Pregnancy and cardiovascular disease


Cardiovascular disease complicates 1–4% of pregnancies — with a higher prevalence when including hypertensive disorders — and is the leading cause of maternal death. In women with known cardiovascular pathology, such as congenital heart disease, timely counselling is possible and the outcome is fairly good. By contrast, maternal mortality is high in women with acquired heart disease that presents during pregnancy (such as acute coronary syndrome or aortic dissection). Worryingly, the prevalence of acquired cardiovascular disease during pregnancy is rising as older maternal age, obesity, diabetes mellitus and hypertension become more common in the pregnant population. Management of cardiovascular disease in pregnancy is challenging owing to the unique maternal physiology, characterized by profound changes to multiple organ systems. The presence of the fetus compounds the situation because both the cardiometabolic disease and its management might adversely affect the fetus. Equally, avoiding essential treatment because of potential fetal harm risks a poor outcome for both mother and child. In this Review, we examine how the physiological adaptations during pregnancy can provoke cardiometabolic complications or exacerbate existing cardiometabolic disease and, conversely, how cardiometabolic disease can compromise the adaptations to pregnancy and their intended purpose: the development and growth of the fetus.

Key points

  • Cardiovascular disease complicates 1–4% of pregnancies — with a higher prevalence when hypertensive disorders are included — and accounts for 16% of maternal mortality, making cardiovascular diseases the leading cause of death in pregnant women in developed countries.

  • Advanced maternal age, obesity, hypertension, smoking and diabetes mellitus are all major cardiovascular risk factors that are increasingly prevalent in the pregnant population.

  • Profound haemodynamic changes, such as a 50% increase in cardiac output, place a burden on the maternal cardiovascular system during pregnancy and can provoke new-onset or an exacerbation of existing cardiovascular disease.

  • When prescribing medication, the altered pharmacokinetics during pregnancy should be considered in addition to fetal safety, and regular serum measurements can be beneficial because drug concentrations can change.

  • During pregnancy, a high index of suspicion and a low threshold for investigation of cardiometabolic diseases is warranted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Physiological changes in pregnancy.
Fig. 2: Onset of cardiovascular events during pregnancy.
Fig. 3: Pathogenesis and pathophysiology of pre-eclampsia.
Fig. 4: Risk of cardiometabolic disease after pre-eclampsia.


  1. 1.

    Regitz-Zagrosek, V. et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Kardiol. Pol. 77, 245–326 (2019).

    PubMed  Google Scholar 

  2. 2.

    Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 33, 130–137 (2009).

    PubMed  Google Scholar 

  3. 3.

    Sliwa, K. & Bohm, M. Incidence and prevalence of pregnancy-related heart disease. Cardiovasc. Res. 101, 554–560 (2014).

    CAS  PubMed  Google Scholar 

  4. 4.

    Knight, M. N. M., Tuffnell, D., Shakespeare, J., Kenyon, S. & Kurinczuk, J. J. Saving lives, improving mothers’ care — lessons learned to inform maternity care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2013–2015. MBRRACE-UK (2017).

  5. 5.

    Cantwell, R. et al. Saving mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The eighth report of the confidential enquiries into maternal deaths in the United Kingdom. BJOG 118 (Suppl. 1), 1–203 (2011).

    PubMed  Google Scholar 

  6. 6.

    Creanga, A. A., Syverson, C., Seed, K. & Callaghan, W. M. Pregnancy-related mortality in the United States, 2011–2013. Obstet. Gynecol. 130, 366–373 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Martin, J. A., Hamilton, B. E., Osterman, M. J. K. & Driscoll, A. K. Births: final data for 2018. Natl Vital. Stat. Rep. 68, 47 (2019).

    Google Scholar 

  8. 8.

    Stephen, E. H., Chandra, A. & King, R. B. Supply of and demand for assisted reproductive technologies in the United States: clinic- and population-based data, 1995–2010. Fertil. Steril. 105, 451–458 (2016).

    PubMed  Google Scholar 

  9. 9.

    Laopaiboon, M. et al. Advanced maternal age and pregnancy outcomes: a multicountry assessment. BJOG 121 (Suppl. 1), 49–56 (2014).

    PubMed  Google Scholar 

  10. 10.

    Kuklina, E. V., Ayala, C. & Callaghan, W. M. Hypertensive disorders and severe obstetric morbidity in the United States. Obstet. Gynecol. 113, 1299–1306 (2009).

    PubMed  Google Scholar 

  11. 11.

    Albrecht, S. S. et al. Diabetes trends among delivery hospitalizations in the U.S., 1994–2004. Diabetes Care 33, 768–773 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hinkle, S. N. et al. Prepregnancy obesity trends among low-income women, United States, 1999–2008. Matern. Child Health J. 16, 1339–1348 (2012).

    PubMed  Google Scholar 

  13. 13.

    Fisher, S. C., Kim, S. Y., Sharma, A. J., Rochat, R. & Morrow, B. Is obesity still increasing among pregnant women? Prepregnancy obesity trends in 20 states, 2003–2009. Prev. Med. 56, 372–378 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Creamer, M. R. et al. Tobacco product use and cessation indicators among adults — United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 68, 1013–1019 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jamal, A. et al. Current cigarette smoking among adults — United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 67, 53–59 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chevalier, N. et al. Materno-fetal cardiovascular complications in Turner syndrome after oocyte donation: insufficient prepregnancy screening and pregnancy follow-up are associated with poor outcome. J. Clin. Endocrinol. Metab. 96, E260–E267 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Hagman, A. et al. Obstetric and neonatal outcome after oocyte donation in 106 women with Turner syndrome: a Nordic cohort study. Hum. Reprod. 28, 1598–1609 (2013).

    PubMed  Google Scholar 

  18. 18.

    Roos-Hesselink, J. et al. Pregnancy outcomes in women with cardiovascular disease: evolving trends over 10 years in the ESC registry of pregnancy and cardiac disease (ROPAC). Eur. Heart J. 40, 3848–3855 (2019).

    PubMed  Google Scholar 

  19. 19.

    Duvekot, J. J., Cheriex, E. C., Pieters, F. A., Menheere, P. P. & Peeters, L. H. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am. J. Obstet. Gynecol. 169, 1382–1392 (1993).

    CAS  PubMed  Google Scholar 

  20. 20.

    Duvekot, J. J. & Peeters, L. L. Maternal cardiovascular hemodynamic adaptation to pregnancy. Obstet. Gynecol. Surv. 49, S1–S14 (1994).

    CAS  PubMed  Google Scholar 

  21. 21.

    Capeless, E. L. & Clapp, J. F. Cardiovascular changes in early phase of pregnancy. Am. J. Obstet. Gynecol. 161, 1449–1453 (1989).

    CAS  PubMed  Google Scholar 

  22. 22.

    Ochsenbein-Kolble, N. et al. Cross sectional study of automated blood pressure measurements throughout pregnancy. BJOG 111, 319–325 (2004).

    CAS  PubMed  Google Scholar 

  23. 23.

    Lopes van Balen, V. A. et al. Maternal kidney function during pregnancy: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 54, 297–307 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    de Haas, S., Ghossein-Doha, C., van Kuijk, S. M., van Drongelen, J. & Spaanderman, M. E. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 49, 177–187 (2017).

    PubMed  Google Scholar 

  25. 25.

    McGuane, J. T. et al. Role of relaxin in maternal systemic and renal vascular adaptations during gestation. Ann. N. Y. Acad. Sci. 1160, 304–312 (2009).

    CAS  PubMed  Google Scholar 

  26. 26.

    Odutayo, A. & Hladunewich, M. Obstetric nephrology: renal hemodynamic and metabolic physiology in normal pregnancy. Clin. J. Am. Soc. Nephrol. 7, 2073–2080 (2012).

    PubMed  Google Scholar 

  27. 27.

    Whittaker, P. G., Macphail, S. & Lind, T. Serial hematologic changes and pregnancy outcome. Obstet. Gynecol. 88, 33–39 (1996).

    CAS  PubMed  Google Scholar 

  28. 28.

    Meah, V. L., Cockcroft, J. R., Backx, K., Shave, R. & Stohr, E. J. Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart 102, 518–526 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Hunter, S. & Robson, S. C. Adaptation of the maternal heart in pregnancy. Br. Heart J. 68, 540–543 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Robson, S. C., Hunter, S., Boys, R. J. & Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am. J. Physiol. 256, H1060–H1065 (1989).

    CAS  PubMed  Google Scholar 

  31. 31.

    De Haas, S. et al. Cardiac remodeling in normotensive pregnancy and in pregnancy complicated by hypertension: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 50, 683–696 (2017).

    PubMed  Google Scholar 

  32. 32.

    Robson, S. C., Dunlop, W., Boys, R. J. & Hunter, S. Cardiac output during labour. Br. Med. J. 295, 1169–1172 (1987).

    CAS  Google Scholar 

  33. 33.

    Ruys, T. P. et al. Heart failure in pregnant women with cardiac disease: data from the ROPAC. Heart 100, 231–238 (2014).

    PubMed  Google Scholar 

  34. 34.

    Shiozaki, A., Matsuda, Y., Satoh, S. & Saito, S. Comparison of risk factors for gestational hypertension and preeclampsia in Japanese singleton pregnancies. J. Obstet. Gynaecol. Res. 39, 492–499 (2013).

    PubMed  Google Scholar 

  35. 35.

    Hellgren, M. & Blomback, M. Studies on blood coagulation and fibrinolysis in pregnancy, during delivery and in the puerperium. I. Normal condition. Gynecol. Obstet. Invest. 12, 141–154 (1981).

    CAS  PubMed  Google Scholar 

  36. 36.

    Rodger, M., Sheppard, D., Gandara, E. & Tinmouth, A. Haematological problems in obstetrics. Best. Pract. Res. Clin. Obstet. Gynaecol. 29, 671–684 (2015).

    PubMed  Google Scholar 

  37. 37.

    Peck, T. M. & Arias, F. Hematologic changes associated with pregnancy. Clin. Obstet. Gynecol. 22, 785–798 (1979).

    CAS  PubMed  Google Scholar 

  38. 38.

    Kowalska-Kanka, A., Maciejewski, T. & Niemiec, K. T. The role and regulation of secretion of erythropoietin in pregnancy. Med. Wieku Rozwoj 17, 270–275 (2013).

    PubMed  Google Scholar 

  39. 39.

    Angueira, A. R. et al. New insights into gestational glucose metabolism: lessons learned from 21st century approaches. Diabetes 64, 327–334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Newbern, D. & Freemark, M. Placental hormones and the control of maternal metabolism and fetal growth. Curr. Opin. Endocrinol. Diabetes Obes. 18, 409–416 (2011).

    CAS  PubMed  Google Scholar 

  41. 41.

    Marcinkevage, J. A. & Narayan, K. M. Gestational diabetes mellitus: taking it to heart. Prim. Care Diabetes 5, 81–88 (2011).

    PubMed  Google Scholar 

  42. 42.

    Rees, G. B., Broughton Pipkin, F., Symonds, E. M. & Patrick, J. M. A longitudinal study of respiratory changes in normal human pregnancy with cross-sectional data on subjects with pregnancy-induced hypertension. Am. J. Obstet. Gynecol. 162, 826–830 (1990).

    CAS  PubMed  Google Scholar 

  43. 43.

    Hegewald, M. J. & Crapo, R. O. Respiratory physiology in pregnancy. Clin. Chest Med. 32, 1–13 (2011).

    PubMed  Google Scholar 

  44. 44.

    Gee, J. B., Packer, B. S., Millen, J. E. & Robin, E. D. Pulmonary mechanics during pregnancy. J. Clin. Invest. 46, 945–952 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Norregaard, O., Schultz, P., Ostergaard, A. & Dahl, R. Lung function and postural changes during pregnancy. Respir. Med. 83, 467–470 (1989).

    CAS  PubMed  Google Scholar 

  46. 46.

    Roy, C. et al. Fast imaging MR assessment of ureterohydronephrosis during pregnancy. Magn. Reson. Imaging 13, 767–772 (1995).

    CAS  PubMed  Google Scholar 

  47. 47.

    Faundes, A., Bricola-Filho, M. & Pinto e Silva, J. L. Dilatation of the urinary tract during pregnancy: proposal of a curve of maximal caliceal diameter by gestational age. Am. J. Obstet. Gynecol. 178, 1082–1086 (1998).

    CAS  PubMed  Google Scholar 

  48. 48.

    Erman, A. et al. Enhanced urinary albumin excretion after 35 weeks of gestation and during labour in normal pregnancy. Scand. J. Clin. Lab. Invest. 52, 409–413 (1992).

    CAS  PubMed  Google Scholar 

  49. 49.

    Steegers, E. A., von Dadelszen, P., Duvekot, J. J. & Pijnenborg, R. Pre-eclampsia. Lancet 376, 631–644 (2010).

    PubMed  Google Scholar 

  50. 50.

    World Health Organization. WHO Recommendations for Prevention and Treatment of Pre-Eclampsia and Eclampsia (World Health Organization, 2011).

  51. 51.

    Creanga, A. A. Maternal mortality in the United States: a review of contemporary data and their limitations. Clin. Obstet. Gynecol. 61, 296–306 (2018).

    PubMed  Google Scholar 

  52. 52.

    Khan, K. S., Wojdyla, D., Say, L., Gulmezoglu, A. M. & Van Look, P. F. WHO analysis of causes of maternal death: a systematic review. Lancet 367, 1066–1074 (2006).

    PubMed  Google Scholar 

  53. 53.

    Ananth, C. V., Keyes, K. M. & Wapner, R. J. Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ 347, f6564 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Say, L. et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob. Health 2, e323–e333 (2014).

    PubMed  Google Scholar 

  55. 55.

    Khong, T. Y., De Wolf, F., Robertson, W. B. & Brosens, I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br. J. Obstet. Gynaecol. 93, 1049–1059 (1986).

    CAS  PubMed  Google Scholar 

  56. 56.

    Hylenius, S., Andersen, A. M., Melbye, M. & Hviid, T. V. Association between HLA-G genotype and risk of pre-eclampsia: a case-control study using family triads. Mol. Hum. Reprod. 10, 237–246 (2004).

    CAS  PubMed  Google Scholar 

  57. 57.

    Vanderlelie, J. et al. Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae. Placenta 26, 53–58 (2005).

    CAS  PubMed  Google Scholar 

  58. 58.

    Hung, T. H., Charnock-Jones, D. S., Skepper, J. N. & Burton, G. J. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am. J. Pathol. 164, 1049–1061 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Burton, G. J., Yung, H. W., Cindrova-Davies, T. & Charnock-Jones, D. S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30 (Suppl. A), S43–S48 (2009).

    PubMed  Google Scholar 

  60. 60.

    Milne, F. et al. Assessing the onset of pre-eclampsia in the hospital day unit: summary of the pre-eclampsia guideline (PRECOG II). BMJ 339, b3129 (2009).

    PubMed  Google Scholar 

  61. 61.

    The American College of Obstetricians and Gynecologists. ACOG practice bulletin no. 202: gestational hypertension and preeclampsia. Obstet. Gynecol. 133, e1–e25 (2019).

    Google Scholar 

  62. 62.

    Valensise, H., Vasapollo, B., Gagliardi, G. & Novelli, G. P. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension 52, 873–880 (2008).

    CAS  PubMed  Google Scholar 

  63. 63.

    Brown, M. A. et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 72, 24–43 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Altman, D. et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie trial: a randomised placebo-controlled trial. Lancet 359, 1877–1890 (2002).

    PubMed  Google Scholar 

  65. 65.

    Hoffman, M. K. et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): a randomised, double-blind, placebo-controlled trial. Lancet 395, 285–293 (2020).

    CAS  PubMed  Google Scholar 

  66. 66.

    Roberge, S., Bujold, E. & Nicolaides, K. H. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am. J. Obstet. Gynecol. 218, 287–293.e1 (2018).

    CAS  PubMed  Google Scholar 

  67. 67.

    Rolnik, D. L. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377, 613–622 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    LeFevre, N. & Krumm, E. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Am. Fam. Physician 100, 403–405 (2019).

    PubMed  Google Scholar 

  69. 69.

    Koopmans, C. M. et al. Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks’ gestation (HYPITAT): a multicentre, open-label randomised controlled trial. Lancet 374, 979–988 (2009).

    PubMed  Google Scholar 

  70. 70.

    Redman, E. K., Hauspurg, A., Hubel, C. A., Roberts, J. M. & Jeyabalan, A. Clinical course, associated factors, and blood pressure profile of delayed-onset postpartum preeclampsia. Obstet. Gynecol. 134, 995–1001 (2019).

    PubMed  Google Scholar 

  71. 71.

    Tooher, J. et al. All hypertensive disorders of pregnancy increase the risk of future cardiovascular disease. Hypertension 70, 798–803 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Zhu, Y. & Zhang, C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr. Diab Rep. 16, 7 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Group, H. S. C. R. et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 358, 1991–2002 (2008).

    Google Scholar 

  74. 74.

    Fadl, H. E., Ostlund, I. K., Magnuson, A. F. & Hanson, U. S. Maternal and neonatal outcomes and time trends of gestational diabetes mellitus in Sweden from 1991 to 2003. Diabet. Med. 27, 436–441 (2010).

    CAS  PubMed  Google Scholar 

  75. 75.

    Petitt, D. J., Bennett, P. H., Knowler, W. C., Baird, H. R. & Aleck, K. A. Gestational diabetes mellitus and impaired glucose tolerance during pregnancy. Long-term effects on obesity and glucose tolerance in the offspring. Diabetes 34 (Suppl. 2), 119–122 (1985).

    PubMed  Google Scholar 

  76. 76.

    Rizzo, T. A., Metzger, B. E., Dooley, S. L. & Cho, N. H. Early malnutrition and child neurobehavioral development: insights from the study of children of diabetic mothers. Child Dev. 68, 26–38 (1997).

    CAS  PubMed  Google Scholar 

  77. 77.

    Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373, 1773–1779 (2009).

    CAS  PubMed  Google Scholar 

  78. 78.

    Camprubi Robles, M. et al. Maternal diabetes and cognitive performance in the offspring: a systematic review and meta-analysis. PLoS One 10, e0142583 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Zhang, C., Rawal, S. & Chong, Y. S. Risk factors for gestational diabetes: is prevention possible? Diabetologia 59, 1385–1390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Dooley, S. L., Metzger, B. E., Cho, N. & Liu, K. The influence of demographic and phenotypic heterogeneity on the prevalence of gestational diabetes mellitus. Int. J. Gynaecol. Obstet. 35, 13–18 (1991).

    CAS  PubMed  Google Scholar 

  81. 81.

    Catalano, P. M. Trying to understand gestational diabetes. Diabet. Med. 31, 273–281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Li, Y. et al. Maternal age and the risk of gestational diabetes mellitus: a systematic review and meta-analysis of over 120 million participants. Diabetes Res. Clin. Pract. 162, 108044 (2020).

    PubMed  Google Scholar 

  83. 83.

    American Diabetes Association. 14. Management of diabetes in pregnancy: standards of medical care in diabetes-2020. Diabetes Care 43, S183–S192 (2020).

    Google Scholar 

  84. 84.

    National Collaborating Centre for Women’s and Children’s Health. Diabetes in pregnancy: management of diabetes and its complications from preconception to the postnatal period (NICE, 2015).

  85. 85.

    Agarwal, M. M., Dhatt, G. S. & Punnose, J. Gestational diabetes: an alternative, patient-friendly approach for using the diagnostic 100-g OGTT in high-risk populations. Arch. Gynecol. Obstet. 273, 325–330 (2006).

    CAS  PubMed  Google Scholar 

  86. 86.

    Crowther, C. A. et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N. Engl. J. Med. 352, 2477–2486 (2005).

    CAS  PubMed  Google Scholar 

  87. 87.

    Lauenborg, J. et al. The prevalence of the metabolic syndrome in a Danish population of women with previous gestational diabetes mellitus is three-fold higher than in the general population. J. Clin. Endocrinol. Metab. 90, 4004–4010 (2005).

    CAS  PubMed  Google Scholar 

  88. 88.

    James, A. H., Jamison, M. G., Brancazio, L. R. & Myers, E. R. Venous thromboembolism during pregnancy and the postpartum period: incidence, risk factors, and mortality. Am. J. Obstet. Gynecol. 194, 1311–1315 (2006).

    PubMed  Google Scholar 

  89. 89.

    Jacobsen, A. F., Skjeldestad, F. E. & Sandset, P. M. Incidence and risk patterns of venous thromboembolism in pregnancy and puerperium — a register-based case-control study. Am. J. Obstet. Gynecol. 198, 233 e1–7 (2008).

    Google Scholar 

  90. 90.

    Heit, J. A. et al. Trends in the incidence of venous thromboembolism during pregnancy or postpartum: a 30-year population-based study. Ann. Intern. Med. 143, 697–706 (2005).

    PubMed  Google Scholar 

  91. 91.

    Macklon, N. S., Greer, I. A. & Bowman, A. W. An ultrasound study of gestational and postural changes in the deep venous system of the leg in pregnancy. Br. J. Obstet. Gynaecol. 104, 191–197 (1997).

    CAS  PubMed  Google Scholar 

  92. 92.

    Cantu-Brito, C. et al. Cerebrovascular complications during pregnancy and postpartum: clinical and prognosis observations in 240 Hispanic women. Eur. J. Neurol. 18, 819–825 (2011).

    CAS  PubMed  Google Scholar 

  93. 93.

    Rova, K., Passmark, H. & Lindqvist, P. G. Venous thromboembolism in relation to in vitro fertilization: an approach to determining the incidence and increase in risk in successful cycles. Fertil. Steril. 97, 95–100 (2012).

    PubMed  Google Scholar 

  94. 94.

    Rotzinger, D. C. et al. Pulmonary embolism during pregnancy: a 17-year single-center retrospective MDCT pulmonary angiography study. Eur. Radiol. 30, 1780–1789 (2020).

    PubMed  Google Scholar 

  95. 95.

    Bauersachs, R. M. et al. Risk stratification and heparin prophylaxis to prevent venous thromboembolism in pregnant women. Thromb. Haemost. 98, 1237–1245 (2007).

    CAS  PubMed  Google Scholar 

  96. 96.

    Romualdi, E. et al. Anticoagulant therapy for venous thromboembolism during pregnancy: a systematic review and a meta-analysis of the literature. J. Thromb. Haemost. 11, 270–281 (2013).

    CAS  PubMed  Google Scholar 

  97. 97.

    Bates, S. M. et al. VTE, thrombophilia, antithrombotic therapy, and pregnancy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141, e691S–e736S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    James, A. H. et al. Acute myocardial infarction in pregnancy: a United States population-based study. Circulation 113, 1564–1571 (2006).

    PubMed  Google Scholar 

  99. 99.

    Elkayam, U. et al. Pregnancy-associated acute myocardial infarction: a review of contemporary experience in 150 cases between 2006 and 2011. Circulation 129, 1695–1702 (2014).

    PubMed  Google Scholar 

  100. 100.

    Wingrove, C. S., Garr, E., Godsland, I. F. & Stevenson, J. C. 17beta-oestradiol enhances release of matrix metalloproteinase-2 from human vascular smooth muscle cells. Biochim. Biophys. Acta 1406, 169–174 (1998).

    CAS  PubMed  Google Scholar 

  101. 101.

    Manalo-Estrella, P. & Barker, A. E. Histopathologic findings in human aortic media associated with pregnancy. Arch. Pathol. 83, 336–341 (1967).

    CAS  PubMed  Google Scholar 

  102. 102.

    Kaadan, M. I. et al. Prospective cardiovascular genetics evaluation in spontaneous coronary artery dissection. Circ. Genom. Precis. Med. 11, e001933 (2018).

    CAS  PubMed  Google Scholar 

  103. 103.

    Gornik, H. L. et al. First international consensus on the diagnosis and management of fibromuscular dysplasia. J. Hypertens. 37, 229–252 (2019).

    CAS  PubMed  Google Scholar 

  104. 104.

    Ismail, S., Wong, C., Rajan, P. & Vidovich, M. I. ST-elevation acute myocardial infarction in pregnancy: 2016 update. Clin. Cardiol. 40, 399–406 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Karalis, D. G., Hill, A. N., Clifton, S. & Wild, R. A. The risks of statin use in pregnancy: a systematic review. J. Clin. Lipidol. 10, 1081–1090 (2016).

    PubMed  Google Scholar 

  106. 106.

    Shotan, A., Widerhorn, J., Hurst, A. & Elkayam, U. Risks of angiotensin-converting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am. J. Med. 96, 451–456 (1994).

    CAS  PubMed  Google Scholar 

  107. 107.

    Costantine, M. M. et al. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial. Am. J. Obstet. Gynecol. 214, 720.e1–720.e17 (2016).

    CAS  Google Scholar 

  108. 108.

    Winterfeld, U. et al. Pregnancy outcome following maternal exposure to statins: a multicentre prospective study. BJOG 120, 463–471 (2013).

    CAS  PubMed  Google Scholar 

  109. 109.

    Ersboll, A. S. et al. Peripartum cardiomyopathy in Denmark: a retrospective, population-based study of incidence, management and outcome. Eur. J. Heart Fail. 19, 1712–1720 (2017).

    CAS  PubMed  Google Scholar 

  110. 110.

    Isezuo, S. A. & Abubakar, S. A. Epidemiologic profile of peripartum cardiomyopathy in a tertiary care hospital. Ethn. Dis. 17, 228–233 (2007).

    PubMed  Google Scholar 

  111. 111.

    Sliwa, K. et al. Clinical characteristics of patients from the worldwide registry on peripartum cardiomyopathy (PPCM): EURObservational research programme in conjunction with the Heart Failure Association of the European Society of Cardiology Study Group on PPCM. Eur. J. Heart Fail. 19, 1131–1141 (2017).

    CAS  PubMed  Google Scholar 

  112. 112.

    Kolte, D. et al. Temporal trends in incidence and outcomes of peripartum cardiomyopathy in the United States: a nationwide population-based study. J. Am. Heart Assoc. 3, e001056 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Baris, L., Cornette, J., Johnson, M. R., Sliwa, K. & Roos-Hesselink, J. W. Peripartum cardiomyopathy: disease or syndrome? Heart 105, 357–362 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Hilfiker-Kleiner, D. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128, 589–600 (2007).

    CAS  PubMed  Google Scholar 

  115. 115.

    Bauersachs, J. et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 21, 827–843 (2019).

    CAS  PubMed  Google Scholar 

  116. 116.

    Sliwa, K. et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation 121, 1465–1473 (2010).

    CAS  PubMed  Google Scholar 

  117. 117.

    Hilfiker-Kleiner, D. et al. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur. Heart J. 38, 2671–2679 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    US National Library of Medicine. (2017).

  119. 119.

    The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). The 2015 ESC guidelines for the management of infective endocarditis. Eur. Heart J. 36, 3036–3037 (2015).

    Google Scholar 

  120. 120.

    Yuan, S. M. Infective endocarditis during pregnancy. J. Coll. Physicians Surg. Pak. 25, 134–139 (2015).

    PubMed  Google Scholar 

  121. 121.

    Kebed, K. Y. et al. Pregnancy and postpartum infective endocarditis: a systematic review. Mayo Clin. Proc. 89, 1143–1152 (2014).

    PubMed  Google Scholar 

  122. 122.

    Campuzano, K., Roque, H., Bolnick, A., Leo, M. V. & Campbell, W. A. Bacterial endocarditis complicating pregnancy: case report and systematic review of the literature. Arch. Gynecol. Obstet. 268, 251–255 (2003).

    PubMed  Google Scholar 

  123. 123.

    Montoya, M. E., Karnath, B. M. & Ahmad, M. Endocarditis during pregnancy. South. Med. J. 96, 1156–1157 (2003).

    PubMed  Google Scholar 

  124. 124.

    Kourtis, A. P., Read, J. S. & Jamieson, D. J. Pregnancy and infection. N. Engl. J. Med. 370, 2211–2218 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Kuijpers, J. M. et al. Incidence, risk factors, and predictors of infective endocarditis in adult congenital heart disease: focus on the use of prosthetic material. Eur. Heart J. 38, 2048–2056 (2017).

    PubMed  Google Scholar 

  126. 126.

    Sawlani, N., Shroff, A. & Vidovich, M. I. Aortic dissection and mortality associated with pregnancy in the United States. J. Am. Coll. Cardiol. 65, 1600–1601 (2015).

    PubMed  Google Scholar 

  127. 127.

    Thalmann, M. et al. Acute type A aortic dissection and pregnancy: a population-based study. Eur. J. Cardiothorac. Surg. 39, e159–e163 (2011).

    PubMed  Google Scholar 

  128. 128.

    Immer, F. F. et al. Aortic dissection in pregnancy: analysis of risk factors and outcome. Ann. Thorac. Surg. 76, 309–314 (2003).

    PubMed  Google Scholar 

  129. 129.

    Hart, M. V., Morton, M. J., Hosenpud, J. D. & Metcalfe, J. Aortic function during normal human pregnancy. Am. J. Obstet. Gynecol. 154, 887–891 (1986).

    CAS  PubMed  Google Scholar 

  130. 130.

    Gutin, L. S., Merz, A. E., Bakalov, V. K., Gharib, A. M. & Bondy, C. A. Parity and aortic dimensions in healthy women. Int. J. Cardiol. 165, 383–384 (2013).

    PubMed  Google Scholar 

  131. 131.

    Wolinsky, H. Effects of estrogen and progestogen treatment on the response of the aorta of male rats to hypertension. Morphological and chemical studies. Circ. Res. 30, 341–349 (1972).

    CAS  PubMed  Google Scholar 

  132. 132.

    Kamel, H., Roman, M. J., Pitcher, A. & Devereux, R. B. Pregnancy and the risk of aortic dissection or rupture: a cohort-crossover analysis. Circulation 134, 527–533 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Yates, M. T. et al. Perioperative management and outcomes of aortic surgery during pregnancy. J. Thorac. Cardiovasc. Surg. 149, 607–610 (2015).

    PubMed  Google Scholar 

  134. 134.

    Suzuki, T. et al. Type-selective benefits of medications in treatment of acute aortic dissection (from the international registry of acute aortic dissection [IRAD]). Am. J. Cardiol. 109, 122–127 (2012).

    CAS  PubMed  Google Scholar 

  135. 135.

    Vaidya, V. R. et al. Burden of arrhythmia in pregnancy. Circulation 135, 619–621 (2017).

    PubMed  Google Scholar 

  136. 136.

    Shotan, A., Ostrzega, E., Mehra, A., Johnson, J. V. & Elkayam, U. Incidence of arrhythmias in normal pregnancy and relation to palpitations, dizziness, and syncope. Am. J. Cardiol. 79, 1061–1064 (1997).

    CAS  PubMed  Google Scholar 

  137. 137.

    Li, J. M., Nguyen, C., Joglar, J. A., Hamdan, M. H. & Page, R. L. Frequency and outcome of arrhythmias complicating admission during pregnancy: experience from a high-volume and ethnically-diverse obstetric service. Clin. Cardiol. 31, 538–541 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Ertekin, E. et al. Ventricular tachyarrhythmia during pregnancy in women with heart disease: data from the ROPAC, a registry from the European Society of Cardiology. Int. J. Cardiol. 220, 131–136 (2016).

    PubMed  Google Scholar 

  139. 139.

    Brodsky, M. et al. New-onset ventricular tachycardia during pregnancy. Am. Heart J. 123, 933–941 (1992).

    CAS  PubMed  Google Scholar 

  140. 140.

    Tateno, S. et al. Arrhythmia and conduction disturbances in patients with congenital heart disease during pregnancy: multicenter study. Circ. J. 67, 992–997 (2003).

    PubMed  Google Scholar 

  141. 141.

    Fitton, C. A. et al. In-utero exposure to antihypertensive medication and neonatal and child health outcomes: a systematic review. J. Hypertens. 35, 2123–2137 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Chow, T., Galvin, J. & McGovern, B. Antiarrhythmic drug therapy in pregnancy and lactation. Am. J. Cardiol. 82, 58I–62I (1998).

    CAS  PubMed  Google Scholar 

  143. 143.

    Kozluk, E. et al. Catheter ablation of cardiac arrhythmias in pregnancy without fluoroscopy: a case control retrospective study. Adv. Clin. Exp. Med. 26, 129–134 (2017).

    PubMed  Google Scholar 

  144. 144.

    Boule, S. et al. Pregnancy in women with an implantable cardioverter-defibrillator: is it safe? Europace 16, 1587–1594 (2014).

    PubMed  Google Scholar 

  145. 145.

    Mitchell, A. A. et al. Medication use during pregnancy, with particular focus on prescription drugs: 1976–2008. Am. J. Obstet. Gynecol. 205, 51.e1–8 (2011).

    Google Scholar 

  146. 146.

    Baron, T. H., Ramirez, B. & Richter, J. E. Gastrointestinal motility disorders during pregnancy. Ann. Intern. Med. 118, 366–375 (1993).

    CAS  PubMed  Google Scholar 

  147. 147.

    Maher, J. E. et al. Albumin levels in pregnancy: a hypothesis — decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum. Dev. 34, 209–215 (1993).

    CAS  PubMed  Google Scholar 

  148. 148.

    Pariente, G. et al. Pregnancy-associated changes in pharmacokinetics: a systematic review. PLoS Med. 13, e1002160 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Lopes van Balen, V. A. et al. Maternal kidney function during pregnancy: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 54, 297–307 (2018).

    Google Scholar 

  150. 150.

    Mishanina, E. et al. Use of labour induction and risk of cesarean delivery: a systematic review and meta-analysis. CMAJ 186, 665–673 (2014).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Ruys, T. P. et al. Is a planned caesarean section in women with cardiac disease beneficial? Heart 101, 530–536 (2015).

    PubMed  Google Scholar 

  152. 152.

    Ramsey, P. S., Hogg, B. B., Savage, K. G., Winkler, D. D. & Owen, J. Cardiovascular effects of intravaginal misoprostol in the mid trimester of pregnancy. Am. J. Obstet. Gynecol. 183, 1100–1102 (2000).

    CAS  PubMed  Google Scholar 

  153. 153.

    Svanstrom, M. C. et al. Signs of myocardial ischaemia after injection of oxytocin: a randomized double-blind comparison of oxytocin and methylergometrine during caesarean section. Br. J. Anaesth. 100, 683–689 (2008).

    CAS  PubMed  Google Scholar 

  154. 154.

    Cauldwell, M. et al. The management of the third stage of labour in women with heart disease. Heart 103, 945–951 (2017).

    CAS  PubMed  Google Scholar 

  155. 155.

    Karamermer, Y. & Roos-Hesselink, J. W. Pregnancy and adult congenital heart disease. Expert. Rev. Cardiovasc. Ther. 5, 859–869 (2007).

    PubMed  Google Scholar 

  156. 156.

    Wu, P. et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 10, e003497 (2017).

    PubMed  Google Scholar 

  157. 157.

    Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335, 974 (2007).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Wu, P. et al. Pre-eclampsia is associated with a twofold increase in diabetes: a systematic review and meta-analysis. Diabetologia 59, 2518–2526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Basit, S., Wohlfahrt, J. & Boyd, H. A. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. BMJ 363, k4109 (2018).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Covella, B. et al. A systematic review and meta-analysis indicates long-term risk of chronic and end-stage kidney disease after preeclampsia. Kidney Int. 96, 711–727 (2019).

    PubMed  Google Scholar 

Download references

Author information




All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jolien W. Roos-Hesselink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks R. Cífková, P. Presbitero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramlakhan, K.P., Johnson, M.R. & Roos-Hesselink, J.W. Pregnancy and cardiovascular disease. Nat Rev Cardiol 17, 718–731 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing