Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electroimmunology and cardiac arrhythmia

Abstract

Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia — including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure — can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.

Key points

  • Immune cells express various ion channels that influence their phenotypes and functions.

  • Numerous leukocytes reside in the normal myocardium; their numbers, phenotypes and electrophysiological properties change in pathologies that give rise to arrhythmia, including acute myocardial infarction, sepsis, heart failure and myocarditis.

  • Macrophages are the most abundant leukocytes in the heart and electrotonically couple to cardiomyocytes via connexin 43-containing gap junctions; this sink–source relationship leads to rhythmic macrophage depolarization and modulates the resting membrane potential and action potential of cardiomyocytes.

  • Leukocytes might contribute to rhythm disorders either directly through altered coupling or indirectly by influencing cardiomyocytes and their environment.

  • Indirect pro-arrhythmic leukocyte actions include production of cytokines and antibodies, which act on cardiomyocytes and change tissue properties by instigating fibrosis.

  • Immunotherapy is an emerging option for the treatment of rhythm disorders such as atrial fibrillation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrophysiological concepts of conduction and arrhythmogenesis.
Fig. 2: Leukocyte-released cytokines shape the arrhythmogenic substrate.
Fig. 3: Macrophage–cardiomyocyte interactions.
Fig. 4: Autoimmune channelopathies.

Similar content being viewed by others

References

  1. Adabag, A. S., Luepker, R. V., Roger, V. L. & Gersh, B. J. Sudden cardiac death: epidemiology and risk factors. Nat. Rev. Cardiol. 7, 216–225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Byrne, R. et al. Multiple source surveillance incidence and aetiology of out-of-hospital sudden cardiac death in a rural population in the West of Ireland. Eur. Heart J. 29, 1418–1423 (2008).

    Article  PubMed  Google Scholar 

  3. Dalia, A. A. et al. A narrative review for anesthesiologists of the 2017 American Heart Association/American College of Cardiology/Heart Rhythm Society Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J. Cardiothorac. Vasc. Anesth. 33, 1722–1730 (2019).

    Article  PubMed  Google Scholar 

  4. Vaillancourt, C., Stiell, I. G. & Canadian Cardiovascular Outcomes Research Team. Cardiac arrest care and emergency medical services in Canada. Can. J. Cardiol. 20, 1081–1090 (2004).

    PubMed  Google Scholar 

  5. Chugh, S. S. et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large US community. J. Am. Coll. Cardiol. 44, 1268–1275 (2004).

    Article  PubMed  Google Scholar 

  6. Nichol, G. et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 300, 1423–1431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bloom, H. L. et al. Long-term survival after successful inhospital cardiac arrest resuscitation. Am. Heart J. 153, 831–836 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yan, S. et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit. Care Lond. Engl. 24, 61 (2020).

    Article  Google Scholar 

  9. Iwasaki, Y., Nishida, K., Kato, T. & Nattel, S. Atrial fibrillation pathophysiology: implications for management. Circulation 124, 2264–2274 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  11. Naccarelli, G. V., Varker, H., Lin, J. & Schulman, K. L. Increasing prevalence of atrial fibrillation and flutter in the United States. Am. J. Cardiol. 104, 1534–1539 (2009).

    Article  PubMed  Google Scholar 

  12. Jousset, F., Maguy, A., Rohr, S. & Kucera, J. P. Myofibroblasts electrotonically coupled to cardiomyocytes alter conduction: insights at the cellular level from a detailed in silico tissue structure model. Front. Physiol. 7, 496 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Klabunde, R. E. Cardiac electrophysiology: normal and ischemic ionic currents and the ECG. Adv. Physiol. Educ. 41, 29–37 (2017).

    Article  PubMed  Google Scholar 

  14. Kohl, P. & Gourdie, R. G. Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue? J. Mol. Cell. Cardiol. 70, 37–46 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Medzhitov, R. & Janeway, C. A. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann, J. & Akira, S. Innate immunity. Curr. Opin. Immunol. 25, 1–3 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Sirisinha, S. Insight into the mechanisms regulating immune homeostasis in health and disease. Asian Pac. J. Allergy Immunol. 29, 1–14 (2011).

    CAS  PubMed  Google Scholar 

  19. Coillard, A. & Segura, E. In vivo differentiation of human monocytes. Front. Immunol. 10, 1907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Carlin, L. M. et al. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153, 362–375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heidt, T. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 115, 284–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leid, J. et al. Primitive embryonic macrophages are required for coronary development and maturation. Circ. Res. 118, 1498–1511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 22, 600–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Cahalan, M. D. & Chandy, K. G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231, 59–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, Y.-J., Nguyen, H. M., Maezawa, I., Jin, L.-W. & Wulff, H. Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke. Ann. Clin. Transl. Neurol. 5, 147–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Di, L. et al. Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc. Natl Acad. Sci. USA 107, 1541–1546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gallin, E. K. & Gallin, J. I. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J. Cell Biol. 75, 277–289 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gallin, E. K. & Livengood, D. R. Nonlinear current-voltage relationships in cultured macrophages. J. Cell Biol. 85, 160–165 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Mackenzie, A. B., Chirakkal, H. & North, R. A. Kv1.3 potassium channels in human alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L862–L868 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rink, T. J., Montecucco, C., Hesketh, T. R. & Tsien, R. Y. Lymphocyte membrane potential assessed with fluorescent probes. Biochim. Biophys. Acta 595, 15–30 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Mello de Queiroz, F., Ponte, C. G., Bonomo, A., Vianna-Jorge, R. & Suarez-Kurtz, G. Study of membrane potential in T lymphocytes subpopulations using flow cytometry. BMC Immunol. 9, 63 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gallin, E. K., Wiederhold, M. L., Lipsky, P. E. & Rosenthal, A. S. Spontaneous and induced membrane hyperpolarizations in macrophages. J. Cell. Physiol. 86, 653–661 (1975).

    Article  PubMed  Google Scholar 

  41. Cahalan, M. D., Chandy, K. G., DeCoursey, T. E. & Gupta, S. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 358, 197–237 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vicente, R. et al. Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J. Biol. Chem. 281, 37675–37685 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Villalonga, N. et al. Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem. Biophys. Res. Commun. 352, 913–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Villalonga, N. et al. Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. J. Gen. Physiol. 135, 135–147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Leonard, R. J., Garcia, M. L., Slaughter, R. S. & Reuben, J. P. Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc. Natl Acad. Sci. USA 89, 10094–10098 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghanshani, S. et al. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J. Biol. Chem. 275, 37137–37149 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Luik, R. M., Wang, B., Prakriya, M., Wu, M. M. & Lewis, R. S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stathopulos, P. B., Zheng, L., Li, G.-Y., Plevin, M. J. & Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feske, S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev. 231, 189–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol. 2, 316–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Matsumoto, M. et al. The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 34, 703–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Cekic, C. & Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16, 177–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Baricordi, O. R. et al. An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 87, 682–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Padeh, S., Cohen, A. & Roifman, C. M. ATP-induced activation of human B lymphocytes via P2-purinoceptors. J. Immunol. 146, 1626–1632 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Shay, T. & Kang, J. Immunological Genome Project and systems immunology. Trends Immunol. 34, 602–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Picard, C. et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971–1980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cacheux, M. et al. Cardiomyocyte-specific STIM1 (stromal interaction molecule 1) depletion in the adult heart promotes the development of arrhythmogenic discordant alternans. Circ. Arrhythm. Electrophysiol. 12, e007382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).

    Article  PubMed  CAS  Google Scholar 

  62. Evans, W. H. & Martin, P. E. M. Gap junctions: structure and function (Review). Mol. Membr. Biol. 19, 121–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Rohr, S. Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc. Res. 62, 309–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Jongsma, H. J. & Wilders, R. Gap junctions in cardiovascular disease. Circ. Res. 86, 1193–1197 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Weidmann, S. The electrical constants of Purkinje fibres. J. Physiol. 118, 348–360 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, 12540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pascual, O., Ben Achour, S., Rostaing, P., Triller, A. & Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl Acad. Sci. USA 109, E197–E205 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Dobrenis, K. et al. Human and mouse microglia express connexin36, and functional gap junctions are formed between rodent microglia and neurons. J. Neurosci. Res. 82, 306–315 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maezawa, I. & Jin, L.-W. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30, 5346–5356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vinegoni, C., Aguirre, A. D., Lee, S. & Weissleder, R. Imaging the beating heart in the mouse using intravital microscopy techniques. Nat. Protoc. 10, 1802–1819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Heeringa, J. et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27, 949–953 (2006).

    Article  PubMed  Google Scholar 

  79. Wolf, P. A., Dawber, T. R., Thomas, H. E. & Kannel, W. B. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology 28, 973–977 (1978).

    Article  CAS  PubMed  Google Scholar 

  80. Odutayo, A. et al. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis. BMJ 354, i4482 (2016).

    Article  PubMed  Google Scholar 

  81. Heijman, J., Voigt, N., Nattel, S. & Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 114, 1483–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Workman, A. J., Kane, K. A. & Rankin, A. C. Cellular bases for human atrial fibrillation. Heart Rhythm 5, S1–S6 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang, H. et al. Association of systemic inflammation score with atrial fibrillation: a case-control study with propensity score matching. Heart Lung Circ. 27, 489–496 (2018).

    Article  PubMed  Google Scholar 

  84. Bruins, P. et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation 96, 3542–3548 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Hu, Y.-F., Chen, Y.-J., Lin, Y.-J. & Chen, S.-A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 12, 230–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, M.-C. et al. Increased inflammatory cell infiltration in the atrial myocardium of patients with atrial fibrillation. Am. J. Cardiol. 102, 861–865 (2008).

    Article  PubMed  Google Scholar 

  87. Smorodinova, N. et al. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS ONE 12, e0172691 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Abdelhadi, R. H., Gurm, H. S., Van Wagoner, D. R. & Chung, M. K. Relation of an exaggerated rise in white blood cells after coronary bypass or cardiac valve surgery to development of atrial fibrillation postoperatively. Am. J. Cardiol. 93, 1176–1178 (2004).

    Article  PubMed  Google Scholar 

  89. Yamashita, T. et al. Recruitment of immune cells across atrial endocardium in human atrial fibrillation. Circ. J. 74, 262–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patel, P., Dokainish, H., Tsai, P. & Lakkis, N. Update on the association of inflammation and atrial fibrillation. J. Cardiovasc. Electrophysiol. 21, 1064–1070 (2010).

    Article  PubMed  Google Scholar 

  92. Jacob, K. A. et al. Inflammation in new-onset atrial fibrillation after cardiac surgery: a systematic review. Eur. J. Clin. Invest. 44, 402–428 (2014).

    Article  PubMed  Google Scholar 

  93. Hu, Y.-F. et al. Electrophysiological correlation and prognostic impact of heat shock protein 27 in atrial fibrillation. Circ. Arrhythm. Electrophysiol. 5, 334–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Dong, Q. & Wright, J. R. Expression of C-reactive protein by alveolar macrophages. J. Immunol. 156, 4815–4820 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Yasojima, K., Schwab, C., McGeer, E. G. & McGeer, P. L. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 158, 1039–1051 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aviles, R. J. et al. Inflammation as a risk factor for atrial fibrillation. Circulation 108, 3006–3010 (2003).

    Article  PubMed  Google Scholar 

  97. Zhang, Z. et al. n-3 polyunsaturated fatty acids prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Int. J. Cardiol. 153, 14–20 (2011).

    Article  PubMed  Google Scholar 

  98. Ishii, Y. et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation 111, 2881–2888 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Dernellis, J. & Panaretou, M. Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. Eur. Heart J. 25, 1100–1107 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Ho, K. M. & Tan, J. A. Benefits and risks of corticosteroid prophylaxis in adult cardiac surgery: a dose-response meta-analysis. Circulation 119, 1853–1866 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Jabati, S. et al. Biomarkers of inflammation, thrombogenesis, and collagen turnover in patients with atrial fibrillation. Clin. Appl. Thromb. 24, 718–723 (2018).

    Article  CAS  Google Scholar 

  102. Hijazi, Z. et al. Biomarkers of inflammation and risk of cardiovascular events in anticoagulated patients with atrial fibrillation. Heart 102, 508–517 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Mazurek, T. et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am. J. Cardiol. 113, 1505–1508 (2014).

    Article  PubMed  Google Scholar 

  104. Kistler, P. M. et al. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur. Heart J. 27, 3045–3056 (2006).

    Article  PubMed  Google Scholar 

  105. Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Friedman, P. L., Stewart, J. R. & Wit, A. L. Spontaneous and induced cardiac arrhythmias in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ. Res. 33, 612–626 (1973).

    Article  CAS  PubMed  Google Scholar 

  107. Nuss, H. B., Kääb, S., Kass, D. A., Tomaselli, G. F. & Marbán, E. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am. J. Physiol. 277, H80–H91 (1999).

    CAS  PubMed  Google Scholar 

  108. Morita, N., Mandel, W. J., Kobayashi, Y. & Karagueuzian, H. S. Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J. Arrhythmia 30, 389–394 (2014).

    Article  Google Scholar 

  109. Anderson, R. D. et al. Focal ventricular tachycardias in structural heart disease: prevalence, characteristics, and clinical outcomes after catheter ablation. JACC Clin. Electrophysiol. 6, 56–69 (2020).

    Article  PubMed  Google Scholar 

  110. Ayoub, K. F., Pothineni, N. V. K., Rutland, J., Ding, Z. & Mehta, J. L. Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc. Drugs Ther. 31, 593–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. [No authors listed]. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit. Care Med. 20, 864–874 (1992).

    Article  Google Scholar 

  114. Lewis, O. et al. Incidence, risk factors and outcomes of new onset supraventricular arrhythmias in African American patients with severe sepsis. Ethn. Dis. 26, 205–212 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Walkey, A. J., Wiener, R. S., Ghobrial, J. M., Curtis, L. H. & Benjamin, E. J. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA 306, 2248–2254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meierhenrich, R. et al. Incidence and prognostic impact of new-onset atrial fibrillation in patients with septic shock: a prospective observational study. Crit. Care 14, R108 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Christian, S.-A. et al. Clinical characteristics and outcomes of septic patients with new-onset atrial fibrillation. J. Crit. Care 23, 532–536 (2008).

    Article  PubMed  Google Scholar 

  118. Brathwaite, D. & Weissman, C. The new onset of atrial arrhythmias following major noncardiothoracic surgery is associated with increased mortality. Chest 114, 462–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Launey, Y. et al. Impact of low-dose hydrocortisone on the incidence of atrial fibrillation in patients with septic shock: a propensity score-inverse probability of treatment weighting cohort study. J. Intensive Care Med. 34, 238–244 (2019).

    Article  PubMed  Google Scholar 

  120. Oppert, M. et al. Low-dose hydrocortisone improves shock reversal and reduces cytokine levels in early hyperdynamic septic shock. Crit. Care Med. 33, 2457–2464 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Trappe, H. J. et al. Prognosis of patients with ventricular tachycardia and ventricular fibrillation: role of the underlying etiology. J. Am. Coll. Cardiol. 12, 166–174 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Henkel, D. M. et al. Ventricular arrhythmias after acute myocardial infarction: a 20-year community study. Am. Heart J. 151, 806–812 (2006).

    Article  PubMed  Google Scholar 

  123. Khairy, P. et al. Prognostic significance of ventricular arrhythmias post-myocardial infarction. Can. J. Cardiol. 19, 1393–1404 (2003).

    PubMed  Google Scholar 

  124. Salerno, F. et al. Myocarditis and cardiac channelopathies: a deadly association? Int. J. Cardiol. 147, 468–470 (2011).

    Article  PubMed  Google Scholar 

  125. Li, H. S., Ligons, D. L. & Rose, N. R. Genetic complexity of autoimmune myocarditis. Autoimmun. Rev. 7, 168–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Fenton, F. H., Cherry, E. M., Hastings, H. M. & Evans, S. J. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852–892 (2002).

    Article  PubMed  Google Scholar 

  127. Jalife, J. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Physiol. 62, 25–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Kurian, T. K. & Efimov, I. R. Mechanisms of fibrillation: neurogenic or myogenic? Reentrant or focal? Multiple or single? Still puzzling after 160 years of inquiry. J. Cardiovasc. Electrophysiol. 21, 1274–1275 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Aiba, T. & Tomaselli, G. F. Electrical remodeling in the failing heart. Curr. Opin. Cardiol. 25, 29–36 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Anderson, M. E. Multiple downstream proarrhythmic targets for calmodulin kinase II: moving beyond an ion channel-centric focus. Cardiovasc. Res. 73, 657–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Janse, M. J. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc. Res. 61, 208–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Steinberger, J., Lucas, R. V., Edwards, J. E. & Titus, J. L. Causes of sudden unexpected cardiac death in the first two decades of life. Am. J. Cardiol. 77, 992–995 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Baksi, A. J., Kanaganayagam, G. S. & Prasad, S. K. Arrhythmias in viral myocarditis and pericarditis. Card. Electrophysiol. Clin. 7, 269–281 (2015).

    Article  PubMed  Google Scholar 

  134. Woodruff, J. F. & Woodruff, J. J. Involvement of T lymphocytes in the pathogenesis of coxsackie virus B3 heart disease. J. Immunol. 113, 1726–1734 (1974).

    Article  CAS  PubMed  Google Scholar 

  135. Liu, W. et al. IL-21R expression on CD8+ T cells promotes CD8+ T cell activation in coxsackievirus B3 induced myocarditis. Exp. Mol. Pathol. 92, 327–333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, W., Moussawi, M., Roberts, B., Boyson, J. E. & Huber, S. A. Cross-regulation of T regulatory-cell response after coxsackievirus B3 infection by NKT and γδ T cells in the mouse. Am. J. Pathol. 183, 441–449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tavora, F. et al. Fatal parvoviral myocarditis: a case report and review of literature. Diagn. Pathol. 3, 21 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gaaloul, I. et al. Postmortem diagnosis of infectious heart diseases: a mystifying cause of sudden infant death. Forensic Sci. Int. 262, 166–172 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Peretto, G. et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J. Am. Coll. Cardiol. 75, 1046–1057 (2020).

    Article  PubMed  Google Scholar 

  140. Park, H. et al. Increased phosphorylation of Ca2+ handling proteins as a proarrhythmic mechanism in myocarditis. Circ. J. 78, 2292–2301 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Xu, H.-F. et al. MicroRNA-1 represses Cx43 expression in viral myocarditis. Mol. Cell. Biochem. 362, 141–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Pasquié, J. L. May fever trigger ventricular fibrillation? Indian Pacing Electrophysiol. J. 5, 139–145 (2005).

    PubMed  PubMed Central  Google Scholar 

  143. Porres, J. M. et al. Fever unmasking the Brugada syndrome. Pacing Clin. Electrophysiol. 25, 1646–1648 (2002).

    Article  PubMed  Google Scholar 

  144. Mok, N.-S. et al. A newly characterized SCN5A mutation underlying Brugada syndrome unmasked by hyperthermia. J. Cardiovasc. Electrophysiol. 14, 407–411 (2003).

    Article  PubMed  Google Scholar 

  145. Dinckal, M. H. et al. Incessant monomorphic ventricular tachycardia during febrile illness in a patient with Brugada syndrome: fatal electrical storm. Europace 5, 257–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Pasquié, J. L. et al. Fever as a precipitant of idiopathic ventricular fibrillation in patients with normal hearts. J. Cardiovasc. Electrophysiol. 15, 1271–1276 (2004).

    Article  PubMed  Google Scholar 

  147. Omori, K. et al. Recurrent idiopathic ventricular fibrillation induced by high fever. Am. J. Emerg. Med. 33, 1331.e1–1331.e3 (2015).

    Article  Google Scholar 

  148. Kumar, V., Patel, N., Van Houzen, N. & Saini, N. Brugada-type electrocardiographic changes induced by fever. Circulation 127, 2145–2146 (2013).

    Article  PubMed  Google Scholar 

  149. Jabbari, R. et al. Incidence and risk factors of ventricular fibrillation before primary angioplasty in patients with first ST-elevation myocardial infarction: a nationwide study in Denmark. J. Am. Heart Assoc. 4, e001399 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Karam, N. et al. Identifying patients at risk for prehospital sudden cardiac arrest at the early phase of myocardial infarction: the e-MUST study (Evaluation en Médecine d’Urgence des Stratégies Thérapeutiques des infarctus du myocarde). Circulation 134, 2074–2083 (2016).

    Article  PubMed  Google Scholar 

  151. Bhar-Amato, J., Davies, W. & Agarwal, S. Ventricular arrhythmia after acute myocardial infarction: ‘the perfect storm’. Arrhythmia Electrophysiol. Rev. 6, 134–139 (2017).

    Article  Google Scholar 

  152. Mehta, R. H. et al. Incidence of and outcomes associated with ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention. JAMA 301, 1779–1789 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Piccini, J. P., Berger, J. S. & Brown, D. L. Early sustained ventricular arrhythmias complicating acute myocardial infarction. Am. J. Med. 121, 797–804 (2008).

    Article  PubMed  Google Scholar 

  154. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dan, G. A. The dynamic nature of ventricular tachycardia initiation. Drugs Today 46, 777–783 (2010).

    Article  CAS  Google Scholar 

  156. Walker, N. L., Burton, F. L., Kettlewell, S., Smith, G. L. & Cobbe, S. M. Mapping of epicardial activation in a rabbit model of chronic myocardial infarction: response to atrial, endocardial and epicardial pacing. J. Cardiovasc. Electrophysiol. 18, 862–868 (2007).

    Article  PubMed  Google Scholar 

  157. Marchlinski, F. E., Waxman, H. L., Buxton, A. E. & Josephson, M. E. Sustained ventricular tachyarrhythmias during the early postinfarction period: electrophysiologic findings and prognosis for survival. J. Am. Coll. Cardiol. 2, 240–250 (1983).

    Article  CAS  PubMed  Google Scholar 

  158. Verma, A. et al. Relationship between successful ablation sites and the scar border zone defined by substrate mapping for ventricular tachycardia post-myocardial infarction. J. Cardiovasc. Electrophysiol. 16, 465–471 (2005).

    Article  PubMed  Google Scholar 

  159. Mont, L. et al. Predisposing factors and prognostic value of sustained monomorphic ventricular tachycardia in the early phase of acute myocardial infarction. J. Am. Coll. Cardiol. 28, 1670–1676 (1996).

    Article  CAS  PubMed  Google Scholar 

  160. Gwechenberger, M. et al. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99, 546–551 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Frangogiannis, N. G. et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 115, 584–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Frangogiannis, N. G. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm. Res. 53, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Anzai, A. et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 214, 3293–3310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bloch Thomsen, P. E. et al. Long-term recording of cardiac arrhythmias with an implantable cardiac monitor in patients with reduced ejection fraction after acute myocardial infarction: the Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) study. Circulation 122, 1258–1264 (2010).

    Article  PubMed  Google Scholar 

  165. O’Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

    Article  PubMed  Google Scholar 

  166. Myerburg, R. J., Mitrani, R., Interian, A. & Castellanos, A. Interpretation of outcomes of antiarrhythmic clinical trials: design features and population impact. Circulation 97, 1514–1521 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Tung, R., Zimetbaum, P. & Josephson, M. E. A critical appraisal of implantable cardioverter-defibrillator therapy for the prevention of sudden cardiac death. J. Am. Coll. Cardiol. 52, 1111–1121 (2008).

    Article  PubMed  Google Scholar 

  168. Wang, C. et al. Changes of interleukin-1beta and tumor necrosis factor-alpha of right atrial appendages in patients with rheumatic valvular disease complicated with chronic atrial fibrillation [Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 33, 522–525 (2005).

    CAS  PubMed  Google Scholar 

  169. Chen, X. et al. Downregulation of peroxisome proliferator-activated receptor-γ expression in hypertensive atrial fibrillation. Clin. Cardiol. 32, 337–345 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Leftheriotis, D. I. et al. The predictive value of inflammatory and oxidative markers following the successful cardioversion of persistent lone atrial fibrillation. Int. J. Cardiol. 135, 361–369 (2009).

    Article  PubMed  Google Scholar 

  171. Marcus, G. M. et al. Interleukin-6 and atrial fibrillation in patients with coronary artery disease: data from the Heart and Soul Study. Am. Heart J. 155, 303–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Henningsen, K. M. A. et al. Prognostic impact of hs-CRP and IL-6 in patients with persistent atrial fibrillation treated with electrical cardioversion. Scand. J. Clin. Lab. Invest. 69, 425–432 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Li, J. et al. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm 7, 438–444 (2010).

    Article  PubMed  Google Scholar 

  174. Wu, N. et al. Elevated plasma levels of Th17-related cytokines are associated with increased risk of atrial fibrillation. Sci. Rep. 6, 26543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fu, X.-X. et al. Interleukin-17A contributes to the development of post-operative atrial fibrillation by regulating inflammation and fibrosis in rats with sterile pericarditis. Int. J. Mol. Med. 36, 83–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nikoo, M. H. et al. Increased IL-17A in atrial fibrillation correlates with neutrophil to lymphocyte ratio. Iran. J. Immunol. 11, 246–258 (2014).

    PubMed  Google Scholar 

  177. Pinto, A. et al. Immuno-inflammatory predictors of stroke at follow-up in patients with chronic non-valvular atrial fibrillation (NVAF). Clin. Sci. 116, 781–789 (2009).

    Article  CAS  Google Scholar 

  178. Sun, Z. et al. Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res. Cardiol. 111, 63 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Monnerat, G. et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat. Commun. 7, 13344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. El Khoury, N., Mathieu, S. & Fiset, C. Interleukin-1β reduces L-type Ca2+ current through protein kinase Cϵ activation in mouse heart. J. Biol. Chem. 289, 21896–21908 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. De Jesus, N. M. et al. Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm 14, 727–736 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Vasireddi, S., Sattayaprasert, P. & Laurita, K. Inflammatory cytokine interleukin-6 has a larger impact on calcium-mediated arrhythmia substrates compared to interleukin-1β [abstract]. J. Am. Coll. Cardiol. 71, A412 (2018).

    Article  Google Scholar 

  184. Lazzerini, P. E. et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression. J. Am. Heart Assoc. 8, e011006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Aromolaran, A. S. et al. Interleukin-6 inhibition of hERG underlies risk for acquired long QT in cardiac and systemic inflammation. PLoS ONE 13, e0208321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lazzerini, P. E. et al. Antiarrhythmic potential of anticytokine therapy in rheumatoid arthritis: tocilizumab reduces corrected QT interval by controlling systemic inflammation. Arthritis Care Res. 67, 332–339 (2015).

    Article  CAS  Google Scholar 

  187. Hsiao, Y.-W. et al. Rhodiola crenulata reduces ventricular arrhythmia through mitigating the activation of IL-17 and inhibiting the MAPK signaling pathway. Cardiovasc. Drugs Ther. https://doi.org/10.1007/s10557-020-07072-z (2020).

    Article  PubMed  Google Scholar 

  188. Liew, R. et al. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ. J. 77, 1171–1179 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Sawaya, S. E. et al. Downregulation of connexin40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac-restricted overexpression of tumor necrosis factor. Am. J. Physiol. Heart Circ. Physiol. 292, H1561–H1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Saba, S. et al. Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-α. Am. J. Physiol. Heart Circ. Physiol. 289, H1456–H1467 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Lee, S.-H. et al. Tumor necrosis factor-α alters calcium handling and increases arrhythmogenesis of pulmonary vein cardiomyocytes. Life Sci. 80, 1806–1815 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Kao, Y.-H. et al. Tumor necrosis factor-α decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit. Care Med. 38, 217–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Haudek, S. B., Taffet, G. E., Schneider, M. D. & Mann, D. L. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J. Clin. Invest. 117, 2692–2701 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Baeuerle, P. A. & Henkel, T. Function and activation of NF-kappaB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  195. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. & Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689–10692 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Karki, R. & Igwe, O. J. Toll-like receptor 4-mediated nuclear factor kappa B activation is essential for sensing exogenous oxidants to propagate and maintain oxidative/nitrosative cellular stress. PLoS ONE 8, e73840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Xu, Q. et al. High mobility group Box 1 was associated with thrombosis in patients with atrial fibrillation. Medicine 97, e0132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Monnerat-Cahli, G. et al. Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway. J. Mol. Cell. Cardiol. 76, 116–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Liu, M. et al. Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy. J. Mol. Cell. Cardiol. 54, 25–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Yao, C. et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138, 2227–2242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Van Wagoner, D. R. & Chung, M. K. Inflammation, inflammasome activation, and atrial fibrillation. Circulation 138, 2243–2246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Chen, G., Chelu, M. G., Dobrev, D. & Li, N. Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: mechanisms and potential therapeutic implications. Front. Physiol. 9, 1115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Heijman, J. et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation. Circ. Res. 127, 1036–1055 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Temple, I. P., Inada, S., Dobrzynski, H. & Boyett, M. R. Connexins and the atrioventricular node. Heart Rhythm 10, 297–304 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. De Jesus, N. M. et al. Atherosclerosis exacerbates arrhythmia following myocardial infarction: role of myocardial inflammation. Heart Rhythm 12, 169–178 (2015).

    Article  PubMed  Google Scholar 

  206. Goshima, K. & Tonomura, Y. Synchronized beating of embryonic mouse myocardial cells mediated by FL cells in monolayer culture. Exp. Cell Res. 56, 387–392 (1969).

    Article  CAS  PubMed  Google Scholar 

  207. Gaudesius, G., Miragoli, M., Thomas, S. P. & Rohr, S. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ. Res. 93, 421–428 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Camelliti, P., Green, C. R., LeGrice, I. & Kohl, P. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res. 94, 828–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Quinn, T. A. et al. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc. Natl Acad. Sci. USA 113, 14852–14857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rubart, M. et al. Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovasc. Res. 114, 389–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Fontes, M. S. C., van Veen, T. A. B., de Bakker, J. M. T. & van Rijen, H. V. M. Functional consequences of abnormal Cx43 expression in the heart. Biochim. Biophys. Acta 1818, 2020–2029 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Fei, Y.-D. et al. Macrophages facilitate post myocardial infarction arrhythmias: roles of gap junction and KCa3.1. Theranostics 9, 6396–6411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kohl, P. & Noble, D. Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovasc. Res. 32, 62–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  215. Kohl, P., Kamkin, A. G., Kiseleva, I. S. & Noble, D. Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Exp. Physiol. 79, 943–956 (1994).

    Article  CAS  PubMed  Google Scholar 

  216. Roell, W. et al. Overexpression of Cx43 in cells of the myocardial scar: correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Sci. Rep. 8, 7145 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Li, K. et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ. Res. 105, 353–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Hoyer, F. F. et al. Tissue-specific macrophage responses to remote injury impact the outcome of subsequent local immune challenge. Immunity 51, 899–914.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Vilahur, G. et al. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J. Mol. Cell. Cardiol. 50, 522–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Chen, B. & Frangogiannis, N. G. The role of macrophages in nonischemic heart failure. JACC Basic Transl. Sci. 3, 245–248 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Rosenkranz, S. TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 63, 423–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Kuwahara, F. et al. Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension 43, 739–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  223. Ren, J. et al. Proinflammatory protein CARD9 is essential for infiltration of monocytic fibroblast precursors and cardiac fibrosis caused by angiotensin II infusion. Am. J. Hypertens. 24, 701–707 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Kagitani, S. et al. Tranilast attenuates myocardial fibrosis in association with suppression of monocyte/macrophage infiltration in DOCA/salt hypertensive rats. J. Hypertens. 22, 1007–1015 (2004).

    Article  CAS  PubMed  Google Scholar 

  225. Frangogiannis, N. G. et al. Evidence for an active inflammatory process in the hibernating human myocardium. Am. J. Pathol. 160, 1425–1433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Frangogiannis, N. G. et al. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am. J. Physiol. Heart Circ. Physiol. 285, H483–H492 (2003).

    Article  CAS  PubMed  Google Scholar 

  227. Frangogiannis, N. Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 217, e20190103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Verma, S. K. et al. Interleukin-10 inhibits bone marrow fibroblast progenitor cell-mediated cardiac fibrosis in pressure-overloaded myocardium. Circulation 136, 940–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Simões, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Vasquez, C. et al. Enhanced fibroblast-myocyte interactions in response to cardiac injury. Circ. Res. 107, 1011–1020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Rudolph, V. et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat. Med. 16, 470–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fu, X., Kassim, S. Y., Parks, W. C. & Heinecke, J. W. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J. Biol. Chem. 278, 28403–28409 (2003).

    Article  CAS  PubMed  Google Scholar 

  233. Holzwirth, E. et al. Myeloperoxidase in atrial fibrillation: association with progression, origin and influence of renin-angiotensin system antagonists. Clin. Res. Cardiol. 109, 324–330 (2020).

    Article  PubMed  Google Scholar 

  234. Li, S. et al. Myeloperoxidase and risk of recurrence of atrial fibrillation after catheter ablation. J. Investig. Med. 61, 722–727 (2013).

    Article  CAS  PubMed  Google Scholar 

  235. Friedrichs, K. et al. Induction of atrial fibrillation by neutrophils critically depends on CD11b/CD18 integrins. PLoS ONE 9, e89307 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Abe, I. et al. Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm 15, 1717–1727 (2018).

    Article  PubMed  Google Scholar 

  237. Iacobellis, G. et al. Influence of excess fat on cardiac morphology and function: study in uncomplicated obesity. Obes. Res. 10, 767–773 (2002).

    Article  PubMed  Google Scholar 

  238. Thanassoulis, G. et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham heart study. Circ. Arrhythm. Electrophysiol. 3, 345–350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J. Exp. Med. 194, 809–821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Okuma, T. et al. C-C chemokine receptor 2 (CCR2) deficiency improves bleomycin-induced pulmonary fibrosis by attenuation of both macrophage infiltration and production of macrophage-derived matrix metalloproteinases. J. Pathol. 204, 594–604 (2004).

    Article  CAS  PubMed  Google Scholar 

  241. Johnson, J. L. et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm. 2014, 276457 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Fallowfield, J. A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178, 5288–5295 (2007).

    Article  CAS  PubMed  Google Scholar 

  243. Abe, H. et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nat. Commun. 10, 2824 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Haro, H. et al. Matrix metalloproteinase-7-dependent release of tumor necrosis factor-α in a model of herniated disc resorption. J. Clin. Invest. 105, 143–150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Boixel, C. et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J. Am. Coll. Cardiol. 42, 336–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  246. Lindsey, M. L. et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation 113, 2919–2928 (2006).

    Article  CAS  PubMed  Google Scholar 

  247. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138, e272–e391 (2018).

    PubMed  Google Scholar 

  248. Lehnart, S. E. et al. Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116, 2325–2345 (2007).

    Article  CAS  PubMed  Google Scholar 

  249. Li, H. et al. A peptidomimetic inhibitor suppresses the inducibility of β1-adrenergic autoantibody-mediated cardiac arrhythmias in the rabbit. J. Interv. Card. Electrophysiol. 44, 205–212 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Lazzerini, P. E., Capecchi, P. L., Laghi-Pasini, F. & Boutjdir, M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat. Rev. Cardiol. 14, 521–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. Drew, B. J. et al. Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol. 55, 934–947 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Priori, S. G. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 10, 1932–1963 (2013).

    Article  PubMed  Google Scholar 

  253. Kallergis, E. M., Goudis, C. A., Simantirakis, E. N., Kochiadakis, G. E. & Vardas, P. E. Mechanisms, risk factors, and management of acquired long QT syndrome: a comprehensive review. ScientificWorldJournal 2012, 212178 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Nakamura, K. et al. Anti-KCNH2 antibody-induced long QT syndrome: novel acquired form of long QT syndrome. J. Am. Coll. Cardiol. 50, 1808–1809 (2007).

    Article  PubMed  Google Scholar 

  255. Suzuki, S. et al. Novel autoantibodies to a voltage-gated potassium channel Kv1.4 in a severe form of myasthenia gravis. J. Neuroimmunol. 170, 141–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  256. Fabris, F. et al. Induction of autoimmune response to the extracellular loop of the HERG channel pore induces QTc prolongation in guinea-pigs. J. Physiol. 594, 6175–6187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Li, J. et al. Anti-KCNQ1 K+ channel autoantibodies increase IKs current and are associated with QT interval shortening in dilated cardiomyopathy. Cardiovasc. Res. 98, 496–503 (2013).

    Article  CAS  PubMed  Google Scholar 

  258. Li, J. et al. Induced KCNQ1 autoimmunity accelerates cardiac repolarization in rabbits: potential significance in arrhythmogenesis and antiarrhythmic therapy. Heart Rhythm 11, 2092–2100 (2014).

    Article  PubMed  Google Scholar 

  259. Eftekhari, P. et al. Anti-SSA/Ro52 autoantibodies blocking the cardiac 5-HT4 serotoninergic receptor could explain neonatal lupus congenital heart block. Eur. J. Immunol. 30, 2782–2790 (2000).

    Article  CAS  PubMed  Google Scholar 

  260. Fritsch, C. et al. 52-kDa Ro/SSA epitopes preferentially recognized by antibodies from mothers of children with neonatal lupus and congenital heart block. Arthritis Res. Ther. 8, R4 (2006).

    Article  PubMed  CAS  Google Scholar 

  261. Lazzerini, P. E. et al. Arrhythmogenicity of anti-Ro/SSA antibodies in patients with torsades de pointes. Circ. Arrhythm. Electrophysiol. 9, e003419 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Hull, D., Binns, B. A. & Joyce, D. Congenital heart block and widespread fibrosis due to maternal lupus erythematosus. Arch. Dis. Child. 41, 688–690 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Chameides, L. et al. Association of maternal systemic lupus erythematosus with congenital complete heart block. N. Engl. J. Med. 297, 1204–1207 (1977).

    Article  CAS  PubMed  Google Scholar 

  264. Brucato, A., Cimaz, R., Caporali, R., Ramoni, V. & Buyon, J. Pregnancy outcomes in patients with autoimmune diseases and anti-Ro/SSA antibodies. Clin. Rev. Allergy Immunol. 40, 27–41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hayashi, T. et al. Outcome of prenatally diagnosed isolated congenital complete atrioventricular block treated with transplacental betamethasone or ritodrine therapy. Pediatr. Cardiol. 30, 35–40 (2009).

    Article  PubMed  Google Scholar 

  266. Jaeggi, E. T. et al. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation 110, 1542–1548 (2004).

    Article  PubMed  Google Scholar 

  267. Seisenberger, C. et al. Functional embryonic cardiomyocytes after disruption of the L-type α1C (Cav1.2) calcium channel gene in the mouse. J. Biol. Chem. 275, 39193–39199 (2000).

    Article  CAS  PubMed  Google Scholar 

  268. Karnabi, E. et al. Congenital heart block: identification of autoantibody binding site on the extracellular loop (domain I, S5-S6) of α1D L-type Ca channel. J. Autoimmun. 34, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Ruffatti, A. et al. Plasmapheresis, intravenous immunoglobulins and bethametasone – a combined protocol to treat autoimmune congenital heart block: a prospective cohort study. Clin. Exp. Rheumatol. 34, 706–713 (2016).

    PubMed  Google Scholar 

  270. Korkmaz, S. et al. Provocation of an autoimmune response to cardiac voltage-gated sodium channel NaV1.5 induces cardiac conduction defects in rats. J. Am. Coll. Cardiol. 62, 340–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  271. Maguy, A., Tardif, J.-C., Busseuil, D., Ribi, C. & Li, J. Autoantibody signature in cardiac arrest. Circulation 141, 1764–1774 (2020).

    Article  CAS  PubMed  Google Scholar 

  272. Maguy, A. et al. KCNQ1 antibodies for immunotherapy of long QT syndrome type 2. J. Am. Coll. Cardiol. 75, 2140–2152 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. Ahmed, M. S. et al. A supramolecular nanocarrier for delivery of amiodarone anti-arrhythmic therapy to the heart. Bioconjug. Chem. 30, 733–740 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Leuschner, F. et al. Silencing of CCR2 in myocarditis. Eur. Heart J. 36, 1478–1488 (2015).

    Article  CAS  PubMed  Google Scholar 

  275. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Behling, J., Kaes, J., Münzel, T., Grabbe, S. & Loquai, C. New-onset third-degree atrioventricular block because of autoimmune-induced myositis under treatment with anti-programmed cell death-1 (nivolumab) for metastatic melanoma. Melanoma Res. 27, 155–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  277. Heinzerling, L. et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Peretto, G. et al. Arrhythmias in myocarditis: state of the art. Heart Rhythm 16, 793–801 (2019).

    Article  PubMed  Google Scholar 

  279. Mehta, D., Ravindran, K. & Kuebler, W. M. Novel regulators of endothelial barrier function. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L924–L935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Wang, T. J. et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham heart study. Circulation 107, 2920–2925 (2003).

    Article  PubMed  Google Scholar 

  281. Mahoney, P., Kimmel, S., DeNofrio, D., Wahl, P. & Loh, E. Prognostic significance of atrial fibrillation in patients at a tertiary medical center referred for heart transplantation because of severe heart failure. Am. J. Cardiol. 83, 1544–1547 (1999).

    Article  CAS  PubMed  Google Scholar 

  282. Carson, P. E. et al. The influence of atrial fibrillation on prognosis in mild to moderate heart failure. The V-HeFT Studies. The V-HeFT VA Cooperative Studies Group. Circulation 87, VI102–VI110 (1993).

    CAS  PubMed  Google Scholar 

  283. Middlekauff, H. R., Stevenson, W. G. & Stevenson, L. W. Prognostic significance of atrial fibrillation in advanced heart failure. A study of 390 patients. Circulation 84, 40–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  284. Kusumoto, F. M. et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society. Circulation 140, e382–e482 (2019).

    PubMed  Google Scholar 

  285. Cheema, O. et al. Patterns of myocardial fibrosis by CMR in patients with conduction abnormalities [abstract]. J. Cardiovasc. Magn. Reson. 14, P213 (2012).

    Article  PubMed Central  Google Scholar 

  286. Kottkamp, H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J. Cardiovasc. Electrophysiol. 23, 797–799 (2012).

    Article  PubMed  Google Scholar 

  287. January, C. T. et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation 140, e125–e151 (2019).

    Article  PubMed  Google Scholar 

  288. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130, 2071–2104 (2014).

    Article  PubMed  Google Scholar 

  289. Ericson, J. et al. ImmGen microarray gene expression data: data generation and quality control pipeline. ImmGen https://www.immgen.org/Protocols/ImmGenDataGenerationAndQCDocumentation.pdf (2012).

  290. Silvestre-Roig, C., Hidalgo, A. & Soehnlein, O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127, 2173–2181 (2016).

    Article  CAS  PubMed  Google Scholar 

  291. Nicolás-Ávila, J. Á., Adrover, J. M. & Hidalgo, A. Neutrophils in homeostasis, immunity, and cancer. Immunity 46, 15–28 (2017).

    Article  PubMed  CAS  Google Scholar 

  292. Ramos, G. C. et al. Myocardial aging as a T-cell-mediated phenomenon. Proc. Natl Acad. Sci. USA 114, E2420–E2429 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Choi, J.-H. et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J. Exp. Med. 206, 497–505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Clemente-Casares, X. et al. A CD103+ conventional dendritic cell surveillance system prevents development of overt heart failure during subclinical viral myocarditis. Immunity 47, 974–989.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  296. Adamo, L. et al. Modulation of subsets of cardiac B lymphocytes improves cardiac function after acute injury. JCI Insight 3, e120137 (2018).

    Article  PubMed Central  Google Scholar 

  297. Bönner, F., Borg, N., Burghoff, S. & Schrader, J. Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS ONE 7, e34730 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Adamo, L. et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight 5, e134700 (2020).

    Article  PubMed Central  Google Scholar 

  299. Ingason, A. B., Mechmet, F., Atacho, D. A. M., Steingrímsson, E. & Petersen, P. H. Distribution of mast cells within the mouse heart and its dependency on Mitf. Mol. Immunol. 105, 9–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  300. Patella, V. et al. Human heart mast cells. Isolation, purification, ultrastructure, and immunologic characterization. J. Immunol. 154, 2855–2865 (1995).

    Article  CAS  PubMed  Google Scholar 

  301. Mackins, C. J. et al. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J. Clin. Invest. 116, 1063–1070 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Liao, C. et al. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J. Clin. Invest. 120, 242–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  303. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  304. Miesenböck, G. The optogenetic catechism. Science 326, 395–399 (2009).

    Article  PubMed  CAS  Google Scholar 

  305. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  306. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Lundby, A., Mutoh, H., Dimitrov, D., Akemann, W. & Knöpfel, T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE 3, e2514 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  310. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  311. Arrenberg, A. B., Stainier, D. Y. R., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  312. Wang, Y. et al. Optogenetic control of heart rhythm by selective stimulation of cardiomyocytes derived from Pnmt+ cells in murine heart. Sci. Rep. 7, 40687 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Bruegmann, T. et al. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J. Clin. Invest. 126, 3894–3904 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Bruegmann, T., Beiert, T., Vogt, C. C., Schrickel, J. W. & Sasse, P. Optogenetic termination of atrial fibrillation in mice. Cardiovasc. Res. 114, 713–723 (2018).

    Article  CAS  PubMed  Google Scholar 

  315. Nyns, E. C. A. et al. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. Eur. Heart J. 38, 2132–2136 (2017).

    CAS  PubMed  Google Scholar 

  316. Lee, S. et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat. Commun. 3, 1054 (2012).

    Article  PubMed  CAS  Google Scholar 

  317. Aguirre, A. D., Vinegoni, C., Sebas, M. & Weissleder, R. Intravital imaging of cardiac function at the single-cell level. Proc. Natl Acad. Sci. USA 111, 11257–11262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Jones, J. S., Small, D. M. & Nishimura, N. In vivo calcium imaging of cardiomyocytes in the beating mouse heart with multiphoton microscopy. Front. Physiol. 9, 969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Kavanagh, D. P. J., Lokman, A. B., Neag, G., Colley, A. & Kalia, N. Imaging the injured beating heart intravitally and the vasculoprotection afforded by haematopoietic stem cells. Cardiovasc. Res. 115, 1918–1932 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are funded in part by the NIH (HL139598 and HL142494), the MGH Research Scholar Program and the German Research Foundation (GR 5261/1-1). J.G. is also supported by DynAge FU Berlin, the German Society for Cardiology and the German Center for Cardiovascular Research. M.Y. is also supported by the Japan Heart Foundation/Bayer Yakuhin Research Grant Abroad. We acknowledge K. Joyes (Massachusetts General Hospital, Boston, MA, USA) for editing the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

J.G., M.Y. and M.N. contributed substantially to all aspects of preparing the manuscript.

Corresponding author

Correspondence to Matthias Nahrendorf.

Ethics declarations

Competing interests

M.N. has received funds or material research support from Alnylam, Biotronik, CSL Behring, GlycoMimetics, GSK, Medtronic, Novartis and Pfizer, as well as consulting fees from Biogen, Gimv, IFM Therapeutics, Molecular Imaging, Sigilon, Takeda and Verseau Therapeutics. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks S.-A. Chen, P. Kohl, S. Nattel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Immunological Genome Project: http://www.immgen.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grune, J., Yamazoe, M. & Nahrendorf, M. Electroimmunology and cardiac arrhythmia. Nat Rev Cardiol 18, 547–564 (2021). https://doi.org/10.1038/s41569-021-00520-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00520-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing