Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Device-based therapies for arterial hypertension

Abstract

Arterial hypertension is the most prevalent modifiable risk factor associated with cardiovascular morbidity and mortality. Although antihypertensive drugs are widely available, in many patients blood pressure control to guideline-recommended target values is not achieved. Several device-based approaches have been introduced to lower blood pressure; most of these strategies aim to modulate autonomic nervous system activity. Clinical trials have moved from including patients with resistant hypertension receiving intensive pharmacological treatment to including patients with mild-to-moderate hypertension in the presence or absence of antihypertensive medications. Renal sympathetic denervation is the most extensively investigated device-based therapy for hypertension, and randomized, sham-controlled trials have provided proof-of-principle data for its blood pressure-lowering efficacy. Unilateral electrical baroreflex activation, endovascular baroreflex amplification and pacemaker-mediated cardiac neuromodulation therapy have yielded promising results in observational trials, which need to be confirmed in larger, adequately powered, sham-controlled trials. Until further evidence becomes available, device-based therapy for hypertension should not be considered for routine treatment. However, when considering a device-based treatment for hypertension, the underlying pathophysiology in each patient has to be taken into consideration, and the procedural risks weighed against the cardiovascular risk attributable to the elevated blood pressure. This Review summarizes the pathophysiological rationale and the latest clinical evidence for device-based therapies for hypertension.

Key points

  • The second generation of placebo-controlled trials of renal sympathetic denervation has provided proof of principle for the blood pressure-lowering efficacy of radiofrequency-based and ultrasound-based renal denervation in patients with or without concomitant pharmacological therapy.

  • Electrical baroreflex activation, endovascular baroreflex amplification and pacemaker-mediated cardiac neuromodulation therapy have yielded promising results in observational studies, which have to be confirmed in adequately powered, placebo-controlled trials.

  • The use of device-based therapies for hypertension should at present be restricted to clinical study activities in specialized centres.

  • When considering a device-based treatment for hypertension, the underlying pathophysiology has to be taken into consideration, and the procedural risks weighed against the cardiovascular risk attributable to the elevated blood pressure for each patient.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device-based therapies for arterial hypertension.
Fig. 2: Milestones in device-based treatment of arterial hypertension.
Fig. 3: Change in systolic blood pressure with renal sympathetic denervation.
Fig. 4: Change in systolic blood pressure with device-based therapies for hypertension.

References

  1. 1.

    Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317, 165–182 (2017).

    PubMed  Google Scholar 

  2. 2.

    Forouzanfar, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

    Google Scholar 

  3. 3.

    Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    PubMed  Google Scholar 

  4. 4.

    Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    PubMed  Google Scholar 

  5. 5.

    Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, e13–e115 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Beaney, T. et al. May measurement month 2017: an analysis of blood pressure screening results worldwide. Lancet Glob. Health 6, e736–e743 (2018).

    PubMed  Google Scholar 

  7. 7.

    Azizi, M., Rossignol, P. & Hulot, J.-S. Emerging drug classes and their potential use in hypertension. Hypertension 74, 1075–1083 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    McMurray, J. J. V. et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    PubMed  Google Scholar 

  9. 9.

    Solomon, S. D. et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med. 381, 1609–1620 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Velazquez, E. J. et al. Angiotensin–neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med. 380, 539–548 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    DiBona, G. F. Sympathetic nervous system and hypertension. Hypertension 61, 556–560 (2013).

    CAS  PubMed  Google Scholar 

  12. 12.

    Parati, G. & Esler, M. D. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur. Heart J. 33, 1058–1066 (2012).

    CAS  PubMed  Google Scholar 

  13. 13.

    DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997).

    CAS  PubMed  Google Scholar 

  14. 14.

    DiBona, G. F. Neural control of the kidney: past, present, and future. Hypertension 41, 621–624 (2003).

    CAS  PubMed  Google Scholar 

  15. 15.

    Dibona, G. F. in Reviews of Physiology, Biochemistry and Pharmacology Vol. 94 75–181 (Springer, 1982).

  16. 16.

    DiBona, G. F. & Esler, M. Translational medicine: the antihypertensive effect of renal denervation. AJP Regul. Integr. Comp. Physiol. 298, R245–R253 (2010).

    CAS  Google Scholar 

  17. 17.

    Smithwick, R. H. Surgical treatment of hypertension: the effect of radical (lumbodorsal) splanchnicectomy on the hypertensive state of one hundred and fifty-six patients followed one to five years. Arch. Surg. 49, 180–193 (1944).

    Google Scholar 

  18. 18.

    Smithwick, R. H. & Thompson, J. E. Splanchnicectomy for essential hypertension: results in 1,266 cases. JAMA 152, 1501–1504 (1953).

    CAS  Google Scholar 

  19. 19.

    Dustan, H. P., Page, I. H. & Poutasse, E. F. Renal hypertension. N. Engl. J. Med. 261, 647–653 (1959).

    CAS  PubMed  Google Scholar 

  20. 20.

    Peet, M. M. Hypertension and its surgical treatment by bilateral supradiaphragmatic splanchnicectomy. Am. J. Surg. 75, 48–68 (1948).

    CAS  PubMed  Google Scholar 

  21. 21.

    Page, I. H. & Heuer, G. J. A surgical treatment of essential hypertension. J. Clin. Invest. 14, 22–26 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    [No authors listed] Effects of treatment on morbidity in hypertension: results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 202, 1028–1034 (1967).

    Google Scholar 

  23. 23.

    Schlaich, M. P., Sobotka, P. A., Krum, H., Lambert, E. & Esler, M. D. Renal sympathetic-nerve ablation for uncontrolled hypertension. N. Engl. J. Med. 361, 932–934 (2009).

    CAS  PubMed  Google Scholar 

  24. 24.

    Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009).

    PubMed  Google Scholar 

  25. 25.

    Mabin, T., Sapoval, M., Cabane, V., Stemmett, J. & Iyer, M. First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension. EuroIntervention 8, 57–61 (2012).

    PubMed  Google Scholar 

  26. 26.

    Fischell, T. A. et al. Transcatheter alcohol-mediated perivascular renal denervation with the Peregrine system: first-in-human experience. JACC Cardiovasc. Interv. 9, 589–598 (2016).

    PubMed  Google Scholar 

  27. 27.

    Mahfoud, F. et al. Alcohol-mediated renal denervation using the Peregrine System Infusion Catheter for treatment of hypertension. JACC Cardiovasc. Interv. 13, 471–484 (2020).

    PubMed  Google Scholar 

  28. 28.

    Esler, M. D. et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet 376, 1903–1909 (2010).

    PubMed  Google Scholar 

  29. 29.

    Poulter, N. R., Prabhakaran, D. & Caulfield, M. Hypertension. Lancet 386, 801–812 (2015).

    PubMed  Google Scholar 

  30. 30.

    Messerli, F. H., Williams, B. & Ritz, E. Essential hypertension. Lancet 370, 591–603 (2007).

    CAS  PubMed  Google Scholar 

  31. 31.

    Mahfoud, F. et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation 128, 132–140 (2013).

    CAS  PubMed  Google Scholar 

  32. 32.

    Vogel, B. et al. Renal sympathetic denervation therapy in the real world: results from the Heidelberg registry. Clin. Res. Cardiol. 103, 117–124 (2014).

    PubMed  Google Scholar 

  33. 33.

    Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Kandzari, D. E. et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur. Heart J. 36, 219–227 (2015).

    PubMed  Google Scholar 

  35. 35.

    Mahfoud, F. et al. Proceedings from the 2nd European Clinical Consensus Conference for device-based therapies for hypertension: state of the art and considerations for the future. Eur. Heart J. 38, 3272–3281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Azizi, M. et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385, 1957–1965 (2015).

    PubMed  Google Scholar 

  37. 37.

    Azizi, M. et al. Adherence to antihypertensive treatment and the blood pressure–lowering effects of renal denervation in the renal denervation for hypertension (DENERHTN) trial. Circulation 134, 847–857 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Fadl Elmula, F. E. M. et al. Sham or no sham control: that is the question in trials of renal denervation for resistant hypertension. A systematic meta-analysis. Blood Press. 26, 195–203 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Pappaccogli, M. et al. Effectiveness of renal denervation in resistant hypertension: a meta-analysis of 11 controlled studies. High Blood Press. Cardiovasc. Prev. 25, 167–176 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Sardar, P. et al. Sham-controlled randomized trials of catheter-based renal denervation in patients with hypertension. J. Am. Coll. Cardiol. 73, 1633–1642 (2019).

    PubMed  Google Scholar 

  41. 41.

    Mahfoud, F. et al. Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur. Heart J. 36, 2219–2227 (2015).

    PubMed  Google Scholar 

  42. 42.

    Lobo, M. D. et al. Joint UK societies’ 2019 consensus statement on renal denervation. Heart 105, 1456–1463 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kiuchi, M. G. et al. Renal denervation update from the International Sympathetic Nervous System Summit. J. Am. Coll. Cardiol. 73, 3006–3017 (2019).

    PubMed  Google Scholar 

  44. 44.

    Townsend, R. R. et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390, 2160–2170 (2017).

    PubMed  Google Scholar 

  45. 45.

    Kandzari, D. E. et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391, 2346–2355 (2018).

    PubMed  Google Scholar 

  46. 46.

    Azizi, M. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 6736, 1–11 (2018).

    Google Scholar 

  47. 47.

    Kandzari, D. E. et al. The SPYRAL HTN Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am. Heart J. 171, 82–91 (2015).

    PubMed  Google Scholar 

  48. 48.

    Sakakura, K. et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J. Am. Coll. Cardiol. 64, 635–643 (2014).

    PubMed  Google Scholar 

  49. 49.

    Mahfoud, F. et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J. Am. Coll. Cardiol. 66, 1766–1775 (2015).

    PubMed  Google Scholar 

  50. 50.

    Tzafriri, A. R. et al. Innervation patterns may limit response to endovascular renal denervation. J. Am. Coll. Cardiol. 64, 1079–1087 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Böhm, M. et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur. Heart J. 40, 743–751 (2019).

    PubMed  Google Scholar 

  52. 52.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02439749 (2019).

  53. 53.

    Mauri, L. et al. A multinational clinical approach to assessing the effectiveness of catheter-based ultrasound renal denervation: the RADIANCE-HTN and REQUIRE clinical study designs. Am. Heart J. 195, 115–129 (2018).

    PubMed  Google Scholar 

  54. 54.

    Azizi, M. et al. Six-month results of treatment-blinded medication titration for hypertension control following randomization to endovascular ultrasound renal denervation or a sham procedure in the RADIANCE-HTN SOLO trial. Circulation 139, 2542–2553 (2019).

  55. 55.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02918305 (2020)

  56. 56.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03614260 (2020).

  57. 57.

    Schmieder, R. E. et al. European Society of Hypertension position paper on renal denervation 2018. J. Hypertens. 36, 2042–2048 (2018).

    CAS  PubMed  Google Scholar 

  58. 58.

    Fischell, T. A., Fischell, D. R., Ghazarossian, V. E., Vega, F. & Ebner, A. Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter. Cardiovasc. Revasc. Med. 16, 221–227 (2015).

    PubMed  Google Scholar 

  59. 59.

    Fischell, T. A. et al. Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention 9, 140–147 (2013).

    PubMed  Google Scholar 

  60. 60.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02910414 (2020).

  61. 61.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03503773 (2019).

  62. 62.

    Cai, X. et al. Noninvasive stereotactic radiotherapy for renal denervation in a swine model. J. Am. Coll. Cardiol. 74, 1697–1709 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Mahfoud, F., Edelman, E. & Bhatt, N. Stereotactic radiotherapy for renal denervation. J. Am. Coll. Cardiol. 74, 1710–1713 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01534299 (2019).

  65. 65.

    Mahfoud, F. et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. Eur. Heart J. 40, 1211–1213 (2019).

    Google Scholar 

  66. 66.

    Salam, A. et al. Effects of blood pressure lowering on cardiovascular events, in the context of regression to the mean. J. Hypertens. 37, 16–23 (2019).

    CAS  PubMed  Google Scholar 

  67. 67.

    Kordalis, A., Tsiachris, D., Pietri, P., Tsioufis, C. & Stefanadis, C. Regression of organ damage following renal denervation in resistant hypertension. J. Hypertens. 36, 1614–1621 (2018).

    CAS  PubMed  Google Scholar 

  68. 68.

    Messerli, F. H., Bangalore, S. & Schmieder, R. E. Wilder’s principle: pre-treatment value determines post-treatment response. Eur. Heart J. 36, 576–579 (2015).

    PubMed  Google Scholar 

  69. 69.

    Moore, M. N. et al. Regression to the mean of repeated ambulatory blood pressure monitoring in five studies. J. Hypertens. 37, 24–29 (2019).

    CAS  PubMed  Google Scholar 

  70. 70.

    Mahfoud, F. et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur. Heart J. 38, 93–100 (2017).

    CAS  PubMed  Google Scholar 

  71. 71.

    Gosse, P. et al. Twenty-four-hour blood pressure monitoring to predict and assess impact of renal denervation: the DENERHTN study (renal denervation for hypertension). Hypertension 69, 494–500 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Okon, T. et al. Invasive aortic pulse wave velocity as a marker for arterial stiffness predicts outcome of renal sympathetic denervation. EuroIntervention 12, e684–e692 (2016).

    PubMed  Google Scholar 

  73. 73.

    Courand, P. et al. Abdominal aortic calcifications influences the systemic and renal hemodynamic response to renal denervation in the DENERHTN (renal denervation for hypertension) trial. J. Am. Heart Assoc. 6, 1–15 (2017).

    Google Scholar 

  74. 74.

    Gal, P. et al. Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: a feasibility study. J. Hum. Hypertens. 29, 292–295 (2015).

    CAS  PubMed  Google Scholar 

  75. 75.

    de Jong, M. R. et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension 68, 707–714 (2016).

    PubMed  Google Scholar 

  76. 76.

    Tsioufis, C. et al. ConfidenHTTM system for diagnostic mapping of renal nerves. Curr. Hypertens. Rep. 20, 49 (2018).

    PubMed  Google Scholar 

  77. 77.

    Fengler, K. et al. A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN). Circulation 139, 590–600 (2019).

    PubMed  Google Scholar 

  78. 78.

    Kline, R. L. & Mercer, P. F. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am. J. Physiol. Integr. Comp. Physiol. 238, R353–R358 (1980).

    CAS  Google Scholar 

  79. 79.

    Booth, L. C. et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension 65, 393–400 (2015).

    CAS  PubMed  Google Scholar 

  80. 80.

    Mulder, J. et al. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am. J. Physiol. Integr. Comp. Physiol. 304, R675–R682 (2013).

    CAS  Google Scholar 

  81. 81.

    Krum, H. et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383, 622–629 (2014).

    PubMed  Google Scholar 

  82. 82.

    Singh, R. R. et al. Sustained decrease in blood pressure and reduced anatomical and functional reinnervation of renal nerves in hypertensive sheep 30 months after catheter-based renal denervation. Hypertension 73, 718–727 (2019).

    CAS  PubMed  Google Scholar 

  83. 83.

    van Kleef, M. E. A. M., Bates, M. C. & Spiering, W. Endovascular baroreflex amplification for resistant hypertension. Curr. Hypertens. Rep. 20, 46 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Heusser, K. et al. Acute response to unilateral unipolar electrical carotid sinus stimulation in patients with resistant arterial hypertension. Hypertension 67, 585–591 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Rothfeld, E. L. et al. The effect of carotid sinus nerve stimulation on cardiovascular dynamics in man. Angiology 20, 213–218 (1969).

    CAS  PubMed  Google Scholar 

  86. 86.

    Lohmeier, T. E. et al. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am. J. Physiol. Heart Circ. Physiol. 299, H402–H409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar, D. J. & Kieval, R. S. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 43, 306–311 (2004).

    CAS  PubMed  Google Scholar 

  88. 88.

    Scheffers, I. J. M. et al. Novel baroreflex activation therapy in resistant hypertension. J. Am. Coll. Cardiol. 56, 1254–1258 (2010).

    PubMed  Google Scholar 

  89. 89.

    Tordoir, J. H. M. et al. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur. J. Vasc. Endovasc. Surg. 33, 414–421 (2007).

    CAS  PubMed  Google Scholar 

  90. 90.

    Heusser, K. et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55, 619–626 (2010).

    CAS  PubMed  Google Scholar 

  91. 91.

    Wustmann, K. et al. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension 54, 530–536 (2009).

    CAS  PubMed  Google Scholar 

  92. 92.

    Bisognano, J. D. et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension. J. Am. Coll. Cardiol. 58, 765–773 (2011).

    PubMed  Google Scholar 

  93. 93.

    de Leeuw, P. W. et al. Sustained reduction of blood pressure with baroreceptor activation therapy. Hypertension 69, 836–843 (2017).

    PubMed  Google Scholar 

  94. 94.

    de Leeuw, P. W. et al. Bilateral or unilateral stimulation for baroreflex activation therapy. Hypertension 65, 187–192 (2015).

    PubMed  Google Scholar 

  95. 95.

    Gassler, J. P. & Bisognano, J. D. Baroreflex activation therapy in hypertension. J. Hum. Hypertens. 28, 469–474 (2014).

    CAS  PubMed  Google Scholar 

  96. 96.

    Hoppe, U. C. et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J. Am. Soc. Hypertens. 6, 270–276 (2012).

    PubMed  Google Scholar 

  97. 97.

    Lohmeier, T. E. & Hall, J. E. Device-based neuromodulation for resistant hypertension therapy. Circ. Res. 124, 1071–1093 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Wachter, R. et al. An exploratory propensity score matched comparison of second-generation and first-generation baroreflex activation therapy systems. J. Am. Soc. Hypertens. 11, 81–91 (2017).

    PubMed  Google Scholar 

  99. 99.

    Wallbach, M. et al. Long-term effects of baroreflex activation therapy: 2-year follow-up data of the BAT Neo system. Clin. Res. Cardiol. 109, 513–522 (2019).

    PubMed  Google Scholar 

  100. 100.

    Wallbach, M. et al. Safety profile of baroreflex activation therapy (NEO) in patients with resistant hypertension. J. Hypertens. 36, 1762–1769 (2018).

    CAS  PubMed  Google Scholar 

  101. 101.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01679132 (2019).

  102. 102.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02364310 (2019).

  103. 103.

    Gordin, D. et al. The effects of baroreflex activation therapy on blood pressure and sympathetic function in patients with refractory hypertension: the rationale and design of the Nordic BAT study. Blood Press. 26, 294–302 (2017).

    CAS  PubMed  Google Scholar 

  104. 104.

    Cowley, A. W., Liard, J. F. & Guyton, A. C. Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ. Res. 32, 564–576 (1973).

    PubMed  Google Scholar 

  105. 105.

    Mendelowitz, D. & Scher, A. M. Pulsatile sinus pressure changes evoke sustained baroreflex responses in awake dogs. Am. J. Physiol. Circ. Physiol 255, H673–H678 (1988).

    CAS  Google Scholar 

  106. 106.

    Dorward, P. K., Andresen, M. C., Burke, S. L., Oliver, J. R. & Korner, P. I. Rapid resetting of the aortic baroreceptors in the rabbit and its implications for short-term and longer term reflex control. Circ. Res. 50, 428–439 (1982).

    CAS  PubMed  Google Scholar 

  107. 107.

    Peter, D. A. et al. Fluid structure interaction with contact surface methodology for evaluation of endovascular carotid implants for drug-resistant hypertension treatment. J. Biomech. Eng. 134, 041001 (2012).

    PubMed  Google Scholar 

  108. 108.

    Spiering, W. et al. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet 390, 2655–2661 (2017).

    PubMed  Google Scholar 

  109. 109.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01831895 (2019).

  110. 110.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02827032 (2020).

  111. 111.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03179800 (2020).

  112. 112.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02804087 (2020).

  113. 113.

    Al-Ameri, H. et al. Complication rate of diagnostic carotid angiography performed by interventional cardiologists. Catheter. Cardiovasc. Interv. 73, 661–665 (2009).

    PubMed  Google Scholar 

  114. 114.

    Trzebski, A., Tafil, M., Zoltowski, M. & Przybylski, J. Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension. Cardiovasc. Res. 16, 163–172 (1982).

    CAS  PubMed  Google Scholar 

  115. 115.

    Sin΄ski, M. et al. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens. Res. 35, 487–491 (2012).

    PubMed  Google Scholar 

  116. 116.

    Fletcher, E. C. et al. Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J. Appl. Physiol. 72, 1978–1984 (1992).

    CAS  PubMed  Google Scholar 

  117. 117.

    Heusser, K. et al. Cardiovascular regulation during apnea in elite divers. Hypertension 53, 719–724 (2009).

    CAS  PubMed  Google Scholar 

  118. 118.

    Abdala, A. P. et al. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J. Physiol. 590, 4269–4277 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Del Rio, R., Marcus, N. J. & Schultz, H. D. Carotid chemoreceptor ablation improves survival in heart failure. J. Am. Coll. Cardiol. 62, 2422–2430 (2013).

    PubMed  Google Scholar 

  120. 120.

    Narkiewicz, K. et al. Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl Sci. 1, 313–324 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Schlaich, M. et al. Transvenous carotid body ablation for resistant hypertension: main results of a multicentre safety and proof-of-principle cohort study [abstract 1416]. Eur. Heart J. 39, 267 (2018).

    Google Scholar 

  122. 122.

    Neuzil, P. et al. Pacemaker-mediated programmable hypertension control therapy. J. Am. Heart Assoc. 6, 1–14 (2017).

    CAS  Google Scholar 

  123. 123.

    Liebold, A., Rödig, G., Merk, J. & Birnbaum, D. E. Short atrioventricular delay dual-chamber pacing early after coronary artery bypass grafting in patients with poor left ventricular function. J. Cardiothorac. Vasc. Anesth. 12, 284–287 (1998).

    CAS  PubMed  Google Scholar 

  124. 124.

    Kuck, K.-H. et al. Safety and efficacy of BackBeat cardiac neuromodulation therapy (CNTTM) in patients with hypertension: final results of a double-blind randomized trial. Presented at the TCT Congress (2019).

  125. 125.

    Reynolds, D. et al. A leadless intracardiac transcatheter pacing system. N. Engl. J. Med. 374, 533–541 (2016).

    CAS  PubMed  Google Scholar 

  126. 126.

    Zhang, X.-H. et al. New-onset heart failure after permanent right ventricular apical pacing in patients with acquired high-grade atrioventricular block and normal left ventricular function. J. Cardiovasc. Electrophysiol. 19, 136–141 (2008).

    PubMed  Google Scholar 

  127. 127.

    The DAVID Trial Investigators. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 288, 3115–3123 (2002).

    Google Scholar 

  128. 128.

    Kapil, V., Sobotka, P. A., Lobo, M. D. & Schmieder, R. E. Central arteriovenous anastomosis to treat resistant hypertension. Curr. Opin. Nephrol. Hypertens. 27, 8–15 (2018).

    PubMed  Google Scholar 

  129. 129.

    Scholz, S. S. et al. Effects of arteriovenous fistula on blood pressure in patients with end-stage renal disease: a systematic meta-analysis. J. Am. Heart Assoc. 8, 1–12 (2019).

    Google Scholar 

  130. 130.

    Iwashima, Y. et al. Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am. J. Kidney Dis. 40, 974–982 (2002).

    CAS  PubMed  Google Scholar 

  131. 131.

    Jordan, J. Device-based approaches for the treatment of arterial hypertension. Curr. Hypertens. Rep. 19, 59 (2017).

    PubMed  Google Scholar 

  132. 132.

    Foran, J. P. et al. The ROX coupler: creation of a fixed iliac arteriovenous anastomosis for the treatment of uncontrolled systemic arterial hypertension, exploiting the physical properties of the arterial vasculature. Catheter. Cardiovasc. Interv. 85, 880–886 (2015).

    PubMed  Google Scholar 

  133. 133.

    Faul, J. et al. Creation of an iliac arteriovenous shunt lowers blood pressure in chronic obstructive pulmonary disease patients with hypertension. J. Vasc. Surg. 59, 1078–1083 (2014).

    PubMed  Google Scholar 

  134. 134.

    Brouwers, S. et al. A prospective non-randomized open label multi-center study to evaluate the effect of an iliofemoral arteriovenous fistula on blood pressure in patients with therapy-resistant hypertension [abstract]. Eur. Heart J. 34 (Suppl. 1), 3616–655 (2013).

    Google Scholar 

  135. 135.

    Lobo, M. D. et al. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet 385, 1634–1641 (2015).

    PubMed  Google Scholar 

  136. 136.

    Lobo, M. D. et al. Central iliac arteriovenous anastomosis for uncontrolled hypertension. Hypertension 70, 1099–1105 (2017).

    CAS  PubMed  Google Scholar 

  137. 137.

    Ott, C. et al. Effect of arteriovenous anastomosis on blood pressure reduction in patients with isolated systolic hypertension compared with combined hypertension. J. Am. Heart Assoc. 5, e004234 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Ewen, S., Lauder, L., Böhm, M. & Mahfoud, F. Real-time left ventricular pressure–volume loops during percutaneous central arteriovenous anastomosis. Eur. Heart J. 39, 2330–2331 (2018).

    PubMed  Google Scholar 

  139. 139.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02895386 (2019).

  140. 140.

    Roy-Chaudhury, P., Sukhatme, V. P. & Cheung, A. K. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J. Am. Soc. Nephrol. 17, 1112–1127 (2006).

    PubMed  Google Scholar 

  141. 141.

    Lauder, L., Ewen, S., Böhm, M., Scheller, B. & Mahfoud, F. Secondary rise in blood pressure and leg swelling after central arteriovenous anastomosis. Clin. Res. Cardiol. 108, 574–576 (2019).

    CAS  PubMed  Google Scholar 

  142. 142.

    Desch, S. et al. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension 65, 1202–1208 (2015).

    CAS  PubMed  Google Scholar 

  143. 143.

    Mathiassen, O. N. et al. Renal denervation in treatment-resistant essential hypertension. A randomized, sham-controlled, double-blinded 24-h blood pressure-based trial. J. Hypertens. 34, 1639–1647 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Fadl Elmula, F. E. M. et al. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension 63, 991–999 (2014).

    CAS  PubMed  Google Scholar 

  145. 145.

    Rosa, J. et al. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension 65, 407–413 (2015).

    CAS  PubMed  Google Scholar 

  146. 146.

    Kario, K. et al. SYMPLICITY HTN-Japan: first randomized controlled trial of catheter-based renal denervation in Asian patients. Circ. J. 79, 1222–1229 (2015).

    CAS  PubMed  Google Scholar 

  147. 147.

    Oliveras, A. et al. Spironolactone versus sympathetic renal denervation to treat true resistant hypertension: results from the DENERVHTA study – A randomized controlled trial. J. Hypertens. 34, 1863–1871 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    de Jager, R. L. et al. Impact of medication adherence on the effect of renal denervation: the SYMPATHY trial. Hypertension 69, 678–684 (2017).

    PubMed  Google Scholar 

  149. 149.

    Jacobs, L. et al. Results of a randomized controlled pilot trial of intravascular renal denervation for management of treatment-resistant hypertension. Blood Press. 26, 321–331 (2017).

    PubMed  Google Scholar 

  150. 150.

    Warchol-Celinska, E. et al. Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase II trial. Hypertension 72, 381–390 (2018).

    CAS  PubMed  Google Scholar 

  151. 151.

    Kyvelou, S. M. et al. Renal denervation: the Irish experience. Hellenic J. Cardiol. 54, 486–487 (2013).

    PubMed  Google Scholar 

  152. 152.

    Worthley, S. G. et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur. Heart J. 34, 2132–2140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Kaiser, L. et al. Results of the ALSTER BP real-world registry on renal denervation employing the Symplicity system. EuroIntervention 10, 157–165 (2014).

    PubMed  Google Scholar 

  154. 154.

    Dores, H. et al. Renal denervation in patients with resistant hypertension: six-month results. Rev. Port. Cardiol. 33, 197–204 (2014).

    PubMed  Google Scholar 

  155. 155.

    Verheye, S. et al. Twelve-month results of the rapid renal sympathetic denervation for resistant hypertension using the OneShotTM ablation system (RAPID) study. EuroIntervention 10, 1221–1229 (2015).

    PubMed  Google Scholar 

  156. 156.

    Sievert, H. et al. Renal denervation with a percutaneous bipolar radiofrequency balloon catheter in patients with resistant hypertension: 6-month results from the REDUCE-HTN clinical study. EuroIntervention 10, 1213–1220 (2015).

    PubMed  Google Scholar 

  157. 157.

    Whitbourn, R., Harding, S. A. & Walton, A. Symplicity multi-electrode radiofrequency renal denervation system feasibility study. EuroIntervention 11, 104–109 (2015).

    PubMed  Google Scholar 

  158. 158.

    Sharp, A. S. P. et al. Renal artery sympathetic denervation: observations from the UK experience. Clin. Res. Cardiol. 105, 544–552 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Zweiker, D. et al. Effects of renal denervation cocumented in the Austrian national multicentre renal denervation tegistry. PLoS One 11, e0161250 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Worthley, S. G. et al. Safety and performance of the second generation EnligHTNTM Renal Denervation System in patients with drug-resistant, uncontrolled hypertension. Atherosclerosis 262, 94–100 (2017).

    CAS  PubMed  Google Scholar 

  161. 161.

    Aripov, M. et al. Individualised renal artery denervation improves blood pressure control in Kazakhstani patients with resistant hypertension. Kardiol. Pol. 75, 101–107 (2017).

    PubMed  Google Scholar 

  162. 162.

    Völz, S. et al. Renal sympathetic denervation in Sweden. J. Hypertens. 36, 151–158 (2018).

    PubMed  Google Scholar 

  163. 163.

    Daemen, J. et al. Safety and efficacy of endovascular ultrasound renal denervation in resistant hypertension. J. Hypertens. 37, 1906–1912 (2019).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All the authors contributed to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Felix Mahfoud.

Ethics declarations

Competing interests

M.A. reports grants from the French Federation of Cardiology, the French Ministry of Health, Idorsia, Novartis and Quantum Genomics; grants and non-financial support from ReCor Medical; and speaker honoraria from CVRx and Novartis. A.J.K. reports institutional funding to Columbia University and/or Cardiovascular Research Foundation from Abbott Vascular, Abiomed, Boston Scientific, CSI, Medtronic, Philips and ReCor Medical. M.B. receives support from Abbott, Astra-Zeneca, Bayer, Boehringer-Ingelheim, Bristol-Myers Squibb, Deutsche Forschungsgemeinschaft (DFG, TTR 219, S-01, M-03, M-05), Medtronic, Novartis, ReCor Medical, Servier and Vifor. F.M. receives support from Deutsche Hochdruckliga (DHL), Deutsche Gesellschaft für Kardiologie (DGK) and DFG (SFB TRR219) and has received scientific support and speaker honoraria from Medtronic and ReCor Medical. L.L. declares no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks S. Oparil, V. Papademetriou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lauder, L., Azizi, M., Kirtane, A.J. et al. Device-based therapies for arterial hypertension. Nat Rev Cardiol 17, 614–628 (2020). https://doi.org/10.1038/s41569-020-0364-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing