Akerberg, B. N. et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat. Commun. 10, 4907 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Zhou, P. et al. Mapping cell type-specific transcriptional enhancers using high affinity, lineage-specific Ep300 bioChIP-seq. eLife 6, e22039 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Gilsbach, R. et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5, 5288 (2014).

    CAS  PubMed  Google Scholar 

  42. Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Papait, R. et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. USA 110, 20164–20169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    PubMed Central  Google Scholar 

  46. Anene-Nzelu, C. G. et al. Assigning distal genomic enhancers to cardiac disease-causing genes. Circulation 142, 910–912 (2020).

    PubMed  Google Scholar 

  47. Gacita, A. M. et al. Altered enhancer and promoter usage leads to differential gene expression in the normal and failed human heart. Circ. Heart Fail. 13, e006926 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Tan, W. L. W. et al. Epigenomes of human hearts reveal new genetic variants relevant for cardiac disease and phenotype. Circ. Res. 127, 761–777 (2020).

    CAS  PubMed  Google Scholar 

  50. Galang, G. et al. ATAC-seq reveals an Isl1 enhancer that regulates sinoatrial node development and function. Circ. Res. 127, 1502–1518 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hall, A. W. et al. Epigenetic analyses of human left atrial tissue identifies gene networks underlying atrial fibrillation. Circ. Genom. Precis. Med. 13, e003085 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rommel, C. et al. The transcription factor ETV1 induces atrial remodeling and arrhythmia. Circ. Res. 123, 550–563 (2018).

    CAS  PubMed  Google Scholar 

  53. Liu, Q. et al. Genome-wide temporal profiling of transcriptome and open chromatin of early cardiomyocyte differentiation derived from hiPSCs and hESCs. Circ. Res. 121, 376–391 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. van Eif, V. W. et al. Genome-wide analysis identifies an essential human TBX3 pacemaker enhancer. Circ. Res. 127, 1522–1535 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. Wamstad, J. A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206–220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hocker, J. D. et al. Cardiac cell type-specific gene regulatory programs and disease risk association. Sci. Adv. 7, eabf144 (2021).

    Google Scholar 

  58. Jia, G. et al. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat. Commun. 9, 4877 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Preprint at bioRxiv https://doi.org/10.1101/2020.12.08.411686 (2020).

    Article  Google Scholar 

  60. Wang, Z. et al. Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution. Cell Rep. 33, 108472 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, L. et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat. Cell Biol. 22, 108–119 (2020).

    CAS  PubMed  Google Scholar 

  63. Narlikar, L. et al. Genome-wide discovery of human heart enhancers. Genome Res. 20, 381–392 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bertero, A. et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun. 10, 1538 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Bianchi, V. et al. Detailed regulatory interaction map of the human heart facilitates gene discovery for cardiovascular disease. Preprint at bioRxiv https://doi.org/10.1101/705715 (2019).

    Article  Google Scholar 

  66. Choy, M. K. et al. Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks. Nat. Commun. 9, 2526 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Liu, C. F. et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy. J. Mol. Cell Cardiol. 145, 30–42 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Montefiori, L. E. et al. A promoter interaction map for cardiovascular disease genetics. eLife 7, e35788 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat. Commun. 8, 1667 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Panigrahi, A. & O’Malley, B. W. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 22, 108 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Miquerol, L. & Kelly, R. G. Organogenesis of the vertebrate heart. Wiley Interdiscip. Rev. Dev. Biol. 2, 17–29 (2013).

    CAS  PubMed  Google Scholar 

  75. Buckingham, M., Meilhac, S. & Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6, 826–835 (2005).

    CAS  PubMed  Google Scholar 

  76. Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alexander, J. M. et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142, 1418–1430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hashimoto, H. et al. Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers. Cell Stem Cell 25, 69–86.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao, M. T. et al. Cell type-specific chromatin signatures underline regulatory DNA elements in human induced pluripotent stem cells and somatic cells. Circ. Res. 121, 1237–1250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. VanOudenhove, J., Yankee, T. N., Wilderman, A. & Cotney, J. Epigenomic and transcriptomic dynamics during human heart organogenesis. Circ. Res. 127, e184–e209 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Greco, C. M. et al. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat. Commun. 7, 12418 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Movassagh, M. et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411–2422 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. Churko, J. M. et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat. Commun. 9, 4906 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. Luna-Zurita, L. et al. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell 164, 999–1014 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. He, A. et al. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat. Commun. 5, 4907 (2014).

    CAS  PubMed  Google Scholar 

  86. Ang, Y. S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 1734–1749.e22 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447 (2003).

    CAS  PubMed  Google Scholar 

  88. Bruneau, B. G. et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).

    CAS  PubMed  Google Scholar 

  89. Arnolds, D. E. et al. TBX5 drives Scn5a expression to regulate cardiac conduction system function. J. Clin. Invest. 122, 2509–2518 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dodou, E., Verzi, M. P., Anderson, J. P., Xu, S. M. & Black, B. L. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131, 3931–3942 (2004).

    CAS  PubMed  Google Scholar 

  91. Quaranta, R. et al. Revised roles of ISL1 in a hES cell-based model of human heart chamber specification. eLife 7, e31706 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Caputo, L. et al. The Isl1/Ldb1 complex orchestrates genome-wide chromatin organization to instruct differentiation of multipotent cardiac progenitors. Cell Stem Cell 17, 287–299 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, Y. et al. ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells. Nucleic Acids Res. 44, 6741–6755 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Anderson, D. J. et al. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat. Commun. 9, 1373 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Prall, O. W. et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128, 947–959 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mohan, R. A. et al. T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proc. Natl Acad. Sci. USA 117, 18617–18626 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shen, T. et al. Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function. J. Clin. Invest. 121, 4640–4654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Takeuchi, J. K. et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 132, 2463–2474 (2005).

    CAS  PubMed  Google Scholar 

  99. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    PubMed  Google Scholar 

  100. Backs, J. & Olson, E. N. Control of cardiac growth by histone acetylation/deacetylation. Circ. Res. 98, 15–24 (2006).

    CAS  PubMed  Google Scholar 

  101. Backs, J., Song, K., Bezprozvannaya, S., Chang, S. & Olson, E. N. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853–1864 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Spurrell, C. H. et al. Genome-wide fetalization of enhancer architecture in heart disease. Preprint at bioRxiv https://doi.org/10.1101/591362 (2019).

    Article  Google Scholar 

  103. Deutsch, M. A. et al. Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis. Cardiovasc. Res. 114, 1098–1114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Man, J. C. et al. Genetic dissection of a super enhancer controlling the Nppa-Nppb cluster in the heart. Circ. Res. 128, 115–129 (2021).

    CAS  PubMed  Google Scholar 

  105. Wang, Z. et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl Acad. Sci. USA 116, 18455–18465 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, W. et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369, eaaz3090 (2020).

    CAS  PubMed  Google Scholar 

  107. Kang, J. et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532, 201–206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang, S. et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139, 2857–2876 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Haws, S. A., Leech, C. M. & Denu, J. M. Metabolism and the epigenome: a dynamic relationship. Trends Biochem. Sci. 45, 731–747 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Janke, R., Dodson, A. E. & Rine, J. Metabolism and epigenetics. Annu. Rev. Cell Dev. Biol. 31, 473–496 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Arking, D. E. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 46, 826–836 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet. 50, 1234–1239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  116. Wamstad, J. A., Wang, X., Demuren, O. O. & Boyer, L. A. Distal enhancers: new insights into heart development and disease. Trends Cell Biol. 24, 294–302 (2014).

    CAS  PubMed  Google Scholar 

  117. Wang, X. et al. Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. eLife 5, e10557 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. van Ouwerkerk, A. F. et al. Identification of atrial fibrillation associated genes and functional non-coding variants. Nat. Commun. 10, 4755 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Gudbjartsson, D. F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448, 353–357 (2007).

    CAS  PubMed  Google Scholar 

  120. Husser, D., Adams, V., Piorkowski, C., Hindricks, G. & Bollmann, A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol. 55, 747–753 (2010).

    CAS  PubMed  Google Scholar 

  121. Tao, Y. et al. Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ. Cardiovasc. Genet. 7, 23–32 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Aguirre, L. A. et al. Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP. BMC Biol. 13, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Ye, J. et al. A functional variant associated with atrial fibrillation regulates PITX2c expression through TFAP2a. Am. J. Hum. Genet. 99, 1281–1291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, M. et al. Long-range Pitx2c enhancer-promoter interactions prevent predisposition to atrial fibrillation. Proc. Natl Acad. Sci. USA 116, 22692–22698 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chinchilla, A. et al. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ. Cardiovasc. Genet. 4, 269–279 (2011).

    CAS  PubMed  Google Scholar 

  126. Christophersen, I. E. et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 49, 946–952 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ellinor, P. T. et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet. 44, 670–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. van den Boogaard, M. et al. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J. Clin. Invest. 122, 2519–2530 (2012).

    PubMed  PubMed Central  Google Scholar 

  129. Kapoor, A. et al. An enhancer polymorphism at the cardiomyocyte intercalated disc protein NOS1AP locus is a major regulator of the QT interval. Am. J. Hum. Genet. 94, 854–869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Morley, M. P. et al. Cardioprotective effects of MTSS1 enhancer variants. Circulation 139, 2073–2076 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. van Weerd, J. H. et al. Trait-associated noncoding variant regions affect TBX3 regulation and cardiac conduction. eLife 9, e56697 (2020).

    PubMed  PubMed Central  Google Scholar 

  132. van Ouwerkerk, A. F. et al. Identification of functional variant enhancers associated with atrial fibrillation. Circ. Res. 127, 229–243 (2020).

    PubMed  Google Scholar 

  133. Gacita, A. M. et al. Genetic variation in enhancers modifies cardiomyopathy gene expression and progression. Circulation 143, 1302–1316 (2021).

    CAS  PubMed  Google Scholar 

  134. Watkins, W. S. et al. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat. Commun. 10, 4722 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Richter, F. et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat. Genet. 52, 769–777 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Smemo, S. et al. Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Hum. Mol. Genet. 21, 3255–3263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Minerath, R. A., Hall, D. D. & Grueter, C. E. Targeting transcriptional machinery to inhibit enhancer-driven gene expression in heart failure. Heart Fail. Rev. 24, 725–741 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. McKinsey, T. A. Therapeutic potential for HDAC inhibitors in the heart. Annu. Rev. Pharmacol. Toxicol. 52, 303–319 (2012).

    CAS  PubMed  Google Scholar 

  140. Ooi, J. Y. et al. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics 10, 418–430 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Greer, C. B. et al. Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep. 13, 1444–1455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662–677 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gabisonia, K. & Recchia, F. A. Gene therapy for heart failure: new perspectives. Curr. Heart Fail. Rep. 15, 340–349 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Gabisonia, K. et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    CAS  PubMed  Google Scholar 

  148. Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).

    CAS  PubMed  Google Scholar 

  149. Lam, M. T. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511–515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang, X. H. et al. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm. eLife 6, e31683 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. McClorey, G. & Wood, M. J. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr. Opin. Pharmacol. 24, 52–58 (2015).

    CAS  PubMed  Google Scholar 

  153. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    CAS  PubMed  Google Scholar 

  154. Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776–783 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 25, 1234–1257 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, C. et al. An ATAC-seq atlas of chromatin accessibility in mouse tissues. Sci. Data 6, 65 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Quaife-Ryan, G. A. et al. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation 136, 1123–1139 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sharma, A. et al. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. eLife 9, e53278 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Nomura, S. et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat. Commun. 9, 4435 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Pei, J. et al. H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts. Clin. Epigenet. 12, 106 (2020).

    CAS  Google Scholar 

  163. Stergachis, A. B. et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154, 888–903 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    CAS  PubMed  Google Scholar 

  165. Pang, B. & Snyder, M. P. Systematic identification of silencers in human cells. Nat. Genet. 52, 254–263 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. West, A. G., Gaszner, M. & Felsenfeld, G. Insulators: many functions, many mechanisms. Genes Dev. 16, 271–288 (2002).

    PubMed  Google Scholar 

  167. Denker, A. & de Laat, W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357–1382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Moore, J. E., Pratt, H. E., Purcaro, M. J. & Weng, Z. A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods. Genome Biol. 21, 17 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.G.A.-N. and R.S.Y.F. researched data for the article. C.G.A.-N., M.C.J.L. and R.S.Y.F. contributed to discussion of the content. C.G.A.-N., M.C.J.L., A.D. and R.S.Y.F. wrote the article. All of the authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Chukwuemeka G. Anene-Nzelu or Roger S. Y. Foo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks T. Pedrazzini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cis-element Atlas: http://www.catlas.org/humantissue/#!/

ENCODE: https://www.encodeproject.org/

Epigenome Browser: http://epigenomegateway.wustl.edu/

EpiMap Repository: http://compbio.mit.edu/epimap/

FANTOM: https://fantom.gsc.riken.jp/

IHEC: http://ihec-epigenomes.org/

The Ensembl Regulatory Build: http://www.ensembl.org/info/genome/funcgen/regulatory_build.html

TRANSFAC: https://genexplain.com/transfac/

Vista Enhancer Browser: https://enhancer.lbl.gov/

Glossary

Transcription factors

Proteins that bind to DNA, often by recognizing short DNA (motif) sequences that are typically 6–10 bp. Pioneering transcription factors recruit other DNA-binding proteins (co-activators or co-repressors) and contribute to the regulation of RNA transcription.

Nucleosome

The basic structural unit of DNA packaging in eukaryotes, comprising a segment of DNA wrapped around a core of histone proteins.

Histone acetyltransferase

A family of enzymes that transfers acetyl groups to lysine residues of histone proteins.

Histone modifications

Covalent post-translational modifications of histone proteins, including histone acetylation, methylation and phosphorylation. H3K27ac and H3K4me1 are the histone modifications most commonly associated with enhancers.

Enhancer RNA

(eRNA). A non-coding RNA molecule transcribed from the DNA sequence of enhancer loci.

Super-enhancers

Clusters of enhancers, often bound by many transcription factors, and are usually specifically important for cell identity.

Expression quantitative trait loci

DNA variants that correlate with changes in gene expression.

Histone acetylation quantitative trait loci

DNA variants within the enhancer peaks that correlate with changes in the acetylation peak height.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anene-Nzelu, C.G., Lee, M.C.J., Tan, W.L.W. et al. Genomic enhancers in cardiac development and disease. Nat Rev Cardiol 19, 7–25 (2022). https://doi.org/10.1038/s41569-021-00597-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00597-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing