Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ceramides and other sphingolipids as drivers of cardiovascular disease

Abstract

Increases in calorie consumption and sedentary lifestyles are fuelling a global pandemic of cardiometabolic diseases, including coronary artery disease, diabetes mellitus, cardiomyopathy and heart failure. These lifestyle factors, when combined with genetic predispositions, increase the levels of circulating lipids, which can accumulate in non-adipose tissues, including blood vessel walls and the heart. The metabolism of these lipids produces bioactive intermediates that disrupt cellular function and survival. A compelling body of evidence suggests that sphingolipids, such as ceramides, account for much of the tissue damage in these cardiometabolic diseases. In humans, serum ceramide levels are proving to be accurate biomarkers of adverse cardiovascular disease outcomes. In mice and rats, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of diabetes, atherosclerosis, hypertension and heart failure. In cultured cells and isolated tissues, ceramides perturb mitochondrial function, block fuel usage, disrupt vasodilatation and promote apoptosis. In this Review, we discuss the body of literature suggesting that ceramides are drivers — and not merely passengers — on the road to cardiovascular disease. Moreover, we explore the feasibility of therapeutic strategies to lower ceramide levels to improve cardiovascular health.

Key points

  • Ceramides have been shown to accumulate in many tissues, including blood vessels and the heart, in individuals with cardiovascular disease (such as hypertension, heart failure and atherosclerosis).

  • Serum ceramide levels are measured clinically as prognostic indicators of major adverse cardiovascular events.

  • Inhibiting ceramide biosynthesis in mice and rats prevents the development of hypertension, atherosclerosis, diabetes mellitus and heart failure.

  • Ceramides have pleiotropic actions that are relevant to metabolic disease, including inhibiting nitric oxide synthase, decreasing insulin sensitivity, altering mitochondrial bioenergetics, and inducing apoptosis and fibrosis.

  • Several enzymes that control ceramide production or metabolism have emerged as attractive therapeutic targets for treating a wide range of cardiometabolic pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways controlling ceramide levels in the cardiovascular system.
Fig. 2: Ceramide-induced endothelial cell dysfunction.
Fig. 3: Types of heart failure and the contribution of ceramides.
Fig. 4: Mechanisms linking ceramides to heart failure.

Similar content being viewed by others

References

  1. Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, no. 360 (National Center for Health Statistics, 2020).

  2. Summers, S. A., Chaurasia, B. & Holland, W. L. Metabolic messengers: ceramides. Nat. Metab. 1, 1051–1058 (2019).

    Article  Google Scholar 

  3. Russo, S. B., Ross, J. S. & Cowart, L. A. in Sphingolipids in Disease. Handbook of Experimental Pharmacology vol. 216 (eds Gulbins, E. & Petrache, I.) 373–401 (Springer, 2013).

  4. Poss, A. M. & Summers, S. A. Too much of a good thing? An evolutionary theory to explain the role of ceramides in NAFLD. Front. Endocrinol. 11, 505 (2020).

    Article  Google Scholar 

  5. Hilvo, M., Vasile, V. C., Donato, L. J., Hurme, R. & Laaksonen, R. Ceramides and ceramide scores: clinical applications for cardiometabolic risk stratification. Front. Endocrinol. 11, 570628 (2020).

    Article  Google Scholar 

  6. Hilvo, M. et al. Prediction of residual risk by ceramide-phospholipid score in patients with stable coronary heart disease on optimal medical therapy. J. Am. Heart Assoc. 9, e015258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poss, A. M. et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Invest. 130, 1363–1376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poss, A. M., Holland, W. L. & Summers, S. A. Risky lipids: refining the ceramide score that measures cardiovascular health. Eur. Heart J. 41, 381–382 (2020).

    PubMed  Google Scholar 

  9. Mantovani, A. et al. Association between increased plasma ceramides and chronic kidney disease in patients with and without ischemic heart disease. Diabetes Metab. 47, 101152 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani, A. & Dugo, C. Ceramides and risk of major adverse cardiovascular events: a meta-analysis of longitudinal studies. J. Clin. Lipidol. 14, 176–185 (2020).

    Article  PubMed  Google Scholar 

  11. Mantovani, A. et al. Associations between specific plasma ceramides and severity of coronary-artery stenosis assessed by coronary angiography. Diabetes Metab. 46, 150–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Mantovani, A. et al. Association between specific plasma ceramides and high-sensitivity C-reactive protein levels in postmenopausal women with type 2 diabetes. Diabetes Metab. 46, 326–330 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Anroedh, S. et al. Plasma concentrations of molecular lipid species predict long-term clinical outcome in coronary artery disease patients. J. Lipid Res. 59, 1729–1737 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Havulinna, A. S. et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424–2430 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Laaksonen, R. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 37, 1967–1976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng, J. M. et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Atherosclerosis 243, 560–566 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Tarasov, K. et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 99, E45–E52 (2014).

    Article  PubMed  Google Scholar 

  18. Peterson, L. R. et al. Alterations in plasma triglycerides and ceramides: links with cardiac function in humans with type 2 diabetes. J. Lipid Res. 61, 1065–1074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peterson, L. R. et al. Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart. Assoc. 7, e007931 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mikhalkova, D. et al. Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity 26, 284–290 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Lemaitre, R. N. et al. Plasma ceramides and sphingomyelins in relation to heart failure risk. Circ. Heart Fail. 12, e005708 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemaitre, R. N. et al. Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: the Strong Heart Family Study. Diabetes 67, 1663–1672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cresci, S. et al. Genetic architecture of circulating very-long-chain (C24:0 and C22:0) ceramide concentrations. J. Lipid Atheroscler. 9, 172–183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Javaheri, A., Allegood, J. C., Cowart, L. A. & Chirinos, J. A. Circulating ceramide 16:0 in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 75, 2273–2275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holland, W. L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Hojjati, M. R. et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 280, 10284–10289 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Park, T. S. et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid Res. 49, 2101–2112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji, R. et al. Increased de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight 2, e82922 (2017).

    Article  PubMed Central  Google Scholar 

  29. Zhang, Q. J. et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes 61, 1848–1859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bharath, L. P. et al. Ceramide-initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo. Diabetes 64, 3914–3926 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Merrill, A. H. Jr. et al. Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142, 208–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Nikolova-Karakashian, M. N. & Rozenova, K. A. Ceramide in stress response. Adv. Exp. Med. Biol. 688, 86–108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Obeid, L. M. & Hannun, Y. A. Ceramide, stress, and a “LAG” in aging. Sci. Aging Knowl. Environ. 2003, PE27 (2003).

    Article  Google Scholar 

  35. Hannun, Y. A. & Obeid, L. M. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 277, 25847–25850 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Merrill, A. H. Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843–25846 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl Acad. Sci. USA 106, 8186–8191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hornemann, T. et al. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J. Biol. Chem. 284, 26322–26330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zelnik, I. D., Rozman, B., Rosenfeld-Gur, E., Ben-Dor, S. & Futerman, A. H. A stroll down the CerS lane. Adv. Exp. Med. Biol. 1159, 49–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Laviad, E. L. et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 283, 5677–5684 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Levy, M. & Futerman, A. H. Mammalian ceramide synthases. IUBMB Life 62, 347–356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russo, S. B. et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Invest. 122, 3919–3930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Peters, F. et al. Ceramide synthase 4 regulates stem cell homeostasis and hair follicle cycling. J. Invest. Dermatol. 135, 1501–1509 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Raichur, S. et al. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol. Metab. 21, 36–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Michel, C. & van Echten-Deckert, G. Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett. 416, 153–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Michel, C. et al. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J. Biol. Chem. 272, 22432–22437 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Omae, F. et al. DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379, 687–695 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanada, K., Kumagai, K., Tomishige, N. & Yamaji, T. CERT-mediated trafficking of ceramide. Biochim. Biophys. Acta 1791, 684–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kumagai, K. & Hanada, K. Structure, functions and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites. FEBS Lett. 593, 2366–2377 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Venkataraman, K. et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102, 669–676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hannun, Y. A., Luberto, C. & Argraves, K. M. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40, 4893–4903 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Newton, J., Lima, S., Maceyka, M. & Spiegel, S. Revisiting the sphingolipid rheostat: evolving concepts in cancer therapy. Exp. Cell Res. 333, 195–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Wende, A. R., Symons, J. D. & Abel, E. D. Mechanisms of lipotoxicity in the cardiovascular system. Curr. Hypertens. Rep. 14, 517–531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Symons, J. D. & Abel, E. D. Lipotoxicity contributes to endothelial dysfunction: a focus on the contribution from ceramide. Rev. Endocr. Metab. Disord. 14, 59–68 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dantas, A. P., Igarashi, J. & Michel, T. Sphingosine 1-phosphate and control of vascular tone. Am. J. Physiol. Heart Circ. Physiol. 284, H2045–H2052 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Igarashi, J. & Michel, T. Sphingosine-1-phosphate and modulation of vascular tone. Cardiovasc. Res. 82, 212–220 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kennedy, S., Kane, K. A., Pyne, N. J. & Pyne, S. Targeting sphingosine-1-phosphate signalling for cardioprotection. Curr. Opin. Pharmacol. 9, 194–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Holland, W. L. et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267–275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vasiliauskaite-Brooks, I. et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Merrill, A. H., Dennis, E. A., McDonald, J. G. & Fahy, E. Lipidomics technologies at the end of the first decade and the beginning of the next. Adv. Nutr. 4, 565–567 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kruger-Genge, A., Blocki, A., Franke, R. P. & Jung, F. Vascular endothelial cell biology: an update. Int. J. Mol. Sci. 20, 4411 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  67. Vallance, P., Collier, J. & Moncada, S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2, 997–1000 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Triggle, C. R. & Ding, H. A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS. J. Am. Soc. Hypertens. 4, 102–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Ross, R. Atherosclerosis–an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Higashi, Y., Kihara, Y. & Noma, K. Endothelial dysfunction and hypertension in aging. Hypertens. Res. 35, 1039–1047 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, D. X., Zou, A. P. & Li, P. L. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 284, H605–H612 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Zheng, T., Li, W., Wang, J., Altura, B. T. & Altura, B. M. Sphingomyelinase and ceramide analogs induce contraction and rises in [Ca2+]i in canine cerebral vascular muscle. Am. J. Physiol. Heart Circ. Physiol. 278, H1421–H1428 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Li, H. et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation 106, 2250–2256 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Ogretmen, B. et al. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J. Biol. Chem. 277, 12960–12969 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Chun, L. et al. Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 93, 77–85 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Mount, P. F., Kemp, B. E. & Power, D. A. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J. Mol. Cell Cardiol. 42, 271–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Smith, A. R., Visioli, F., Frei, B. & Hagen, T. M. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell 5, 391–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Oaks, J. & Ogretmen, B. Regulation of PP2A by sphingolipid metabolism and signaling. Front. Oncol. 4, 388 (2014).

    PubMed  Google Scholar 

  79. Sukumar, P. et al. Nox2 NADPH oxidase has a critical role in insulin resistance-related endothelial cell dysfunction. Diabetes 62, 2130–2134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rajagopalan, S., Meng, X. P., Ramasamy, S., Harrison, D. G. & Galis, Z. S. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98, 2572–2579 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hink, U. et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88, E14–E22 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Bryk, D., Olejarz, W. & Zapolska-Downar, D. The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis. Postepy Hig. Med. Dosw. 71, 57–68 (2017).

    Article  Google Scholar 

  83. Didion, S. P. & Faraci, F. M. Ceramide-induced impairment of endothelial function is prevented by CuZn superoxide dismutase overexpression. Arterioscler. Thromb. Vasc. Biol. 25, 90–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Funai, K., Summers, S. A. & Rutter, J. Reign in the membrane: how common lipids govern mitochondrial function. Curr. Opin. Cell Biol. 63, 162–173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Modur, V., Zimmerman, G. A., Prescott, S. M. & McIntyre, T. M. Endothelial cell inflammatory responses to tumor necrosis factor α. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J. Biol. Chem. 271, 13094–13102 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, J. et al. Involvement of de novo ceramide biosynthesis in tumor necrosis factor-α/cycloheximide-induced cerebral endothelial cell death. J. Biol. Chem. 273, 16521–16526 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Camejo, G., Hurt-Camejo, E., Wiklund, O. & Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139, 205–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Ross, R. Atherosclerosis is an inflammatory disease. Am. Heart J. 138, S419–S420 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Hilvo, M. et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 41, 371–380 (2020).

    CAS  PubMed  Google Scholar 

  90. Mantovani, A. et al. Association of plasma ceramides with myocardial perfusion in patients with coronary artery disease undergoing stress myocardial perfusion scintigraphy. Arterioscler. Thromb. Vasc. Biol. 38, 2854–2861 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Meeusen, J. W. et al. Plasma ceramides. Arterioscler. Thromb. Vasc. Biol. 38, 1933–1939 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Schissel, S. L. et al. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. 98, 1455–1464 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Edsfeldt, A. et al. Sphingolipids contribute to human atherosclerotic plaque inflammation. Arterioscler. Thromb. Vasc. Biol. 36, 1132–1140 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Park, T. S. et al. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110, 3465–3471 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Park, T. S. et al. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189, 264–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Hojjati, M. R., Li, Z. & Jiang, X. C. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim. Biophys. Acta 1737, 44–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Glaros, E. N. et al. Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 73, 1340–1346 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Li, Z. et al. Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol. Biochim. Biophys. Acta 1791, 297–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kasumov, T. et al. Ceramide as a mediator of non-alcoholic fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kurek, K. et al. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int. 34, 1074–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bikman, B. T. et al. Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J. Biol. Chem. 287, 17426–17437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mody, N. & McIlroy, G. D. The mechanisms of fenretinide-mediated anti-cancer activity and prevention of obesity and type-2 diabetes. Biochem. Pharmacol. 91, 277–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Koh, I. U. et al. Fenretinide ameliorates insulin resistance and fatty liver in obese mice. Biol. Pharm. Bull. 35, 369–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Busnelli, M. et al. Fenretinide treatment accelerates atherosclerosis development in apoE-deficient mice in spite of beneficial metabolic effects. Br. J. Pharmacol. 177, 328–345 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Jiang, X. C. et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 20, 2614–2618 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, X., Dong, J., Zhao, Y., Li, Y. & Wu, M. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice. Lipids Health Dis. 10, 7 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zhao, Y. R., Dong, J. B., Li, Y. & Wu, M. P. Sphingomyelin synthase 2 over-expression induces expression of aortic inflammatory biomarkers and decreases circulating EPCs in ApoE KO mice. Life Sci. 90, 867–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Dong, J. et al. Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J. Lipid Res. 47, 1307–1314 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, J. et al. Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice. Arterioscler. Thromb. Vasc. Biol. 29, 850–856 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Liu, J. et al. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ. Res. 105, 295–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fan, Y. et al. Selective reduction in the sphingomyelin content of atherogenic lipoproteins inhibits their retention in murine aortas and the subsequent development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 2114–2120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, Z. et al. Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 1577–1584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yano, M. et al. Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice. PLoS ONE 8, e61380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kenny, H. C. & Abel, E. D. Heart failure in type 2 diabetes mellitus. Circ. Res. 124, 121–141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tsao, C. W. et al. Temporal trends in the incidence of and mortality associated with heart failure with preserved and reduced ejection fraction. JACC Heart Fail. 6, 678–685 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. van Heerebeek, L. & Paulus, W. J. Understanding heart failure with preserved ejection fraction: where are we today? Neth. Heart J. 24, 227–236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Oktay, A. A., Rich, J. D. & Shah, S. J. The emerging epidemic of heart failure with preserved ejection fraction. Curr. Heart Fail. Rep. 10, 401–410 (2013).

    Article  PubMed  Google Scholar 

  119. Simmonds, S. J., Cuijpers, I., Heymans, S. & Jones, E. A. V. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells 9, 242 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  120. Chokshi, A. et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125, 2844–2853 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kato, T. S. et al. Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ. Heart Fail. 4, 546–553 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Khan, R. S. et al. Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: correction after ventricular assist device implantation. Circ. Heart Fail. 5, 340–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rogers, J. K. et al. Effect of rosuvastatin on repeat heart failure hospitalizations: the CORONA trial (Controlled Rosuvastatin Multinational Trial in Heart Failure). JACC Heart Fail. 2, 289–297 (2014).

    Article  PubMed  Google Scholar 

  124. Wang, Z. V. & Scherer, P. E. Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hadas, Y. et al. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction. Circulation 141, 916–930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Means, C. K. & Brown, J. H. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc. Res. 82, 193–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vessey, D. A., Li, L., Kelley, M. & Karliner, J. S. Combined sphingosine, S1P and ischemic postconditioning rescue the heart after protracted ischemia. Biochem. Biophys. Res. Commun. 375, 425–429 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vessey, D. A., Li, L., Kelley, M., Zhang, J. & Karliner, J. S. Sphingosine can pre- and post-condition heart and utilizes a different mechanism from sphingosine 1-phosphate. J. Biochem. Mol. Toxicol. 22, 113–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Vessey, D. A., Kelley, M., Li, L. & Huang, Y. Sphingosine protects aging hearts from ischemia/reperfusion injury: superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid. Med. Cell. Longev. 2, 146–151 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hofmann, U. et al. Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. Cardiovasc. Res. 83, 285–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Botta, A., Elizbaryan, K., Tashakorinia, P., Lam, N. H. & Sweeney, G. An adiponectin-S1P autocrine axis protects skeletal muscle cells from palmitate-induced cell death. Lipids Health Dis. 19, 156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Botta, A. et al. An adiponectin-S1P axis protects against lipid induced insulin resistance and cardiomyocyte cell death via reduction of oxidative stress. Nutr. Metab. 16, 14 (2019).

    Article  Google Scholar 

  133. Gudz, T. I., Tserng, K. Y. & Hoppel, C. L. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J. Biol. Chem. 272, 24154–24158 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Di Paola, M., Cocco, T. & Lorusso, M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 39, 6660–6668 (2000).

    Article  PubMed  CAS  Google Scholar 

  135. Zigdon, H. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288, 4947–4956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Obeid, L. M., Linardic, C. M., Karolak, L. A. & Hannun, Y. A. Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993).

    Article  CAS  PubMed  Google Scholar 

  137. Tippetts, T. S. et al. Cigarette smoke increases cardiomyocyte ceramide accumulation and inhibits mitochondrial respiration. BMC Cardiovasc. Disord. 14, 165 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Bielawska, A. E. et al. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am. J. Pathol. 151, 1257–1263 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hickson-Bick, D. L., Buja, L. M. & McMillin, J. B. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J. Mol. Cell Cardiol. 32, 511–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Sparagna, G. C., Hickson-Bick, D. L., Buja, L. M. & McMillin, J. B. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 279, H2124–H2132 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Sparagna, G. C., Hickson-Bick, D. L., Buja, L. M. & McMillin, J. B. Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling. Antioxid. Redox Signal. 3, 71–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Law, B. A. et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 32, 1403–1416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Basu, R. et al. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am. J. Physiol. Heart Circ. Physiol. 297, H2096–H2108 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Loffredo, F. S., Nikolova, A. P., Pancoast, J. R. & Lee, R. T. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ. Res. 115, 97–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dong, S. et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int. J. Clin. Exp. Pathol. 7, 565–574 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Allouche, M. et al. Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene 14, 1837–1845 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Ganesan, V. & Colombini, M. Regulation of ceramide channels by Bcl-2 family proteins. FEBS Lett. 584, 2128–2134 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Decaudin, D. et al. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res. 57, 62–67 (1997).

    CAS  PubMed  Google Scholar 

  149. Zhang, J. Autophagy and mitophagy in cellular damage control. Redox Biol. 1, 19–23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Franssen, C. et al. Metabolic comorbidities associated with endothelial inflammation and reduced no-bioavalability as a novel paradigm for heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 63, A970 (2014).

    Article  Google Scholar 

  152. Symons, J. D. et al. Effect of continuous-flow left ventricular assist device support on coronary artery endothelial function in ischemic and nonischemic cardiomyopathy. Circ. Heart Fail. 12, e006085 (2019).

    Article  PubMed  Google Scholar 

  153. Hulsmans, M. et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215, 423–440 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Albeituni, S. & Stiban, J. Roles of ceramides and other sphingolipids in immune cell function and inflammation. Adv. Exp. Med. Biol. 1161, 169–191 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Ye, J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J. Biol. Chem. 295, 10271–10280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, Q. et al. Inverting the topology of a transmembrane protein by regulating the translocation of the first transmembrane helix. Mol. Cell 63, 567–578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Raichur, S. Ceramide synthases are attractive drug targets for treating metabolic diseases. Front. Endocrinol. 11, 483 (2020).

    Article  Google Scholar 

  158. Hla, T. & Kolesnick, R. C16:0-ceramide signals insulin resistance. Cell Metab. 20, 703–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Turpin-Nolan, S. M. & Bruning, J. C. The role of ceramides in metabolic disorders: when size and localization matters. Nat. Rev. Endocrinol. 16, 224–233 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Lemaitre, R. N. et al. Circulating very long-chain saturated fatty acids and heart failure: the cardiovascular health study. J. Am. Heart Assoc. 7, e010019 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Russo, S. B., Tidhar, R., Futerman, A. H. & Cowart, L. A. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J. Biol. Chem. 288, 13397–13409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Simons, L. A. An updated review of lipid-modifying therapy. Med. J. Aust. 211, 87–92 (2019).

    Article  PubMed  Google Scholar 

  163. Wang, N. et al. Intensive LDL cholesterol-lowering treatment beyond current recommendations for the prevention of major vascular events: a systematic review and meta-analysis of randomised trials including 327 037 participants. Lancet Diabetes Endocrinol. 8, 36–49 (2020).

    Article  PubMed  Google Scholar 

  164. Ng, T. W. et al. Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome. J. Clin. Endocrinol. Metab. 99, E2335–E2340 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Ye, Q., Svatikova, A., Meeusen, J. W., Kludtke, E. L. & Kopecky, S. L. Effect of proprotein convertase subtilisin/kexin type 9 inhibitors on plasma ceramide levels. Am. J. Cardiol. 128, 163–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Reforgiato, M. R. et al. Inhibition of ceramide de novo synthesis as a postischemic strategy to reduce myocardial reperfusion injury. Basic Res. Cardiol. 111, 12 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Ussher, J. R. et al. Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance. PLoS ONE 7, e37703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ussher, J. R. et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59, 2453–2464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Genin, M. J. et al. Imidazopyridine and pyrazolopiperidine derivatives as novel inhibitors of serine palmitoyl transferase. J. Med. Chem. 59, 5904–5910 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Li, Z. et al. Sphingolipid de novo biosynthesis is essential for intestine cell survival and barrier function. Cell Death Dis. 9, 173 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Ohta, E. et al. Analysis of development of lesions in mice with serine palmitoyltransferase (SPT) deficiency: Sptlc2 conditional knockout mice. Exp. Anim. 58, 515–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Johansson, H. et al. Effect of fenretinide and low-dose tamoxifen on insulin sensitivity in premenopausal women at high risk for breast cancer. Cancer Res. 68, 9512–9518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang, G. et al. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 297, E211–E224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Preitner, F., Mody, N., Graham, T. E., Peroni, O. D. & Kahn, B. B. Long-term fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. Am. J. Physiol. Endocrinol. Metab. 297, E1420–E1429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lin, C. H. et al. Fenretinide inhibits macrophage inflammatory mediators and controls hypertension in spontaneously hypertensive rats via the peroxisome proliferator-activated receptor gamma pathway. Drug Des. Devel. Ther. 10, 3591–3597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, Y. Z. et al. AdipoRon alleviates free fatty acid-induced myocardial cell injury via suppressing Nlrp3 inflammasome activation. Diabetes Metab. Syndr. Obes. 12, 2165–2179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fairaq, A., Shawky, N. M., Osman, I., Pichavaram, P. & Segar, L. AdipoRon, an adiponectin receptor agonist, attenuates PDGF-induced VSMC proliferation through inhibition of mTOR signaling independent of AMPK: implications toward suppression of neointimal hyperplasia. Pharmacol. Res. 119, 289–302 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kemp, G. J. et al. Abnormalities in exercising skeletal muscle in congestive heart failure can be explained in terms of decreased mitochondrial ATP synthesis, reduced metabolic efficiency, and increased glycogenolysis. Heart 76, 35–41 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Scott A. Summers.

Ethics declarations

Competing interests

S.A.S. is a consultant, co-founder and shareholder of Centaurus Therapeutics. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks X.-C. Jiang, R. Laaksonen and A. Nègre-Salvayre for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, R.H., Tatum, S.M., Symons, J.D. et al. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol 18, 701–711 (2021). https://doi.org/10.1038/s41569-021-00536-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00536-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing