Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac natriuretic peptides

Abstract

Investigations into the mixed muscle–secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones — the natriuretic peptides — referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.

Key points

  • The dual contractile–secretory phenotype of atrial (appendage) cardiomyocytes underlies the regulated secretion of two natriuretic peptide (NP) hormones: atrial NP and B-type NP.

  • Investigation into the genes encoding NPs has provided valuable insights into gene regulation in the cardiovascular system.

  • NPs are ligands for receptors that are membrane-bound guanylyl cyclases, thereby signalling through increases in intracellular levels of cGMP, which in turn interact with cGMP-dependent enzymes and ion channels in many cell types.

  • In addition to their roles in water and electrolyte balance, NPs participate in seemingly unrelated processes, such as immune response and lipid metabolism.

  • Plasma levels of NPs are useful clinical indicators in the diagnosis and prognosis of cardiovascular diseases.

  • NPs, their chemical derivatives and pharmacological agents that slow their catabolic rate are areas of active research that have produced useful new approaches in the treatment of systemic hypertension and heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Specific atrial granules.
Fig. 2: Expression and regulation of NPPANPPB.
Fig. 3: Natriuretic peptide processing and primary structure.
Fig. 4: Proposed intracellular transport and secretion of natriuretic peptides in cardiomyocytes.
Fig. 5: Morphological localization of atrial natriuretic peptide.
Fig. 6: Cognate receptors for natriuretic peptides.

Similar content being viewed by others

References

  1. McGrath, M. F., de Bold, M. L. & de Bold, A. J. The endocrine function of the heart. Trends Endocrinol. Metab. 16, 469–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Jamieson, J. D. & Palade, G. E. Specific granules in atrial muscle cells. J. Cell Biol. 23, 151–172 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Bold, A. J., Borenstein, H. B., Veress, A. T. & Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci. 28, 89–94 (1981).

    Article  PubMed  Google Scholar 

  4. Flynn, T. G., de Bold, M. L. & de Bold, A. J. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem. Biophys. Res. Commun. 117, 859–865 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Dzau, V. J. et al. Nomenclature for atrial peptides. N. Engl. J. Med. 316, 1278–1279 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Sudoh, T., Kangawa, K., Minamino, N. & Matsuo, H. A new natriuretic peptide in porcine brain. Nature 332, 78–81 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Sudoh, T., Minamino, N., Kangawa, K. & Matsuo, H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun. 168, 863–870 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Komatsu, Y. et al. C-type natriuretic peptide (CNP) in rats and humans. Endocrinology 129, 1104–1106 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura, M. et al. Roles of brain angiotensin II and C-type natriuretic peptide in deoxycorticosterone acetate-salt hypertension in rats. J. Hypertens. 16, 1175–1185 (1998).

    CAS  PubMed  Google Scholar 

  10. Ueda, S. et al. Distribution and characterization of immunoreactive porcine C-type natriuretic peptide. Biochem. Biophys. Res. Commun. 175, 759–767 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Furuya, M. et al. C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 177, 927–931 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Prickett, T. C. et al. C-type natriuretic peptides in coronary disease. Clin. Chem. 63, 316–324 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wright, S. P. et al. Amino-terminal pro-C-type natriuretic peptide in heart failure. Hypertension 43, 94–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Moyes, A. J. & Hobbs, A. J. C-type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int. J. Mol. Sci. 20, 2281 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  15. Zeller, R., Bloch, K. D., Williams, B. S., Arceci, R. J. & Seidman, C. E. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev. 1, 693–698 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Bruneau, B. G. et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Durocher, D., Chen, C. Y., Ardati, A., Schwartz, R. J. & Nemer, M. The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol. Cell. Biol. 16, 4648–4655 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Durocher, D., Charron, F., Warren, R., Schwartz, R. J. & Nemer, M. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16, 5687–5696 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Välimaki, M. J. & Ruskoaho, H. J. Targeting GATA4 for cardiac repair. IUBMB Life 72, 68–79 (2020).

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N. & Izumo, S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126, 1269–1280 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Lickert, H. et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Habets, P. E. et al. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev. 16, 1234–1246 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horsthuis, T. et al. Distinct regulation of developmental and heart disease-induced atrial natriuretic factor expression by two separate distal sequences. Circ. Res. 102, 849–859 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Sergeeva, I. A. et al. Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development 143, 2135–2146 (2016).

    CAS  PubMed  Google Scholar 

  25. Zaidi, S. & Brueckner, M. Genetics and genomics of congenital heart disease. Circ. Res. 120, 923–940 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mori, T. et al. Volume overload results in exaggerated cardiac hypertrophy in the atrial natriuretic peptide knockout mouse. Cardiovasc. Res. 61, 771–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Takeuchi, J. K. et al. Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat. Commun. 2, 187 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. Koshiba-Takeuchi, K. et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature 461, 95–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luna-Zurita, L. et al. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell 164, 999–1014 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogawa, T. & de Bold, A. J. Uncoordinated regulation of atrial natriuretic factor and brain natriuretic peptide in lipopolysaccharide-treated rats. Biomarkers 17, 140–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa, T., Veinot, J. P., Kuroski de Bold, M. L., Georgalis, T. & de Bold, A. J. Angiotensin II receptor antagonism reverts the selective cardiac BNP upregulation and secretion observed in myocarditis. Am. J. Physiol. Heart Circ. Physiol. 294, H2596–H2603 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Ma, K. K., Ogawa, T. & de Bold, A. J. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J. Mol. Cell. Cardiol. 36, 505–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, K. K., Banas, K. & de Bold, A. J. Determinants of inducible brain natriuretic peptide promoter activity. Regul. Pept. 128, 169–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yasuda, S. & Lew, W. Y. Lipopolysaccharide depresses cardiac contractility and β-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circ. Res. 81, 1011–1020 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Tomaru, K. K. et al. Transcriptional activation of the BNP gene by lipopolysaccharide is mediated through GATA elements in neonatal rat cardiac myocytes. J. Mol. Cell. Cardiol. 34, 649–659 (2002).

    Article  CAS  Google Scholar 

  36. Pemberton, C. J. et al. First identification of circulating prepro-A-type natriuretic peptide (preproANP) signal peptide fragments in humans: initial assessment as cardiovascular biomarkers. Clin. Chem. 58, 757–767 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Siriwardena, M. et al. B-type natriuretic peptide signal peptide circulates in human blood: evaluation as a potential biomarker of cardiac ischemia. Circulation 122, 255–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Schellenberger, U. et al. The precursor to B-type natriuretic peptide is an O-linked glycoprotein. Arch. Biochem. Biophys. 451, 160–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Seferian, K. R. et al. Immunodetection of glycosylated NT-proBNP circulating in human blood. Clin. Chem. 54, 866–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Crimmins, D. L. & Kao, J. L. A glycosylated form of the human cardiac hormone pro B-type natriuretic peptide is an intrinsically unstructured monomeric protein. Arch. Biochem. Biophys. 475, 36–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Semenov, A. G. et al. Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin. Chem. 55, 489–498 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Goetze, J. P. B-type natriuretic peptide: from posttranslational processing to clinical measurement. Clin. Chem. 58, 83–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Hansen, L. H. et al. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J. Biol. Chem. 294, 12567–12578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dries, D. L. et al. Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation 112, 2403–2410 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Semenov, A. G. et al. Processing of pro-B-type natriuretic peptide: furin and corin as candidate convertases. Clin. Chem. 56, 1166–1176 (2010).

    Article  PubMed  Google Scholar 

  46. Yan, W., Wu, F., Morser, J. & Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc. Natl Acad. Sci. USA 97, 8525–8529 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ogawa, T., Vatta, M., Bruneau, B. G. & de Bold, A. J. Characterization of natriuretic peptide production by adult heart atria. Am. J. Physiol. Heart Circ. Physiol. 276, H1977–H1986 (1999).

    Article  CAS  Google Scholar 

  48. Mangat, H. & de Bold, A. J. Stretch-induced atrial natriuretic factor release utilizes a rapidly depleting pool of newly synthesized hormone. Endocrinology 133, 1398–1403 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Arvan, P. & Halban, P. A. Sorting ourselves out: seeking consensus on trafficking in the beta-cell. Traffic 5, 53–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. de Bold, A. J. Heart atria granularity effects of changes in water-electrolyte balance. Proc. Soc. Exp. Biol. Med. 161, 508–511 (1979).

    Article  PubMed  Google Scholar 

  51. Bensimon, M. A. & de Bold, A. J. Role of Gi/o protein signalling in ANF stretch-secretion coupling in heart atria [abstract]. J. Mol. Cell. Cardiol. 33, A11 (2001).

    Article  Google Scholar 

  52. Bensimon, M. et al. Participation of G proteins in natriuretic peptide hormone secretion from heart atria. Endocrinology 145, 5313–5321 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. McGrath, M. F. & de Bold, A. J. Transcriptional analysis of the mammalian heart with special reference to its endocrine function. BMC Genomics 10, 254 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chang, A. I., McGrath, M. F. & de Bold, A. J. Phospholipase C signaling tonically represses basal atrial natriuretic factor secretion from the atria of the heart. Am. J. Physiol. Heart Circ. Physiol. 304, H1328–H1336 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Roeske, C. et al. Go protein subunit Goα and the secretory process of the natriuretic peptide hormones ANF and BNP. J. Mol. Endocrinol. 54, 277–288 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Ogawa, T. et al. Neuroendocrine profiling of humans receiving cardiac allografts. J. Heart Lung Transplant. 24, 1046–1054 (2005).

    Article  PubMed  Google Scholar 

  57. Ramos, H. & de Bold, A. J. Gene expression, processing and secretion of natriuretic peptides: physiologic and diagnostic implications. Heart Fail. Clin. 2, 255–268 (2006).

    Article  PubMed  Google Scholar 

  58. Ogawa, T. et al. Evidence for load-dependent and load-independent determinants of cardiac natriuretic peptide production. Circulation 93, 2059–2067 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Yokota, N. et al. Dissociation of cardiac hypertrophy, myosin heavy chain isoform expression, and natriuretic peptide production in DOCA-salt rats. Am. J. Hypertens. 8, 301–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Murakami, Y. et al. New insights into the mechanism of the elevation of plasma brain natriuretic polypeptide levels in patients with left ventricular hypertrophy. Can. J. Cardiol. 18, 1294–1300 (2002).

    CAS  PubMed  Google Scholar 

  61. Masters, R. G. et al. Discoordinate modulation of natriuretic peptides during acute cardiac allograft rejection in humans. Circulation 100, 287–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. McGrath, M. F. & de Bold, A. J. Determinants of natriuretic peptide gene expression. Peptides 26, 933–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. de Bold, M. L., Etchepare, A., Martinuk, A. & de Bold, A. J. Cardiac hormones ANF and BNP modulate proliferation in the unidirectional mixed lymphocyte reaction. J. Heart Lung Transplant. 29, 323–326 (2010).

    Article  PubMed  Google Scholar 

  64. Liu, S., Chirkov, Y. Y. & Horowitz, J. D. Neutrophil-initiated myocardial inflammation and its modulation by B-type natriuretic peptide: a potential therapeutic target. Int. J. Mol. Sci. 20, E129 (2018).

    Article  PubMed  CAS  Google Scholar 

  65. Mohapatra, S. S. Role of natriuretic peptide signaling in modulating asthma and inflammation. Can. J. Physiol. Pharmacol. 85, 754–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Suganami, T. et al. Overexpression of brain natriuretic peptide in mice ameliorates immune-mediated renal injury. J. Am. Soc. Nephrol. 12, 2652–2663 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Vollmar, A. M. The role of atrial natriuretic peptide in the immune system. Peptides 26, 1086–1094 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Murad, F., Leitman, D. C., Bennett, B. M., Molina, C. & Waldman, S. A. Regulation of guanylate cyclase by atrial natriuretic factor and the role of cyclic GMP in vasodilation. Am. J. Med. Sci. 294, 139–143 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Chinkers, M. & Garbers, D. L. The protein kinase domain of the ANP receptor is required for signaling. Science 245, 1392–1394 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Kumar, R., Grammatikakis, N. & Chinkers, M. Regulation of the atrial natriuretic peptide receptor by heat shock protein 90 complexes. J. Biol. Chem. 276, 11371–11375 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Potter, L. R. & Garbers, D. L. Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J. Biol. Chem. 267, 14531–14534 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Leitman, D. C. et al. Atrial natriuretic peptide, oxytocin, and vasopressin increase guanosine 3′,5′-monophosphate in LLC-PK1 kidney epithelial cells. Endocrinology 122, 1478–1485 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. McCoy, D. E., Guggino, S. E. & Stanton, B. A. The renal cGMP-gated cation channel: its molecular structure and physiological role. Kidney Int. 48, 1125–1133 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Kuhn, M. Molecular physiology of natriuretic peptide signalling. Basic Res. Cardiol. 99, 76–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Miyagi, M. & Misono, K. S. Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochim. Biophys. Acta 1478, 30–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Miyagi, M., Zhang, X. & Misono, K. S. Glycosylation sites in the atrial natriuretic peptide receptor oligosaccharide structures are not required for hormone binding. Eur. J. Biochem. 267, 5758–5768 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Potter, L. R. & Hunter, T. Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol. Cell. Biol. 18, 2164–2172 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Potter, L. R., Yoder, A. R., Flora, D. R., Antos, L. K. & Dickey, D. M. in cGMP: Generators, Effectors and Therapeutic Implications (eds Schmidt, H. H. H. W., Hofmann, F. & Stasch, J. P.) 341–366 (Springer, 2009).

  79. Del Ry, S., Passino, C., Emdin, M. & Giannessi, D. C-type natriuretic peptide and heart failure. Pharmacol. Res. 54, 326–333 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. Garg, R. & Pandey, K. N. Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression. Peptides 26, 1009–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. John, S. W. et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267, 679–681 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Tamura, N. et al. Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc. Natl Acad. Sci. USA 101, 17300–17305 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rose, R. A. & Giles, W. R. Natriuretic peptide C receptor signalling in the heart and vasculature. J. Physiol. 586, 353–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Moffatt, P. et al. Osteocrin is a specific ligand of the natriuretic peptide clearance receptor that modulates bone growth. J. Biol. Chem. 282, 36454–36462 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Matsukawa, N. et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl Acad. Sci. USA 96, 7403–7408 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ibrahim, N. & Januzzi, J. L. The potential role of natriuretic peptides and other biomarkers in heart failure diagnosis, prognosis and management. Expert Rev. Cardiovasc. Ther. 13, 1017–1030 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Vodovar, N. et al. Evolution of natriuretic peptide biomarkers in heart failure: implications for clinical care and clinical trials. Int. J. Cardiol. 254, 215–221 (2018).

    Article  PubMed  Google Scholar 

  88. Thibault, G. et al. NH2-terminal fragment of rat pro-atrial natriuretic factor in the circulation: identification, radioimmunoassay and half-life. Peptides 9, 47–53 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Holmes, S. J., Espiner, E. A., Richards, A. M., Yandle, T. G. & Frampton, C. Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal man. J. Clin. Endocrinol. Metab. 76, 91–96 (1993).

    CAS  PubMed  Google Scholar 

  90. Cui, K., Huang, W., Fan, J. & Lei, H. Midregional pro-atrial natriuretic peptide is a superior biomarker to N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure patients with preserved ejection fraction. Medicine 97, e12277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gangnus, T. & Burckhardt, B. B. Potential and limitations of atrial natriuretic peptide as biomarker in pediatric heart failure — a comparative review. Front. Pediatr. 6, 420 (2018).

    Article  PubMed  Google Scholar 

  92. Idzikowska, K. & Zielinska, M. Midregional pro-atrial natriuretic peptide, an important member of the natriuretic peptide family: potential role in diagnosis and prognosis of cardiovascular disease. J. Int. Med. Res. 46, 3017–3029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Roberts, E. et al. The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ 350, h910 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Troughton, R. W. et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur. Heart J. 35, 1559–1567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Volpe, M., Battistoni, A. & Rubattu, S. Natriuretic peptides in heart failure: current achievements and future perspectives. Int. J. Cardiol. 281, 186–189 (2019).

    Article  PubMed  Google Scholar 

  96. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128, e240–e327 (2013).

    PubMed  Google Scholar 

  97. Saenger, A. K. et al. Specificity of B-type natriuretic peptide assays: cross-reactivity with different BNP, NT-proBNP, and proBNP peptides. Clin. Chem. 63, 351–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Semenov, A. G. et al. Searching for a BNP standard: glycosylated proBNP as a common calibrator enables improved comparability of commercial BNP immunoassays. Clin. Biochem. 50, 181–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Vasile, V. C. & Jaffe, A. S. Natriuretic peptides and analytical barriers. Clin. Chem. 63, 50–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Mueller, C. et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 21, 715–731 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 70, 776–803 (2017).

    Article  PubMed  Google Scholar 

  102. Clerico, A., Passino, C. & Emdin, M. When gonads talk to the heart sex hormones and cardiac endocrine function. J. Am. Coll. Cardiol. 58, 627–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Taki, M. et al. Sex differences in the prognostic power of brain natriuretic peptide and N-terminal pro-brain natriuretic peptide for cardiovascular events — the Japan morning surge-home blood pressure study. Circ. J. 82, 2096–2102 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Krim, S. R. et al. Racial/ethnic differences in B-type natriuretic peptide levels and their association with care and outcomes among patients hospitalized with heart failure: findings from Get With The Guidelines-Heart Failure. JACC Heart Fail. 1, 345–352 (2013).

    Article  PubMed  Google Scholar 

  105. Redfield, M. M. et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J. Am. Coll. Cardiol. 40, 976–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Ibrahim, I. et al. Superior performance of N-terminal pro brain natriuretic peptide for diagnosis of acute decompensated heart failure in an Asian compared with a Western setting. Eur. J. Heart Fail. 19, 209–217 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Madamanchi, C., Alhosaini, H., Sumida, A. & Runge, M. S. Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. Int. J. Cardiol. 176, 611–617 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Srisawasdi, P., Vanavanan, S., Charoenpanichkit, C. & Kroll, M. H. The effect of renal dysfunction on BNP, NT-proBNP, and their ratio. Am. J. Clin. Pathol. 133, 14–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Davidovski, F. S. & Goetze, J. P. ProANP and proBNP in plasma as biomarkers of heart failure. Biomark. Med. 13, 1129–1135 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Maisel, A. et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll. Cardiol. 55, 2062–2076 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Odermatt, J. et al. The natriuretic peptide MR-proANP predicts all-cause mortality and adverse outcome in community patients: a 10-year follow-up study. Clin. Chem. Lab. Med. 55, 1407–1416 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Lindberg, S. et al. MR-proANP improves prediction of mortality and cardiovascular events in patients with STEMI. Eur. J. Prev. Cardiol. 22, 693–700 (2015).

    Article  PubMed  Google Scholar 

  113. Salo, P. P. et al. Genome-wide association study implicates atrial natriuretic peptide rather than B-type natriuretic peptide in the regulation of blood pressure in the general population. Circ. Cardiovasc. Genet. 10, e001713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Matsuo, A., Nagai-Okatani, C., Nishigori, M., Kangawa, K. & Minamino, N. Natriuretic peptides in human heart: novel insight into their molecular forms, functions, and diagnostic use. Peptides 111, 3–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Costello-Boerrigter, L. C. et al. Secretion of prohormone of B-type natriuretic peptide, proBNP1-108, is increased in heart failure. JACC Heart Fail. 1, 207–212 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Huntley, B. K. et al. Pro-B-type natriuretic peptide-1-108 processing and degradation in human heart failure. Circ. Heart Fail. 8, 89–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Rubattu, S. & Volpe, M. Natriuretic peptides in the cardiovascular system: multifaceted roles in physiology, pathology and therapeutics. Int. J. Mol. Sci. 20, E3991 (2019).

    Article  PubMed  CAS  Google Scholar 

  118. de Oliveira, I. M., Oliveira, B. D., Scanavacca, M. I. & Gutierrez, P. S. Fibrosis, myocardial crossings, disconnections, abrupt turns, and epicardial reflections: do they play an actual role in human permanent atrial fibrillation? A controlled necropsy study. Cardiovasc. Pathol. 22, 65–69 (2013).

    Article  PubMed  Google Scholar 

  119. Goldman, M. E. et al. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (the Stroke Prevention in Atrial Fibrillation [SPAF-III] study). J. Am. Soc. Echocardiogr. 12, 1080–1087 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Breitenstein, A. et al. Increased prothrombotic profile in the left atrial appendage of atrial fibrillation patients. Int. J. Cardiol. 185, 250–255 (2015).

    Article  PubMed  Google Scholar 

  121. Schnabel, R. B. et al. Multiple biomarkers and atrial fibrillation in the general population. PLoS One 9, e112486 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zuo, K. et al. Correlation of left atrial wall thickness and atrial remodeling in atrial fibrillation: study based on low-dose-ibutilide-facilitated catheter ablation. Medicine 98, e15170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hijazi, Z. et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a randomized evaluation of long-term anticoagulation therapy (RE-LY) substudy. Circulation 125, 1605–1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Hijazi, Z. et al. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE trial (apixaban for the prevention of stroke in subjects with atrial fibrillation). J. Am. Coll. Cardiol. 61, 2274–2284 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Hijazi, Z. et al. Repeated measurements of cardiac biomarkers in atrial fibrillation and validation of the ABC stroke score over time. J. Am. Heart Assoc. 6, e004851 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ruff, C. T. et al. Cardiovascular biomarker score and clinical outcomes in patients with atrial fibrillation: a subanalysis of the ENGAGE AF-TIMI 48 randomized clinical trial. JAMA Cardiol. 1, 999–1006 (2016).

    Article  PubMed  Google Scholar 

  127. Dudink, E. A. et al. The biomarkers NT-proBNP and CA-125 are elevated in patients with idiopathic atrial fibrillation. J. Atr. Fibrillation 11, 2058 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Galie, N. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 37, 67–119 (2016).

    Article  PubMed  Google Scholar 

  129. Kovacs, G. et al. Definition, clinical classification and initial diagnosis of pulmonary hypertension: updated recommendations from the Cologne Consensus Conference 2018. Int. J. Cardiol. 272S, 11–19 (2018).

    Article  PubMed  Google Scholar 

  130. Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    Article  PubMed  Google Scholar 

  131. Lewis, G. D. et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 128, 1470–1479 (2013).

    Article  PubMed  Google Scholar 

  132. Helgeson, S. A., Imam, J. S., Moss, J. E., Hodge, D. O. & Burger, C. D. Comparison of brain natriuretic peptide levels to simultaneously obtained right heart hemodynamics in stable outpatients with pulmonary arterial hypertension. Diseases 6, E33 (2018).

    Article  PubMed  CAS  Google Scholar 

  133. Benza, R. L. et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122, 164–172 (2010).

    Article  PubMed  Google Scholar 

  134. Galie, N. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Rev. Esp. Cardiol. 69, 177 (2016).

    Article  PubMed  Google Scholar 

  135. Bender, A. T. & Beavo, J. A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58, 488–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Hobbs, A. J. et al. Neprilysin inhibition for pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled, proof-of-concept trial. Br. J. Pharmacol. 176, 1251–1267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baliga, R. S. et al. Synergy between natriuretic peptides and phosphodiesterase 5 inhibitors ameliorates pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 178, 861–869 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Baliga, R. S. et al. Intrinsic defence capacity and therapeutic potential of natriuretic peptides in pulmonary hypertension associated with lung fibrosis. Br. J. Pharmacol. 171, 3463–3475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wilkins, M. R. et al. Recent advances in pulmonary arterial hypertension. F1000Res. 7, 1128 (2018).

    Article  CAS  Google Scholar 

  140. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    Article  PubMed  Google Scholar 

  141. Hildebrandt, P. et al. Age-dependent values of N-terminal pro-B-type natriuretic peptide are superior to a single cut-point for ruling out suspected systolic dysfunction in primary care. Eur. Heart J. 31, 1881–1889 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Januzzi, J. L. et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP study. Eur. Heart J. 27, 330–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Maisel, A. S. et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 347, 161–167 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Fernandez-Ruiz, I. Mechanisms of sacubitril-valsartan benefit in HFrEF. Nat. Rev. Cardiol. 16, 648 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  CAS  Google Scholar 

  146. Balmforth, C. et al. Outcomes and effect of treatment according to etiology in HFrEF: an analysis of PARADIGM-HF. JACC Heart Fail. 7, 457–465 (2019).

    Article  PubMed  Google Scholar 

  147. Packer, M. et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131, 54–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Ibrahim, N. E. et al. Effect of neprilysin inhibition on various natriuretic peptide assays. J. Am. Coll. Cardiol. 73, 1273–1284 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Lainchbury, J. G. et al. Regional plasma levels of cardiac peptides and their response to acute neutral endopeptidase inhibition in man. Clin. Sci. 95, 547–555 (1998).

    Article  CAS  Google Scholar 

  150. Zile, M. R. et al. Prognostic implications of changes in N-terminal pro-B-type natriuretic peptide in patients with heart failure. J. Am. Coll. Cardiol. 68, 2425–2436 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Testa, M. et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J. Am. Coll. Cardiol. 28, 964–971 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Yucel, T., Memis, D., Karamanlioglu, B., Sut, N. & Yuksel, M. The prognostic value of atrial and brain natriuretic peptides, troponin I and C-reactive protein in patients with sepsis. Exp. Clin. Cardiol. 13, 183–188 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. D’Elia, E. et al. Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur. J. Heart Fail. 19, 710–717 (2017).

    Article  PubMed  CAS  Google Scholar 

  154. Jhund, P. S. & McMurray, J. J. The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart 102, 1342–1347 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Miners, J. S., Barua, N., Kehoe, P. G., Gill, S. & Love, S. Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J. Neuropathol. Exp. Neurol. 70, 944–959 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Cannon, J. A. et al. Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction. Eur. J. Heart Fail. 19, 129–137 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Cannon, J. A., McMurray, J. J. & Quinn, T. J. ‘Hearts and minds’: association, causation and implication of cognitive impairment in heart failure. Alzheimers Res. Ther. 7, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Pandharipande, P. P. et al. Long-term cognitive impairment after critical illness. N. Engl. J. Med. 369, 1306–1316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Solomon, S. D. et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med. 381, 1609–1620 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Januzzi, J. L. Jr et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 322, 1085–1095 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Desai, A. S. et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 322, 1077–1084 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Schelbert, E. B. et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J. Am. Heart Assoc. 4, e002613 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gonzalez, A., Schelbert, E. B., Diez, J. & Butler, J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J. Am. Coll. Cardiol. 71, 1696–1706 (2018).

    Article  PubMed  Google Scholar 

  164. Bishop, J. E. & Laurent, G. J. Collagen turnover and its regulation in the normal and hypertrophying heart. Eur. Heart J. 16 (Suppl. C), 38–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Ellmers, L. J. et al. Ventricular expression of natriuretic peptides in Npr1−/− mice with cardiac hypertrophy and fibrosis. Am. J. Physiol. Heart Circ. Physiol. 283, H707–H714 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Zile, M. R. et al. Effects of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFrEF. J. Am. Coll. Cardiol. 73, 795–806 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Zannad, F., Alla, F., Dousset, B., Perez, A. & Pitt, B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the Randomized Aldactone Evaluation Study (RALES). Circulation 102, 2700–2706 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Iraqi, W. et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation 119, 2471–2479 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Pankow, K. et al. Structural substrate conditions required for neutral endopeptidase-mediated natriuretic peptide degradation. J. Mol. Biol. 393, 496–503 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Shen, L., Jhund, P. S. & McMurray, J. J. V. Declining risk of sudden death in heart failure. N. Engl. J. Med. 377, 1794–1795 (2017).

    Article  PubMed  Google Scholar 

  174. Nguyen, M. N., Kiriazis, H., Gao, X. M. & Du, X. J. Cardiac fibrosis and arrhythmogenesis. Compr. Physiol. 7, 1009–1049 (2017).

    Article  PubMed  Google Scholar 

  175. Liu, C. Y. et al. Association of elevated NT-proBNP with myocardial fibrosis in the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Coll. Cardiol. 70, 3102–3109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ramos, H. R., Birkenfeld, A. L. & de Bold, A. J. Interacting disciplines: cardiac natriuretic peptides and obesity: perspectives from an endocrinologist and a cardiologist. Endocr. Connect. 4, R25–R36 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Pivovarova, O. et al. Insulin up-regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in obese subjects: a missing link between CVD risk and obesity? J. Clin. Endocrinol. Metab. 97, E731–E739 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Nakatsuji, H. et al. Reciprocal regulation of natriuretic peptide receptors by insulin in adipose cells. Biochem. Biophys. Res. Commun. 392, 100–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Sarzani, R., Dessì-Fulgheri, P., Paci, V. M., Espinosa, E. & Rappelli, A. Expression of natriuretic peptide receptors in human adipose and other tissues. J. Endocrinol. Invest. 19, 581–585 (1996).

    Article  CAS  PubMed  Google Scholar 

  180. Standeven, K. F. et al. Neprilysin, obesity and the metabolic syndrome. Int. J. Obes. 35, 1031–1040 (2011).

    Article  CAS  Google Scholar 

  181. Bachmann, K. N. et al. Acute effects of insulin on circulating natriuretic peptide levels in humans. PLoS One 13, e0196869 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Baldassarre, S. et al. NTproBNP in insulin-resistance mediated conditions: overweight/obesity, metabolic syndrome and diabetes. The population-based Casale Monferrato study. Cardiovasc. Diabetol. 16, 119 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Khan, A. M. et al. Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies. J. Clin. Endocrinol. Metab. 96, 3242–3249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kim, F. et al. Brain natriuretic peptide and insulin resistance in older adults. Diabet. Med. 34, 235–238 (2017).

    Article  PubMed  CAS  Google Scholar 

  185. Walford, G. A. et al. Circulating natriuretic peptide concentrations reflect changes in insulin sensitivity over time in the Diabetes Prevention Program. Diabetologia 57, 935–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Halfinger, B. et al. Unraveling the molecular complexity of O-glycosylated endogenous (N-terminal) pro-B-type natriuretic peptide forms in blood plasma of patients with severe heart failure. Clin. Chem. 63, 359–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Lewis, L. K. et al. ProBNP that is not glycosylated at threonine 71 is decreased with obesity in patients with heart failure. Clin. Chem. 65, 1115–1124 (2019).

    Article  PubMed  Google Scholar 

  188. Alcala, M., Calderon-Dominguez, M., Serra, D., Herrero, L. & Viana, M. Mechanisms of impaired brown adipose tissue recruitment in obesity. Front. Physiol. 10, 94 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  PubMed  Google Scholar 

  192. Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Wang, T. J. et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 109, 594–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Seferovic, J. P. et al. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 5, 333–340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Collins, S. A heart–adipose tissue connection in the regulation of energy metabolism. Nat. Rev. Endocrinol. 10, 157–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Glode, A. et al. Divergent effects of a designer natriuretic peptide CD-NP in the regulation of adipose tissue and metabolism. Mol. Metab. 6, 276–287 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Rorth, R. et al. The prognostic value of troponin T and N-terminal pro B-type natriuretic peptide, alone and in combination, in heart failure patients with and without diabetes. Eur. J. Heart Fail. 21, 40–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Abrahamsson, N., Engstrom, B. E., Sundbom, M. & Karlsson, F. A. Gastric bypass surgery elevates NT-ProBNP levels. Obes. Surg. 23, 1421–1426 (2013).

    Article  PubMed  Google Scholar 

  199. Gabrielsen, A. M. et al. The effect of surgical and non-surgical weight loss on N-terminal pro-B-type natriuretic peptide and its relation to obstructive sleep apnea and pulmonary function. BMC Res. Notes 9, 440 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Docherty, N. G., Fandriks, L., le Roux, C. W., Hallersund, P. & Werling, M. Urinary sodium excretion after gastric bypass surgery. Surg. Obes. Relat. Dis. 13, 1506–1514 (2017).

    Article  PubMed  Google Scholar 

  201. Belluardo, P. et al. Lack of activation of molecular forms of the BNP system in human grade 1 hypertension and relationship to cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 291, H1529–H1535 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Macheret, F. et al. Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J. Am. Coll. Cardiol. 60, 1558–1565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Seven, E. et al. Higher serum concentrations of N-terminal pro-B-type natriuretic peptide associate with prevalent hypertension whereas lower associate with incident hypertension. PLoS One 10, e0117864 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41, 348–353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Soares-da-Silva, P. & Fernandes, M. H. Synthesis and metabolism of dopamine in the kidney. Effects of sodium chloride, monoamine oxidase inhibitors and α-human atrial natriuretic peptide. Am. J. Hypertens. 3, 7S–10S (1990).

    Article  CAS  PubMed  Google Scholar 

  206. Pandey, K. N. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol. Genomics 50, 913–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kouyoumdzian, N. M. et al. Atrial natriuretic peptide stimulates dopamine tubular transport by organic cation transporters: a novel mechanism to enhance renal sodium excretion. PLoS One 11, e0157487 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Gupta, D. K., de Lemos, J. A., Ayers, C. R., Berry, J. D. & Wang, T. J. Racial differences in natriuretic peptide levels: the Dallas Heart Study. JACC Heart Fail. 3, 513–519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Seidelmann, S. B. et al. An NPPB promoter polymorphism associated with elevated N-terminal pro-B-type natriuretic peptide and lower blood pressure, hypertension, and mortality. J. Am. Heart Assoc. 6, e005257 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Mogelvang, R. et al. Discriminating between cardiac and pulmonary dysfunction in the general population with dyspnea by plasma pro-B-type natriuretic peptide. J. Am. Coll. Cardiol. 50, 1694–1701 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Modin, D. et al. Prognostic value of left atrial functional measures in heart failure with reduced ejection fraction. J. Card. Fail. 25, 87–96 (2019).

    Article  PubMed  Google Scholar 

  212. Saito, Y. Roles of atrial natriuretic peptide and its therapeutic use. J. Cardiol. 56, 262–270 (2010).

    Article  PubMed  Google Scholar 

  213. O’Connor, C. M. et al. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365, 32–43 (2011).

    Article  PubMed  Google Scholar 

  214. Buglioni, A. & Burnett, J. C. Jr. New pharmacological strategies to increase cGMP. Annu. Rev. Med. 67, 229–243 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Cataliotti, A., Costello-Boerrigter, L. C., Chen, H. H., Textor, S. C. & Burnett, J. C. Jr. Sustained blood pressure-lowering actions of subcutaneous B-type natriuretic peptide (nesiritide) in a patient with uncontrolled hypertension. Mayo Clin. Proc. 87, 413–415 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Cataliotti, A. et al. Oral human brain natriuretic peptide activates cyclic guanosine 3′,5′-monophosphate and decreases mean arterial pressure. Circulation 112, 836–840 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Strohl, W. R. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29, 215–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. de Bold, M. K. et al. Characterization of a long-acting recombinant human serum albumin-atrial natriuretic factor (ANF) expressed in Pichia pastoris. Regul. Pept. 175, 7–10 (2012).

    Article  PubMed  CAS  Google Scholar 

  219. Ding, Y. et al. The effects of fusion structure on the expression and bioactivity of human brain natriuretic peptide (BNP) albumin fusion proteins. Curr. Pharm. Biotechnol. 15, 856–863 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Sezai, A. et al. Continuous low-dose infusion of human atrial natriuretic peptide in patients with left ventricular dysfunction undergoing coronary artery bypass grafting: the NU-HIT (Nihon University working group study of low-dose Human ANP Infusion Therapy during cardiac surgery) for left ventricular dysfunction. J. Am. Coll. Cardiol. 55, 1844–1851 (2010).

    Article  CAS  PubMed  Google Scholar 

  221. McKie, P. M. et al. A human atrial natriuretic peptide gene mutation reveals a novel peptide with enhanced blood pressure-lowering, renal-enhancing, and aldosterone-suppressing actions. J. Am. Coll. Cardiol. 54, 1024–1032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mezo, A. R. et al. Atrial natriuretic peptide-Fc, ANP-Fc, fusion proteins: semisynthesis, in vitro activity and pharmacokinetics in rats. Bioconjug. Chem. 23, 518–526 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Zhang, S. M. et al. A new chimeric natriuretic peptide, CNAAC, for the treatment of left ventricular dysfunction after myocardial infarction. Sci. Rep. 7, 10099 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. McGregor, A., Richards, M., Espiner, E. A., Yandle, T. G. & Ikram, H. Brain natriuretic peptide administered to man: actions and metabolism. J. Clin. Endocrinol. Metab. 70, 1103–1107 (1990).

    Article  CAS  PubMed  Google Scholar 

  225. Chen, H. H. et al. Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. J. Am. Coll. Cardiol. 60, 2305–2312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wang, W., Ou, Y. & Shi, Y. AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure. Pharm. Res. 21, 2105–2111 (2004).

    Article  CAS  PubMed  Google Scholar 

  227. Dickey, D. M. & Potter, L. R. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J. Mol. Cell. Cardiol. 51, 67–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Martin, F. L. et al. CD-NP: a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. PLoS One 7, e52422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Martin, F. L. et al. Experimental mild renal insufficiency mediates early cardiac apoptosis, fibrosis, and diastolic dysfunction: a kidney-heart connection. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R292–R299 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Kawakami, R. et al. A human study to evaluate safety, tolerability, and cyclic GMP activating properties of cenderitide in subjects with stable chronic heart failure. Clin. Pharmacol. Ther. 104, 546–552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Bruneau, B. G. Atrial natriuretic factor in the developing heart: a signpost for cardiac morphogenesis. Can. J. Physiol. Pharmacol. 89, 533–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  232. Ichiki, T., Dzhoyashvili, N. & Burnett, J. C. Jr. Natriuretic peptide based therapeutics for heart failure: cenderitide: a novel first-in-class designer natriuretic peptide. Int. J. Cardiol. 281, 166–171 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.P.G., B.G.B., H.R.R., T.O. and M.K.d.B. researched data for the article. All the authors discussed the content of the manuscript. J.P.G., B.G.B., H.R.R., M.K.d.B. and A.J.d.B. wrote the manuscript. All the authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Adolfo J. de Bold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks A. Clerico and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetze, J.P., Bruneau, B.G., Ramos, H.R. et al. Cardiac natriuretic peptides. Nat Rev Cardiol 17, 698–717 (2020). https://doi.org/10.1038/s41569-020-0381-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0381-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing