Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global epidemiology of valvular heart disease

Abstract

Valvular heart disease (VHD) is a major contributor to loss of physical function, quality of life and longevity. The epidemiology of VHD varies substantially around the world, with a predominance of functional and degenerative disease in high-income countries, and a predominance of rheumatic heart disease in low-income and middle-income countries. Reflecting this distribution, rheumatic heart disease remains by far the most common manifestation of VHD worldwide and affects approximately 41 million people. By contrast, the prevalence of calcific aortic stenosis and degenerative mitral valve disease is 9 and 24 million people, respectively. Despite a reduction in global mortality related to rheumatic heart disease since 1900, the death rate has remained fairly static since 2000. Meanwhile, deaths from calcific aortic stenosis have continued to rise in the past 20 years. Epidemiological data on other important acquired and congenital forms of VHD are limited. An ageing population and advances in therapies make an examination of the changing global epidemiology of VHD crucial for advances in clinical practice and formulation of health policy. In this Review, we discuss the global burden of VHD, geographical variation in the presentation and clinical management, and temporal trends in disease burden.

Key points

  • The prevalence of valvular heart disease (VHD) is growing worldwide as a consequence of improved survival and the ageing population.

  • Rheumatic heart disease (RHD) remains the most prevalent form of VHD and contributes to substantial premature mortality and reduced quality of life; RHD is primarily encountered in middle-income and low-income countries and specific (usually indigenous) groups in high-income countries.

  • Calcific aortic valve disease is highly age-related, and its prevalence is increasing rapidly in high-income countries.

  • Endocarditis is increasing in incidence and prevalence as a consequence of improved diagnosis and an ageing, susceptible population undergoing an increasing range and complexity of medical interventions.

  • Valve abnormalities are a frequent component of congenital heart disease; bicuspid aortic valve is most commonly encountered, and its prevalence seems to be uniform across the world.

  • Epidemiological information on patients who have undergone surgical or transcatheter valve intervention is limited, but this population is growing exponentially (especially in high-income countries); forecasting trends is difficult owing to the rapid evolution of these interventions and of therapies that might reduce the need for interventional treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age-specific and sex-specific prevalence of three forms of valvular heart disease.
Fig. 2: Global prevalence of three forms of valvular heart disease.
Fig. 3: Changes in the absolute numbers of deaths and prevalence of three forms of valvular heart disease from 1990 to 2019.
Fig. 4: Changes in age-standardized death rates due to three forms of valvular heart disease from 1990 to 2019.
Fig. 5: Changes in age-standardized prevalence of three forms of valvular heart disease from 1990 to 2019.
Fig. 6: Global variation in the uptake of TAVI.

Similar content being viewed by others

References

  1. Vaslef, S. N. & Roberts, W. C. Early descriptions of aortic valve stenosis. Am. Heart J. 125, 1465–1474 (1993).

    CAS  PubMed  Google Scholar 

  2. Binder, R. K., Dweck, M. & Prendergast, B. The year in cardiology: valvular heart disease. Eur. Heart J. 41, 912–920 (2020).

    CAS  PubMed  Google Scholar 

  3. Institute for Health Metrics and Evaluation. GBD Results Tool. IHME http://ghdx.healthdata.org/gbd-results-tool (2021).

  4. Coffey, S. et al. Clinical information has low sensitivity for postmortem diagnosis of heart valve disease. Heart 103, 1031–1035 (2017).

    PubMed  Google Scholar 

  5. Gardezi, S. K. M. et al. Cardiac auscultation poorly predicts the presence of valvular heart disease in asymptomatic primary care patients. Heart 104, 1832–1835 (2018).

    PubMed  Google Scholar 

  6. Yadgir, S. et al. Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990-2017. Circulation 141, 1670–1680 (2020).

    PubMed  Google Scholar 

  7. Singh, J. P. et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am. J. Cardiol. 83, 897–902 (1999).

    CAS  PubMed  Google Scholar 

  8. D’Arcy, J. L. et al. Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort Study. Eur. Heart J. 37, 3515–3522 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Myerson, S. et al. Survival with valvular heart disease (OxValve-Survive) [abstract 124]. Heart 105 105 (Suppl. 6), A102 (2019).

    Google Scholar 

  10. Nkomo, V. T. et al. Burden of valvular heart diseases: a population-based study. Lancet 368, 1005–1011 (2006).

    PubMed  Google Scholar 

  11. Chehab, O. et al. Secondary mitral regurgitation: pathophysiology, proportionality and prognosis. Heart 106, 716–723 (2020).

    PubMed  Google Scholar 

  12. Zühlke, L. et al. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: the Global Rheumatic Heart Disease Registry (the REMEDY study). Eur. Heart J. 36, 1115–1122 (2015).

    PubMed  Google Scholar 

  13. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Zühlke, L. et al. Clinical outcomes in 3343 children and adults with rheumatic heart disease from 14 low- and middle-income countries: two-year follow-up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation 134, 1456–1466 (2016).

    PubMed  Google Scholar 

  15. Roberts, K. et al. Echocardiographic screening for rheumatic heart disease in indigenous Australian children: a cost-utility analysis. J. Am. Heart Assoc. 6, e004515 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Francis, J. R. et al. Hyperendemic rheumatic heart disease in a remote Australian town identified by echocardiographic screening. Med. J. Aust. 213, 118–123 (2020).

    PubMed  Google Scholar 

  17. Milne, R. J. et al. Mortality and hospitalisation costs of rheumatic fever and rheumatic heart disease in New Zealand. J. Paediatr. Child. Health 48, 692–697 (2012).

    PubMed  Google Scholar 

  18. Watkins, D. A. et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N. Engl. J. Med. 377, 713–722 (2017).

    PubMed  Google Scholar 

  19. de Aquino Xavier, R. M. et al. Medium-term outcomes of 78,808 patients after heart valve surgery in a middle-income country: a nationwide population-based study. BMC Cardiovasc. Disord. 17, 302 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Saxena, A. et al. Prevalence and outcome of subclinical rheumatic heart disease in India: the RHEUMATIC (Rheumatic Heart Echo Utilisation and Monitoring Actuarial Trends in Indian Children) study. Heart 97, 2018–2022 (2011).

    PubMed  Google Scholar 

  21. Meira, Z. M., Goulart, E. M., Colosimo, E. A. & Mota, C. C. Long term follow up of rheumatic fever and predictors of severe rheumatic valvar disease in Brazilian children and adolescents. Heart 91, 1019–1022 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Roberts, K. V. et al. Rheumatic heart disease in indigenous children in northern Australia: differences in prevalence and the challenges of screening. Med. J. Aust. 203, 221 (2015).

    PubMed  Google Scholar 

  23. Wilson, N. Rheumatic heart disease in indigenous populations – New Zealand experience. Heart Lung Circ. 19, 282–288 (2010).

    PubMed  Google Scholar 

  24. New Zealand Ministry of Health. Reducing rheumatic fever. New Zealand Government https://www.health.govt.nz/our-work/diseases-and-conditions/rheumatic-fever/reducing-rheumatic-fever (2021).

  25. Coffey, S., Cox, B. & Williams, M. J. A. The prevalence, incidence, progression, and risks of aortic valve sclerosis: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 63, 2852–2861 (2014).

    PubMed  Google Scholar 

  26. Strange, G. et al. Poor long-term survival in patients with moderate aortic stenosis. J. Am. Coll. Cardiol. 74, 1851–1863 (2019).

    PubMed  Google Scholar 

  27. Kapadia, S. R. et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385, 2485–2491 (2015).

    PubMed  Google Scholar 

  28. Delesalle, G. et al. Characteristics and prognosis of patients with moderate aortic stenosis and preserved left ventricular ejection fraction. J. Am. Heart Assoc. 8, e011036 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Jilaihawi, H. et al. Morphological characteristics of severe aortic stenosis in China: imaging corelab observations from the first Chinese transcatheter aortic valve trial. Catheter. Cardiovasc. Interv. 85 (Suppl. 1), 752–761 (2015).

    PubMed  Google Scholar 

  30. Barasch, E. et al. Cardiovascular morbidity and mortality in community-dwelling elderly individuals with calcification of the fibrous skeleton of the base of the heart and aortosclerosis (The Cardiovascular Health Study). Am. J. Cardiol. 97, 1281–1286 (2006).

    PubMed  Google Scholar 

  31. Brecker, S. et al. Cost-utility of transcatheter aortic valve implantation for inoperable patients with severe aortic stenosis treated by medical management: a UK cost-utility analysis based on patient-level data from the ADVANCE study. Open Heart 1, e000155 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Larsson, S. C., Wolk, A. & Bäck, M. Alcohol consumption, cigarette smoking and incidence of aortic valve stenosis. J. Intern. Med. 282, 332–339 (2017).

    CAS  PubMed  Google Scholar 

  33. Yan, A. T. et al. Association between cardiovascular risk factors and aortic stenosis: the CANHEART aortic stenosis study. J. Am. Coll. Cardiol. 69, 1523–1532 (2017).

    PubMed  Google Scholar 

  34. Eggebrecht, H. & Mehta, R. H. Transcatheter aortic valve implantation (TAVI) in Germany: more than 100,000 procedures and now the standard of care for the elderly. EuroIntervention 14, e1549–e1552 (2019).

    PubMed  Google Scholar 

  35. Dziadzko, V. et al. Outcome and undertreatment of mitral regurgitation: a community cohort study. Lancet 391, 960–969 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Delling, F. N. et al. Familial clustering of mitral valve prolapse in the community. Circulation 131, 263–268 (2015).

    PubMed  Google Scholar 

  37. Coffey, S., Cairns, B. J. & Iung, B. The modern epidemiology of heart valve disease. Heart 102, 75–85 (2016).

    PubMed  Google Scholar 

  38. Dziadzko, V. et al. Causes and mechanisms of isolated mitral regurgitation in the community: clinical context and outcome. Eur. Heart J. 40, 2194–2202 (2019).

    PubMed  Google Scholar 

  39. Rossi, A. et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure: a quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 97, 1675–1680 (2011).

    PubMed  Google Scholar 

  40. Messika-Zeitoun, D. et al. Dismal outcomes and high societal burden of mitral valve regurgitation in France in the recent era: a nationwide perspective. J. Am. Heart Assoc. 9, e016086 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. Andell, P. et al. Epidemiology of valvular heart disease in a Swedish nationwide hospital-based register study. Heart 103, 1696–1703 (2017).

    PubMed  Google Scholar 

  42. Kong, W. K. F. et al. Sex differences in phenotypes of bicuspid aortic valve and aortopathy: insights from a large multicenter, international registry. Circ. Cardiovasc. Imaging 10, e005155 (2017).

    PubMed  Google Scholar 

  43. Celeng, C. et al. Aortic root dimensions are predominantly determined by genetic factors: a classical twin study. Eur. Radiol. 27, 2419–2425 (2017).

    PubMed  Google Scholar 

  44. Canciello, G. et al. Determinants of aortic root dilatation over time in patients with essential hypertension: the Campania Salute Network. Eur. J. Prev. Cardiol. https://doi.org/10.1177/2047487320931630 (2020).

    Article  PubMed  Google Scholar 

  45. Fox, E. R. et al. Epidemiology of pure valvular regurgitation in the large middle-aged African American cohort of the Atherosclerosis Risk in Communities study. Am. Heart J. 154, 1229–1234 (2007).

    PubMed  Google Scholar 

  46. Shu, C. et al. Prevalence and correlates of valvular heart diseases in the elderly population in Hubei, China. Sci. Rep. 6, 27253 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. von Kappelgaard, L. et al. Temporal trends and socioeconomic differences in the incidence of left-sided valvular heart disease in Denmark. Eur. Heart J. Qual. Care Clin. Outcomes https://doi.org/10.1093/ehjqcco/qcaa068 (2020).

    Article  Google Scholar 

  48. Prihadi, E. A. et al. Development of significant tricuspid regurgitation over time and prognostic implications: new insights into natural history. Eur. Heart J. 39, 3574–3581 (2018).

    PubMed  Google Scholar 

  49. Lüscher, T. F. Valvular heart disease: tricuspid regurgitation is the new frontier. Eur. Heart J. 39, 3555–3557 (2018).

    PubMed  Google Scholar 

  50. Topilsky, Y. et al. Clinical presentation and outcome of tricuspid regurgitation in patients with systolic dysfunction. Eur. Heart J. 39, 3584–3592 (2018).

    PubMed  Google Scholar 

  51. Chorin, E. et al. Tricuspid regurgitation and long-term clinical outcomes. Eur. Heart J. Cardiovasc. Imaging 21, 157–165 (2020).

    PubMed  Google Scholar 

  52. Topilsky, Y. et al. Burden of tricuspid regurgitation in patients diagnosed in the community setting. JACC Cardiovasc. Imaging 12, 433–442 (2019).

    PubMed  Google Scholar 

  53. Taramasso, M. et al. Transcatheter versus medical treatment of patients with symptomatic severe tricuspid regurgitation. J. Am. Coll. Cardiol. 74, 2998–3008 (2019).

    CAS  PubMed  Google Scholar 

  54. Shariff, M. et al. Ten years mortality trends of tricuspid regurgitation in the United States, 2008 to 2018. Am. J. Cardiol. 140, 156–157 (2020).

    PubMed  Google Scholar 

  55. Kolte, D. et al. Temporal trends in prevalence of tricuspid valve disease in hospitalized patients in the United States. Am. J. Cardiol. 125, 1879–1883 (2020).

    PubMed  Google Scholar 

  56. Bustamante-Munguira, J. et al. Surgery for acute infective endocarditis: epidemiological data from a Spanish nationwide hospital-based registry. Interact. Cardiovasc. Thorac. Surg. 27, 498–504 (2018).

    PubMed  Google Scholar 

  57. Fournier, P.-E. et al. Blood culture-negative endocarditis: improving the diagnostic yield using new diagnostic tools. Medicine 96, e8392 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Hurrell, H., Roberts-Thomson, R. & Prendergast, B. D. Non-infective endocarditis. Heart 106, 1023–1029 (2020).

    CAS  PubMed  Google Scholar 

  59. Bin Abdulhak, A. A. et al. Global and regional burden of infective endocarditis, 1990-2010: a systematic review of the literature. Glob. Heart 9, 131–143 (2014).

    Google Scholar 

  60. Habib, G. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European Infective Endocarditis) registry: a prospective cohort study. Eur. Heart J. 40, 3222–3232 (2019).

    PubMed  Google Scholar 

  61. Thornhill, M. H. et al. An alarming rise in incidence of infective endocarditis in England since 2009: why? Lancet 395, 1325–1327 (2020).

    PubMed  Google Scholar 

  62. Yew, H. S. & Murdoch, D. R. Global trends in infective endocarditis epidemiology. Curr. Infect. Dis. Rep. 14, 367–372 (2012).

    PubMed  Google Scholar 

  63. Zhao, L. et al. Birth prevalence of congenital heart disease in China, 1980–2019: a systematic review and meta-analysis of 617 studies. Eur. J. Epidemiol. 35, 631–642 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Virani, S. S. et al. Heart disease and stroke statistics — 2020 update: a report from the American Heart Association. Circulation 141, e139–e596 (2020).

    PubMed  Google Scholar 

  65. Liu, Y. et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 48, 455–463 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. van der Linde, D. et al. Birth prevalence of congenital heart disease worldwide. J. Am. Coll. Cardiol. 58, 2241–2247 (2011).

    PubMed  Google Scholar 

  67. Basso, C. et al. An echocardiographic survey of primary school children for bicuspid aortic valve. Am. J. Cardiol. 93, 661–663 (2004).

    PubMed  Google Scholar 

  68. Nistri, S. et al. Frequency of bicuspid aortic valve in young male conscripts by echocardiogram. Am. J. Cardiol. 96, 718–721 (2005).

    PubMed  Google Scholar 

  69. Tutar, E. et al. The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. Am. Heart J. 150, 513–515 (2005).

    PubMed  Google Scholar 

  70. Li, Y. et al. Prevalence and complications of bicuspid aortic valve in Chinese according to echocardiographic database. Am. J. Cardiol. 120, 287–291 (2017).

    PubMed  Google Scholar 

  71. Movahed, M.-R., Hepner, A. D. & Ahmadi-Kashani, M. Echocardiographic prevalence of bicuspid aortic valve in the population. Heart Lung Circ. 15, 297–299 (2006).

    PubMed  Google Scholar 

  72. Galian-Gay, L. et al. Familial clustering of bicuspid aortic valve and its relationship with aortic dilation in first-degree relatives. Heart 105, 603–608 (2019).

    PubMed  Google Scholar 

  73. Edwin, F. et al. Status and challenges of care in Africa for adults with congenital heart defects. World J. Pediatr. Congenit. Heart Surg. 8, 495–501 (2017).

    PubMed  Google Scholar 

  74. Zimmerman, M. S. et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child. Adolesc. Health 4, 185–200 (2020).

    Google Scholar 

  75. Moons, P. et al. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 122, 2264–2272 (2010).

    PubMed  Google Scholar 

  76. Prendergast, B. D. et al. Transcatheter heart valve interventions: where are we? Where are we going? Eur. Heart J. 40, 422–440 (2019).

    PubMed  Google Scholar 

  77. Iung, B. et al. Contemporary presentation and management of valvular heart disease. Circulation 140, 1156–1169 (2019).

    PubMed  Google Scholar 

  78. Hickey, G. L. et al. National registry data and record linkage to inform postmarket surveillance of prosthetic aortic valve models over 15 years. JAMA Intern. Med. 177, 79–86 (2017).

    PubMed  Google Scholar 

  79. Vervoort, D. et al. Global cardiac surgery: access to cardiac surgical care around the world. J. Thorac. Cardiovasc. Surg. 159, 987–996.e6 (2020).

    PubMed  Google Scholar 

  80. Pilgrim, T. & Windecker, S. Expansion of transcatheter aortic valve implantation: new indications and socio-economic considerations. Eur. Heart J. 39, 2643–2645 (2018).

    PubMed  Google Scholar 

  81. Garver, D. et al. The epidemiology of prosthetic heart valves in the United States. Tex. Heart Inst. J. 22, 86–91 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gammie, J. S. et al. Isolated mitral valve surgery: the Society of Thoracic Surgeons adult cardiac surgery database analysis. Ann. Thorac. Surg. 106, 716–727 (2018).

    PubMed  Google Scholar 

  83. Culler, S. D. et al. Trends in aortic valve replacement procedures between 2009 and 2015: has transcatheter aortic valve replacement made a difference? Ann. Thorac. Surg. 105, 1137–1143 (2018).

    PubMed  Google Scholar 

  84. Kim, K. M. et al. Evolving trends in aortic valve replacement: a statewide experience. J. Card. Surg. 33, 424–430 (2018).

    PubMed  Google Scholar 

  85. Carroll, J. D. et al. STS-ACC TVT registry of transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 76, 2492–2516 (2020).

    CAS  PubMed  Google Scholar 

  86. Zhou, S. et al. Trends in MitraClip, mitral valve repair, and mitral valve replacement from 2000 to 2016. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2019.12.097 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stone, G. W. et al. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 379, 2307–2318 (2018).

    PubMed  Google Scholar 

  88. Wang, Y. et al. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J. Am. Heart Assoc. 8, e012272 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nickenig, G. et al. Transcatheter edge-to-edge repair for reduction of tricuspid regurgitation: 6-month outcomes of the TRILUMINATE single-arm study. Lancet 394, 2002–2011 (2019).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.C. and R.R.-T. researched data for the article. S.C., R.R.-T. and B.D.P. wrote the manuscript. All the authors contributed to discussions about content, and revised and edited the manuscript before submission.

Corresponding author

Correspondence to Bernard D. Prendergast.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks B. Iung, M. Leon and P. Pibarot for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coffey, S., Roberts-Thomson, R., Brown, A. et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol 18, 853–864 (2021). https://doi.org/10.1038/s41569-021-00570-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00570-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing