Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches

Abstract

Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.

Key points

  • Diffuse myocardial fibrosis is characterized by excessive diffuse interstitial and perivascular deposition of highly crosslinked collagen fibres (type I collagen) and other components of the extracellular matrix.

  • Diffuse myocardial fibrosis is present in nearly all chronic cardiac diseases and impairs cardiac function and therefore has a crucial role in the development of heart failure and its outcomes and is an important global health problem.

  • Modification of the biosynthetic properties of cardiac fibroblasts that result in the alteration of fibrillary collagen turnover are the major determinants in the pathogenesis of diffuse myocardial fibrosis.

  • Diffuse myocardial fibrosis is not a single, homogenous entity but a complex entity in which multiple mechanisms lead to variable histomolecular patterns of fibrosis that, in turn, translate into diverse clinical phenotypes.

  • Although imaging and biochemical methods have been developed to assess diffuse myocardial fibrosis non-invasively in patients, none of the currently available biomarkers meets all the criteria to be implemented in clinical practice for accurate quantification of diffuse myocardial fibrosis.

  • Although therapeutic reversal of diffuse myocardial fibrosis is feasible, some challenges need to be taken into account when considering the use of currently available heart failure treatments as cardiac antifibrotic therapies and when developing novel antifibrotic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis and consequences of diffuse myocardial fibrosis.
Fig. 2: Histology of diffuse myocardial fibrosis in heart failure.
Fig. 3: Major signalling pathways involved in the activation of cardiac fibroblasts.
Fig. 4: Diffuse myocardial fibrosis and left ventricular dysfunction.
Fig. 5: Non-invasive diagnosis of cardiac fibrosis.
Fig. 6: Generation and release into the bloodstream of fibrillary collagen-derived peptides.
Fig. 7: Selection of novel antifibrotic targets for drug discovery and development.

Similar content being viewed by others

References

  1. Burchfield, J. S., Xie, M. & Hill, J. A. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128, 388–400 (2013).

    PubMed Central  PubMed  Google Scholar 

  2. de Boer, R. A. et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur. J. Heart Fail. 21, 272–285 (2019).

    PubMed  Google Scholar 

  3. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Humeres, C. & Frangogiannis, N. G. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci. 4, 449–467 (2019).

    PubMed Central  PubMed  Google Scholar 

  5. Frangogiannis, N. G. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol. Aspects Med. 65, 70–99 (2019).

    CAS  PubMed  Google Scholar 

  6. Beltrami, C. A. et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89, 151–163 (1994).

    CAS  PubMed  Google Scholar 

  7. Dai, Z., Aoki, T., Fukumoto, Y. & Shimokawa, H. Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J. Cardiol. 60, 416–421 (2012).

    PubMed  Google Scholar 

  8. Fischer, V. W., Barner, H. B. & Larose, L. S. Pathomorphologic aspects of muscular tissue in diabetes mellitus. Hum. Pathol. 15, 1127–1136 (1984).

    CAS  PubMed  Google Scholar 

  9. Ravassa, S. et al. Phenotyping of myocardial fibrosis in hypertensive patients with heart failure. Influence on clinical outcome. J. Hypertens. 35, 853–861 (2017).

    CAS  PubMed  Google Scholar 

  10. Treibel, T. A. et al. Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. Eur. Heart J. 39, 699–709 (2018).

    CAS  PubMed  Google Scholar 

  11. Cheitlin, M. D. et al. The distribution of fibrosis in the left ventricle in congenital aortic stenosis and coarctation of the aorta. Circulation 62, 823–830 (1980).

    CAS  PubMed  Google Scholar 

  12. Homsi, R. et al. Left ventricular myocardial fibrosis, atrophy, and impaired contractility in patients with pulmonary arterial hypertension and a preserved left ventricular function: a cardiac magnetic resonance study. J. Thorac. Imaging 32, 36–42 (2017).

    PubMed  Google Scholar 

  13. Ng, A. C. T. et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ. Cardiovasc. Imaging 11, e007372 (2018).

    PubMed  Google Scholar 

  14. Mannacio, V. et al. Comparison of left ventricular myocardial structure and function in patients with aortic stenosis and those with pure aortic regurgitation. Cardiology 132, 111–118 (2015).

    PubMed  Google Scholar 

  15. Edwards, N. C. et al. Quantification of left ventricular interstitial fibrosis in asymptomatic chronic primary degenerative mitral regurgitation. Circ. Cardiovasc. Imaging 7, 946–953 (2014).

    PubMed  Google Scholar 

  16. Yu, Z. X. et al. On the interstitial fibrotic changes in acute and convalescent myocarditis obtained by serial endomyocardial biopsy. Jpn. Circ. J. 49, 1270–1276 (1985).

    CAS  PubMed  Google Scholar 

  17. Cheong, B. Y. C. et al. The utility of delayed-enhancement magnetic resonance imaging for identifying nonischemic myocardial fibrosis in asymptomatic patients with biopsy-proven systemic sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 26, 39–46 (2009).

    CAS  PubMed  Google Scholar 

  18. Galati, G. et al. Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts. Circ. Heart Fail. 9, e003090 (2016).

    PubMed  Google Scholar 

  19. Kawaguchi, M. et al. A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessel. 12, 267–274 (1997).

    CAS  Google Scholar 

  20. Edwards, N. C. et al. Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease. Am. J. Cardiol. 115, 1311–1317 (2015).

    PubMed  Google Scholar 

  21. Mohammed, S. F. et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2, 113–122 (2014).

    PubMed Central  PubMed  Google Scholar 

  22. Moon, J. C. C. et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur. Heart J. 24, 2151–2155 (2003).

    PubMed  Google Scholar 

  23. Kawai, S., Okada, R., Kitamura, K., Suzuki, A. & Saito, S. A morphometrical study of myocardial disarray associated with right ventricular outflow tract obstruction. Jpn. Circ. J. 48, 445–456 (1984).

    CAS  PubMed  Google Scholar 

  24. Yang, D. et al. Cardiovascular magnetic resonance evidence of myocardial fibrosis and its clinical significance in adolescent and adult patients with Ebstein’s anomaly. J. Cardiovasc. Magn. Reson. 20, 69 (2018).

    PubMed Central  PubMed  Google Scholar 

  25. Grotenhuis, H. B. et al. Left ventricular remodelling in long-term survivors after the arterial switch operation for transposition of the great arteries. Eur. Heart J. Cardiovasc. Imaging 20, 101–107 (2019).

    PubMed  Google Scholar 

  26. Gazoti Debessa, C. R., Mesiano Maifrino, L. B. & Rodrigues de Souza, R. Age related changes of the collagen network of the human heart. Mech. Ageing Dev. 122, 1049–1058 (2001).

    CAS  PubMed  Google Scholar 

  27. Brooks, A., Schinde, V., Bateman, A. C. & Gallagher, P. J. Interstitial fibrosis in the dilated non-ischaemic myocardium. Heart 89, 1255–1256 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang, G.-D. et al. Relationship between integrated backscatter and atrial fibrosis in patients with and without atrial fibrillation who are undergoing coronary bypass surgery. Clin. Cardiol. 32, E56–61 (2009).

    PubMed Central  PubMed  Google Scholar 

  29. Bernaba, B. N., Chan, J. B., Lai, C. K. & Fishbein, M. C. Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc. Pathol. 19, 308–311 (2010).

    CAS  PubMed  Google Scholar 

  30. González, A., Schelbert, E. B., Díez, J. & Butler, J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J. Am. Coll. Cardiol. 71, 1696–1706 (2018).

    PubMed  Google Scholar 

  31. Conrad, N. et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391, 572–580 (2018).

    PubMed Central  PubMed  Google Scholar 

  32. Murtha, L. A. et al. The role of pathologic aging in cardiac and pulmonary fibrosis. Aging Dis. 10, 419–428 (2019).

    PubMed Central  PubMed  Google Scholar 

  33. Anderson, K. R., Sutton, M. G. & Lie, J. T. Histopathological types of cardiac fibrosis in myocardial disease. J. Pathol. 128, 79–85 (1979).

    CAS  PubMed  Google Scholar 

  34. Weber, K. T., Pick, R., Jalil, J. E., Janicki, J. S. & Carroll, E. P. Patterns of myocardial fibrosis. J. Mol. Cell Cardiol. 21, 121–131 (1989).

    PubMed  Google Scholar 

  35. López, B., González, A., Querejeta, R., Larman, M. & Díez, J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J. Am. Coll. Cardiol. A 48, 89–96 (2006).

    Google Scholar 

  36. Hinderer, S. & Schenke-Layland, K. Cardiac fibrosis – a short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 146, 77–82 (2019).

    CAS  PubMed  Google Scholar 

  37. Hoyt, R. H., Ericksen, E., Collins, S. M. & Skorton, D. J. Computer-assisted quantitation of myocardial fibrosis in histologic sections. Arch. Pathol. Lab. Med. 108, 280–283 (1984).

    CAS  PubMed  Google Scholar 

  38. Liu, T. et al. Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure. Front. Physiol. 8, 238 (2017).

    PubMed Central  PubMed  Google Scholar 

  39. Aoki, T. et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. Comparison between preserved and reduced ejection fraction heart failure. Circ. J. 75, 2605–2613 (2011).

    CAS  PubMed  Google Scholar 

  40. van Heerebeek, L. et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113, 1966–1973 (2006).

    PubMed  Google Scholar 

  41. López, B. et al. Association of cardiotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure. Hypertension 63, 483–489 (2014).

    PubMed  Google Scholar 

  42. Echegaray, K. et al. Role of myocardial collagen in severe aortic stenosis with preserved ejection fraction and symptoms of heart failure. Rev. Esp. Cardiol. 70, 832–840 (2017).

    PubMed  Google Scholar 

  43. Mukherjee, D. & Sen, S. Alteration of collagen phenotypes in ischemic cardiomyopathy. J. Clin. Invest. 88, 1141–1146 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Herpel, E. et al. Interstitial fibrosis in the heart: differences in extracellular matrix proteins and matrix metalloproteinases in end-stage dilated, ischaemic and valvular cardiomyopathy. Histopathology 48, 736–747 (2006).

    CAS  PubMed  Google Scholar 

  45. Pauschinger, M. et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99, 2750–2756 (1999).

    CAS  PubMed  Google Scholar 

  46. Collier, P. et al. Getting to the heart of cardiac remodeling: how collagen subtypes may contribute to phenotype. J. Mol. Cell Cardiol. 52, 148–153 (2012).

    CAS  PubMed  Google Scholar 

  47. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. van der Slot-Verhoven, A. J. et al. The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochim. Biophys. Acta 1740, 60–67 (2005).

    Google Scholar 

  49. López, B. et al. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension 60, 677–683 (2012).

    PubMed  Google Scholar 

  50. Kasner, M. et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 57, 977–985 (2011).

    CAS  PubMed  Google Scholar 

  51. Zile, M. et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131, 1247–1259 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Pérez del Villar, C. et al. Impact of acute hypertension transients on diastolic function in patients with heart failure with preserved ejection fraction. Cardiovasc. Res. 113, 906–914 (2017).

    PubMed  Google Scholar 

  53. López, B. et al. Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension 53, 236–242 (2009).

    PubMed  Google Scholar 

  54. Ravassa, S. et al. Myocardial interstitial fibrosis in the era of precision medicine. Biomarker-based phenotyping for a personalized treatment. Rev. Esp. Cardiol. 73, 248–254 (2020).

    PubMed  Google Scholar 

  55. Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

    PubMed Central  PubMed  Google Scholar 

  56. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    CAS  PubMed  Google Scholar 

  57. Tallquist, M. D. Cardiac fibroblast diversity. Annu. Rev. Physiol. 82, 63–78 (2020).

    CAS  PubMed  Google Scholar 

  58. Burstein, B., Libby, E., Calderone, A. & Nattel, S. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117, 1630–1641 (2008).

    PubMed  Google Scholar 

  59. Powers, J. C. et al. Differential microRNA-21 and microRNA-221 upregulation in the biventricular failing heart reveals distinct stress responses of right versus left ventricular fibroblasts. Circ. Heart Fail. 13, e006426 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 22, 600–610 (2018).

    CAS  PubMed  Google Scholar 

  61. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).

    PubMed Central  PubMed  Google Scholar 

  62. Gladka, M. M. et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138, 166–180 (2018).

    CAS  PubMed  Google Scholar 

  63. Ivey, M. J. & Tallquist, M. D. Defining the cardiac fibroblast. Circ. J. 80, 2269–2276 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Alex, L., Russo, I., Holoborodko, V. & Frangogiannis, N. G. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 315, H934–H949 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Furtado, M. B., Costa, M. W. & Rosenthal, N. A. The cardiac fibroblast: origin, identity and role in homeostasis and disease. Differentiation 92, 93–101 (2016).

    CAS  PubMed  Google Scholar 

  66. Moore-Morris, T. et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Invest. 124, 2921–2934 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Hartupee, J. & Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 14, 30–38 (2017).

    CAS  PubMed  Google Scholar 

  69. Paulus, W. J. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    PubMed  Google Scholar 

  70. Frangogiannis, N. G. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 125, 117–146 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. van Nieuwenhoven, F. A. & Turner, N. A. The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vasc. Pharmacol. 58, 182–188 (2013).

    Google Scholar 

  72. Russo, I. et al. Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through Smad-dependent activation of a matrix-preserving program. Circ. Res. 124, 1214–1227 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    CAS  PubMed  Google Scholar 

  74. Westermann, D. et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4, 44–52 (2011).

    PubMed  Google Scholar 

  75. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Hulsmans, M. et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215, 423–440 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Laroumanie, F. et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129, 2111–2124 (2014).

    CAS  PubMed  Google Scholar 

  79. Nevers, T. et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 8, 776–787 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Nevers, T. et al. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J. Exp. Med. 214, 3311–3329 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Baldeviano, G. C. et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Ciec. Res. 106, 1646–1655 (2010).

    CAS  Google Scholar 

  82. Anzai, A. et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 214, 3293–3310 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Kruglov, E. A., Nathanson, R. A., Nguyen, T. & Dranoff, J. A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G765–G771 (2006).

    CAS  PubMed  Google Scholar 

  84. Turner, N. A. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J. Mol. Cell. Cardiol. 94, 189–200 (2016).

    CAS  PubMed  Google Scholar 

  85. Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594–604 (2011).

    CAS  PubMed  Google Scholar 

  86. Sandanger, Ø. et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc. Res. 99, 164–174 (2013).

    CAS  PubMed  Google Scholar 

  87. Pinar, A. A. et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol. Ther. 209, 107511 (2020).

    CAS  PubMed  Google Scholar 

  88. Chen, B. & Frangogiannis, N. G. Chemokines in myocardial infarction. J. Cardiovasc. Transl. Res. https://doi.org/10.1007/s12265-020-10006-7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kuhn, T. C. et al. Secretome analysis of cardiomyocytes identifies PCSK6 (proprotein convertase subtilisin/kexin type 6) as a novel player in cardiac remodeling after myocardial infarction. Circulation 141, 1628–1644 (2020).

    CAS  PubMed  Google Scholar 

  90. Rickard, A. J. et al. Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension 60, 1443–1450 (2012).

    CAS  PubMed  Google Scholar 

  91. Sheng, Z., Pennica, D., Wood, W. I. & Chien, K. R. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 122, 419–428 (1996).

    CAS  PubMed  Google Scholar 

  92. Martínez-Martínez, E. et al. CT-1 (cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73, 602–611 (2019).

    PubMed  Google Scholar 

  93. Ribeiro-Rodrigues, T. M. et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovasc. Res. 113, 1338–1350 (2017).

    CAS  PubMed  Google Scholar 

  94. Li, Y., Lui, K. O. & Zhou, B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat. Rev. Cardiol. 15, 445–456 (2018).

    PubMed  Google Scholar 

  95. Sun, X., Nkennor, B., Mastikhina, O., Soon, K. & Nunes, S. S. Endothelium-mediated contributions to fibrosis. Semin. Cell Dev. Biol. 101, 78–86 (2020).

    CAS  PubMed  Google Scholar 

  96. Salvador, A. M. et al. Intercellular adhesion molecule 1 regulates left ventricular leukocyte infiltration, cardiac remodeling, and function in pressure overload-induced heart failure. J. Am. Heart Assoc. 5, e003126 (2016).

    PubMed Central  PubMed  Google Scholar 

  97. Palazzo, A. J. et al. Myocardial ischemia-reperfusion injury in CD18- and ICAM-1-deficient mice. Am. J. Physiol. 275, H2300–H2307 (1998).

    CAS  PubMed  Google Scholar 

  98. Chua, C. C., Diglio, C. A., Siu, B. B. & Chua, B. H. Angiotensin II induces TGF-β1 production in rat heart endothelial cells. Biochim. Biophys. Acta 1223, 141–147 (1994).

    CAS  PubMed  Google Scholar 

  99. Adiarto, S. et al. ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sci. 91, 651–657 (2012).

    CAS  PubMed  Google Scholar 

  100. Mohammed, S. F. et al. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131, 550–559 (2015).

    PubMed  Google Scholar 

  101. Brakenhielm, E., González, A. & Díez, J. Role of cardiac lymphatics in myocardial edema and fibrosis in heart failure. J. Am. Coll. Cardiol. 76, 735–744 (2020).

    CAS  PubMed  Google Scholar 

  102. Kong, D., Kong, X. & Wang, L. Effect of cardiac lymph flow obstruction on cardiac collagen synthesis and interstitial fibrosis. Physiol. Res. 55, 253–258 (2006).

    CAS  PubMed  Google Scholar 

  103. Henri, O. et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133, 1484–1497 (2016).

    CAS  PubMed  Google Scholar 

  104. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    CAS  PubMed  Google Scholar 

  105. Brakenhielm, E. & Alitalo, K. Cardiac lymphatics in health and disease. Nat. Rev. Cardiol. 16, 56–68 (2019).

    CAS  PubMed  Google Scholar 

  106. Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71, 549–574 (2014).

    CAS  PubMed  Google Scholar 

  107. MacKenna, D. A., Dolfi, F., Vuori, K. & Ruoslahti, E. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J. Clin. Invest. 101, 301–310 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Rahaman, S. O. et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J. Clin. Invest. 124, 5225–5238 (2014).

    PubMed Central  PubMed  Google Scholar 

  109. Herum, K. M. et al. Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress. J. Mol. Cell Cardiol. 54, 73–81 (2013).

    CAS  PubMed  Google Scholar 

  110. Leask, A. Integrin 1: a mechanosignaling sensor essential for connective tissue deposition by fibroblasts. Adv. Wound Care 2, 160–166 (2013).

    Google Scholar 

  111. Shimizu, T. & Liao, J. K. Rho kinases and cardiac remodeling. Circ. J. 80, 1491–1498 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wang, J., Chen, H., Seth, A. & McCulloch, C. A. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 285, H1871–H1881 (2003).

    CAS  PubMed  Google Scholar 

  113. Crabos, M., Roth, M., Hahn, A. W. & Erne, P. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J. Clin. Invest. 93, 2372–2378 (1994).

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Schorb, W. et al. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ. Res. 72, 1245–1254 (1993).

    CAS  PubMed  Google Scholar 

  115. Lijnen, P. & Petrov, V. Induction of cardiac fibrosis by aldosterone. J. Mol. Cell Cardiol. 32, 865–879 (2000).

    CAS  PubMed  Google Scholar 

  116. Rickard, A. J. et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/ salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54, 537–543 (2009).

    CAS  PubMed  Google Scholar 

  117. Neumann, S. et al. Aldosterone and D-glucose stimulate the proliferation of human cardiac myofibroblasts in vitro. Hypertension 39, 756–760 (2020).

    Google Scholar 

  118. Brilla, C. G., Zhou, G., Matsubara, L. & Weber, K. T. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J. Mol. Cell Cardiol. 26, 809–820 (1994).

    CAS  PubMed  Google Scholar 

  119. Edgley, A. J., Krum, H. & Kelly, D. J. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-β. Cardiovasc. Ther. 30, e30–40 (2012).

    CAS  PubMed  Google Scholar 

  120. Hanna, A. & Frangogiannis, N. G. The role of the TGF-β superfamily in myocardial infarction. Front. Cardiovasc. Med. 6, 140 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Daniels, A. et al. Connective tissue growth factor and cardiac fibrosis. Acta Physiol. 195, 321–338 (2009).

    CAS  Google Scholar 

  122. Nagaraju, C. K. et al. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure. J. Am. Coll. Cardiol. 73, 2267–2282 (2019).

    PubMed  Google Scholar 

  123. Liu, C. et al. Collaborative regulation of LRG1 by TGF-β1 and PPAR-β/δ modulates chronic pressure overload-induced cardiac fibrosis. Circ. Heart Fail. 12, e005962 (2019).

    CAS  PubMed  Google Scholar 

  124. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110–115 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Chothani, S. et al. Widespread translational control of fibrosis in the human heart by RNA-binding proteins. Circulation 140, 937–951 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Huang, S. et al. Distinct roles of myofibroblast-specific Smad2 and Smad3 signaling in repair and remodeling of the infarcted heart. J. Mol. Cell Cardiol. 132, 84–97 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Piccoli, M. T., Bär, C. & Thum, T. Non-coding RNAs as modulators of the cardiac fibroblast phenotype. J. Mol. Cell Cardiol. 92, 75–81 (2016).

    CAS  PubMed  Google Scholar 

  128. Zhang, Y. et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol. Ther. 22, 974–985 (2014).

    PubMed Central  PubMed  Google Scholar 

  129. Zhao, X. et al. MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFbetaRI on cardiac fibroblasts. Cell Physiol. Biochem. 35, 213–226 (2015).

    CAS  PubMed  Google Scholar 

  130. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    CAS  PubMed  Google Scholar 

  131. Liang, H. et al. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 44, 2152–2160 (2012).

    CAS  PubMed  Google Scholar 

  132. Zhou, Q. et al. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am. J. Pathol. 184, 409–417 (2014).

    CAS  PubMed  Google Scholar 

  133. Micheletti, R. et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl Med. 9, eaai9118 (2017).

    PubMed Central  PubMed  Google Scholar 

  134. Zhao, X., Kwan, J. Y. Y., Yip, K., Liu, P. P. & Liu, F. F. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug Discov. 19, 57–75 (2020).

    CAS  PubMed  Google Scholar 

  135. Gibb, A. A., Lazaropoulos, M. P. & Elrod, J. W. Myofibroblasts and fibrosis: mitochondrial and metabolic control of cellular differentiation. Circ. Res. 127, 427–447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Cheng, X. et al. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J. Diabetes Res. 2013, 463740 (2013).

    PubMed Central  PubMed  Google Scholar 

  139. Ha, H., Yu, M. R. & Lee, H. B. High glucose-induced PKC activation mediates TGF-beta 1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney Int. 59, 463–470 (2001).

    CAS  PubMed  Google Scholar 

  140. Singh, V. P., Baker, K. M. & Kumar, R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am. J. Physiol. Heart Circ. Physiol. 294, H1675–1684 (2008).

    CAS  PubMed  Google Scholar 

  141. Jiang, L. et al. Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene 34, 3908–3916 (2015).

    CAS  PubMed  Google Scholar 

  142. de Paz-Lugo, P., Lupiáñez, J. A. & Meléndez-Hevia, E. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids 50, 1357–1365 (2018).

    PubMed Central  PubMed  Google Scholar 

  143. Comstock, J. P. & Udenfriend, S. Effect of lactate on collagen proline hydroxylase activity in cultured L-929 fibroblasts. Proc. Natl Acad. Sci. USA 66, 552–557 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Russo, I. & Frangogiannis, N. G. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell Cardiol. 90, 84–93 (2016).

    CAS  PubMed  Google Scholar 

  145. Weber, K. T., Sun, Y., Bhattarchaya, S. K., Abokas, R. A. & Gerling, I. C. Myofibroblast mediated mechanisms of pathologic remodeling of the heart. Nat. Rev. Cardiol. 10, 15–26 (2013).

    CAS  PubMed  Google Scholar 

  146. Goldsmith, E. C., Bradshaw, A. D., Zile, M. R. & Spinale, F. G. Myocardial fibroblast-matrix interactions and potential therapeutic targets. J. Mol. Cell Cardiol. 70, 929–929 (2014).

    Google Scholar 

  147. López, B., González, A. & Díez, J. Role of matrix metalloproteinases in hypertension-associated cardiac fibrosis. Curr. Opin. Nephrol. Hypertens. 13, 197–204 (2004).

    PubMed  Google Scholar 

  148. Katwa, L. C. et al. Cultured myofibroblasts generate angiotensin peptides de novo. J. Mol. Cell Cardiol. 29, 1375–1386 (1997).

    CAS  PubMed  Google Scholar 

  149. López, B. et al. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovasc. Res. 99, 111–120 (2013).

    PubMed  Google Scholar 

  150. Valiente-Alandi, I. et al. Inhibiting fibronectin attenuates fibrosis and improves cardiac function in a model of heart failure. Circulation 138, 1236–1252 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  151. López, B. et al. Identification of a potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart failure. J. Am. Coll. Cardiol. 50, 859–867 (2007).

    PubMed  Google Scholar 

  152. Yang, J. et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat. Commun. 7, 13710 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Beaumont, J. et al. microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clin. Sci. 126, 497–506 (2014).

    CAS  Google Scholar 

  154. Heymans, S. et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112, 1136–1144 (2005).

    CAS  PubMed  Google Scholar 

  155. Herum, K. M., Lunde, I. G., McCulloch, A. D. & Christensen, G. The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J. Clin. Med. 6, E53 (2017).

    PubMed  Google Scholar 

  156. Fan, D., Takawale, A., Lee, J. & Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5, 15 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Polyakova, V., Hein, S., Kostin, S., Ziegelhoeffer, T. & Schaper, J. Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J. Am. Coll. Cardiol. 44, 1609–1618 (2004).

    CAS  PubMed  Google Scholar 

  158. Thomas, C. V. et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97, 1708–1715 (1998).

    CAS  PubMed  Google Scholar 

  159. Spinale, F. G. et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102, 1944–1949 (2000).

    CAS  PubMed  Google Scholar 

  160. Gaasch, W. H. & Zile, M. R. Left ventricular dysfunction and diastolic heart failure. Annu. Rev. Med. 55, 373–394 (2004).

    CAS  PubMed  Google Scholar 

  161. Burlew, B. S. & Weber, K. T. Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27, 92–98 (2002).

    PubMed  Google Scholar 

  162. Brower, G. L. et al. The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur. J. Cardiothorac. Surg. 30, 604–610 (2006).

    PubMed  Google Scholar 

  163. Izawa, H. et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112, 2940–2945 (2005).

    CAS  PubMed  Google Scholar 

  164. Querejeta, R. et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 110, 1263–1268 (2004).

    CAS  PubMed  Google Scholar 

  165. Díez, J., González, A. & Kovacic, J. C. Myocardial interstitial fibrosis in nonischemic heart disease, part 3/4: JACC focus seminar. J. Am. Coll. Cardiol. 75, 2204–2218 (2020).

    PubMed Central  PubMed  Google Scholar 

  166. Villari, B. et al. Influence of collagen network on left ventricular systolic and diastolic function in aortic valve disease. J. Am. Coll. Cardiol. 22, 1477–1484 (1993).

    CAS  PubMed  Google Scholar 

  167. Dupont, E. et al. Altered connexin expression in human congestive heart failure. J. Mol. Cell Cardiol. 33, 359–371 (2001).

    CAS  PubMed  Google Scholar 

  168. Munro, M. L. et al. Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts. Sci. Rep. 8, 2957 (2018).

    PubMed Central  PubMed  Google Scholar 

  169. Moharram, M. A., Lamberts, R. R., Whalley, G., Williams, M. J. A. & Coffey, S. Myocardial tissue characterization using echocardiographic deformation imaging. Cardiovasc. Ultrasound 17, 27 (2019).

    PubMed Central  PubMed  Google Scholar 

  170. Nguyen, M. N., Kiriazis, H., Gao, X. M. & Du, X. J. Cardiac fibrosis and arrhythmogenesis. Compr. Physiol. 7, 1009–1049 (2017).

    PubMed  Google Scholar 

  171. Nagaraju, C. K. et al. Myofibroblast modulation of cardiac myocyte structure and function. Sci. Rep. 9, 8879 (2019).

    PubMed Central  PubMed  Google Scholar 

  172. d’Amati, G. & Factor, S. M. Endomyocardial biopsy findings in patients with ventricular arrhythmias of unknown origin. Cardiovasc. Pathol. 5, 139–144 (1996).

    PubMed  Google Scholar 

  173. McLenachan, J. M. & Dargie, H. J. Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am. J. Hypertens. 3, 735–740 (1990).

    CAS  PubMed  Google Scholar 

  174. Kawara, T. et al. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 104, 3069–3075 (2001).

    CAS  PubMed  Google Scholar 

  175. Hohendanner, F. et al. Pathophysiological and therapeutic implications in patients with atrial fibrillation and heart failure. Heart Fail. Rev. 23, 27–36 (2018).

    CAS  PubMed  Google Scholar 

  176. Adam, O. et al. Role of Rac1 GTPase activation in atrial fibrillation. J. Am. Coll. Cardiol. 50, 359–367 (2007).

    CAS  PubMed  Google Scholar 

  177. Adam, O. et al. Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J. Am. Coll. Cardiol. 55, 469–480 (2010).

    PubMed  Google Scholar 

  178. Adam, O. et al. Increased lysyl oxidase expression and collagen cross-linking during atrial fibrillation. J. Mol. Cell Cardiol. 50, 678–685 (2011).

    CAS  PubMed  Google Scholar 

  179. Park, S.-J. et al. Assessment of myocardial fibrosis using multimodality imaging in severe aortic stenosis comparison with histologic fibrosis. JACC Cardiovasc. Imaging 12, 109–119 (2019).

    PubMed  Google Scholar 

  180. Arteaga, E. et al. Prognostic value of the collagen volume fraction in hypertrophic cardiomyopathy. Arq. Bras. Cardiol. 92, 216–220 (2009).

    Google Scholar 

  181. López, B. et al. Myocardial collagen cross-linking is associated with heart failure hospitalization in patients with hypertensive heart failure. J. Am. Coll. Cardiol. 67, 251–260 (2016).

    PubMed  Google Scholar 

  182. Chimenti, C. & Frustaci, A. Contribution and risks of left ventricular endomyocardial biopsy in patients with cardiomyopathies: a retrospective study over a 28-year period. Circulation 128, 1531–1541 (2013).

    PubMed  Google Scholar 

  183. Scully, P. R., Bastarrika, G., Moon, J. C. & Treibel, T. A. Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography. Curr. Cardiol. Rep. 20, 15 (2018).

    PubMed Central  PubMed  Google Scholar 

  184. Diao, K. et al. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 18, 92 (2016).

    PubMed Central  PubMed  Google Scholar 

  185. Messroghli, D. R. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 19, 75 (2017).

    PubMed Central  PubMed  Google Scholar 

  186. Karamitsos, T. D., Arvanitaki, A., Karvounis, H., Neubauer, S. & Ferreira, V. M. Myocardial tissue characterization and fibrosis imaging. JACC Cardiovasc. Imaging 13, 1221–1234 (2020).

    PubMed  Google Scholar 

  187. Chin, C. W. L. et al. Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc. Imaging 10, 1320–1333 (2017).

    PubMed Central  PubMed  Google Scholar 

  188. Schelbert, E. B. et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J. Am. Heart Assoc. 4, e002613 (2015).

    PubMed Central  PubMed  Google Scholar 

  189. Schelbert, E. B. et al. Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction: association with baseline disease severity and subsequent outcome. JAMA Cardiol. 2, 995–1006 (2017).

    PubMed Central  PubMed  Google Scholar 

  190. Yang, E. Y. et al. Myocardial extracellular volume fraction adds prognostic information beyond myocardial replacement fibrosis. Circ. Cardiovasc. Imaging 12, e009535 (2019).

    PubMed Central  PubMed  Google Scholar 

  191. Bandula, S. et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269, 396–403 (2013).

    PubMed  Google Scholar 

  192. Treibel, T. A. et al. Automatic quantification of the myocardial extracellular volume by cardiac computed tomography: synthetic ECV by CCT. J. Cardiovasc. Comput. Tomogr. 11, 221–226 (2017).

    PubMed  Google Scholar 

  193. Nacif, M. S. et al. 3D left ventricular extracellular volume fraction by low-radiation dose cardiac CT: assessment of interstitial myocardial fibrosis. J. Cardiovasc. Comput. Tomogr. 7, 51–57 (2013).

    PubMed  Google Scholar 

  194. Lisi, M. et al. RV longitudinal deformation correlates with myocardial fibrosis in patients with end-stage heart failure. JACC Cardiovasc. Imaging 8, 514–522 (2015).

    PubMed  Google Scholar 

  195. Cameli, M. et al. Left ventricular deformation and myocardial fibrosis in patients with advanced heart failure requiring transplantation. J. Card. Fail. 22, 901–907 (2016).

    PubMed  Google Scholar 

  196. Fabiani, I. et al. Micro-RNA-21 (biomarker) and global longitudinal strain (functional marker) in detection of myocardial fibrotic burden in severe aortic valve stenosis: a pilot study. J. Transl. Med. 14, 248 (2016).

    PubMed Central  PubMed  Google Scholar 

  197. López, B., González, A. & Díez, J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation 121, 1645–1654 (2010).

    PubMed  Google Scholar 

  198. Lijnen, P. J., Maharani, T., Finahari, N. & Prihadi, J. S. Serum collagen biomarkers of heart failure. Cardiovasc. Hematol. Disord. Drug Targets 12, 51–55 (2012).

    CAS  PubMed  Google Scholar 

  199. Chalikias, G. K. & Tziakas, D. N. Biomarkers of the extracellular matrix and of collagen fragments. Clin. Chim. Acta 443, 39–47 (2015).

    CAS  PubMed  Google Scholar 

  200. Klappacher, G. et al. Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am. J. Cardiol. 75, 913–918 (1995).

    CAS  PubMed  Google Scholar 

  201. López, B. et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J. Am. Coll. Cardiol. 65, 2449–2456 (2015).

    PubMed  Google Scholar 

  202. Ravassa, S. et al. Combination of circulating type I collagen-related biomarkers is associated with atrial fibrillation. J. Am. Coll. Cardiol. 73, 1398–1410 (2019).

    CAS  PubMed  Google Scholar 

  203. Eiros, R. et al. Does chronic kidney disease facilitate malignant myocardial fibrosis in heart failure with preserved ejection fraction of hypertensive origin? J. Clin. Med. 9, 404 (2020).

    CAS  PubMed Central  Google Scholar 

  204. de Jong, S., van Veen, T. A. B., de Bakker, J. M. T., Vos, M. A. & van Rijen, H. V. M. Biomarkers of myocardial fibrosis. J. Cardiovasc. Pharmacol. 57, 522–535 (2011).

    PubMed  Google Scholar 

  205. Ferreira, J. P. et al. Plasma protein biomarkers and their association with mutually exclusive cardiovascular phenotypes: the FIBRO-TARGETS case-control analyses. Clin. Res. Cardiol. 109, 22–33 (2020).

    CAS  PubMed  Google Scholar 

  206. Schelbert, E. B., Butler, J. & Díez, J. Why clinicians should care about the cardiac interstitium. JACC Cardiovasc. Imaging 12, 2305–2318 (2019).

    PubMed  Google Scholar 

  207. López, B. et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 104, 286–291 (2001).

    PubMed  Google Scholar 

  208. Villari, B. et al. Normalization of diastolic dysfunction in aortic stenosis late after valve replacement. Circulation 91, 2353–2358 (1995).

    CAS  PubMed  Google Scholar 

  209. Klotz, S. et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 112, 364–374 (2005).

    CAS  PubMed  Google Scholar 

  210. Vazir, A., Fox, K., Westaby, J., Evans, M. J. & Westaby, S. Can we remove scar and fibrosis from adult human myocardium? Eur. Heart J. 40, 960–966 (2019).

    PubMed  Google Scholar 

  211. Brilla, C. G., Funck, R. C. & Rupp, H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102, 1388–1393 (2000).

    CAS  PubMed  Google Scholar 

  212. Díez, J. et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105, 2512–2517 (2002).

    PubMed  Google Scholar 

  213. López, B. et al. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J. Am. Coll. Cardiol. 43, 2028–2035 (2004).

    PubMed  Google Scholar 

  214. Pfau, D. et al. Angiotensin receptor neprilysin inhibitor attenuates myocardial remodeling and improves infarct perfusion in experimental heart failure. Sci. Rep. 9, 5791 (2019).

    PubMed Central  PubMed  Google Scholar 

  215. Franco, V. et al. Eplerenone prevents adverse cardiac remodelling induced by pressure overload in atrial natriuretic peptide-null mice. Clin. Exp. Pharmacol. Physiol. 33, 773–779 (2006).

    CAS  PubMed  Google Scholar 

  216. Gueret, A. Vascular smooth muscle mineralocorticoid receptor contributes to coronary and left ventricular dysfunction after myocardial infarction. Hypertension 67, 717–723 (2016).

    CAS  PubMed  Google Scholar 

  217. Morita, H. et al. Effects of long-term monotherapy with metoprolol CR/XL on the progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Cardiovasc. Drugs Ther. 16, 443–449 (2002).

    CAS  PubMed  Google Scholar 

  218. Busseuil, D. et al. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 117, 234–242 (2010).

    CAS  PubMed  Google Scholar 

  219. Pradhan, K. et al. Soluble guanylate cyclase stimulator riociguat and phosphodiesterase 5 inhibitor sildenafil ameliorate pulmonary hypertension due to left heart disease in mice. Int. J. Cardiol. 216, 85–91 (2016).

    PubMed  Google Scholar 

  220. Zelniker, T. A. & Braunwald, E. Clinical benefit of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 75, 435–447 (2020).

    CAS  PubMed  Google Scholar 

  221. Zelniker, T. A. & Braunwald, E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 75, 422–434 (2020).

    CAS  PubMed  Google Scholar 

  222. Shi, L., Zhu, D., Wang, S., Jiang, A. & Li, F. Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload. Am. J. Hypertens. 32, 452–459 (2019).

    CAS  PubMed  Google Scholar 

  223. Tousoulis, D., Oikonomou, E., Siasos, G. & Stefanadis, C. Statins in heart failure–with preserved and reduced ejection fraction. An update. Pharmacol. Ther. 141, 79–91 (2014).

    CAS  PubMed  Google Scholar 

  224. Chang, S. A. et al. Effect of rosuvastatin on cardiac remodeling, function, and progression to heart failure in hypertensive heart with established left ventricular hypertrophy. Hypertension 54, 591–597 (2009).

    CAS  PubMed  Google Scholar 

  225. Abulhul, E. et al. Long-term statin therapy in patients with systolic heart failure and normal cholesterol: effects on elevated serum markers of collagen turnover, inflammation, and B-type natriuretic peptide. Clin. Ther. 34, 91–100 (2012).

    CAS  PubMed  Google Scholar 

  226. Balakumar, P. et al. Molecular targets of fenofibrate in the cardiovascular-renal axis: a unifying perspective of its pleiotropic benefits. Pharmacol. Res. 144, 132–141 (2019).

    CAS  PubMed  Google Scholar 

  227. Zhang, J. et al. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of type 1 diabetic mice. Clin. Sci. 130, 625–641 (2016).

    CAS  Google Scholar 

  228. Miric, G. et al. Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br. J. Pharmacol. 133, 687–694 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Shi, Q. et al. In vitro effects of pirfenidone on cardiac fibroblasts: proliferation, myofibroblast differentiation, migration and cytokine secretion. PLoS ONE 6, e28134 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Rol, N. et al. Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension. Cardiovasc. Res. 115, 432–439 (2019).

    CAS  PubMed  Google Scholar 

  231. Chen, B., Geng, J., Gao, S. X., Yue, W. W. & Liu, Q. Eplerenone modulates interleukin-33/sST2 signaling and IL-1β in left ventricular systolic dysfunction after acute myocardial infarction. J. Interferon Cytokine Res. 38, 137–144 (2018).

    CAS  PubMed  Google Scholar 

  232. Lewis, G. A. et al. Pirfenidone in heart failure with preserved ejection fraction-rationale and design of the PIROUETTE trial. Cardiovasc. Drugs Ther. 33, 461–470 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Szabó, Z. et al. Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure. Hypertension 63, 1235–1240 (2014).

    PubMed  Google Scholar 

  234. Richeldi, L. et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 8, 25–33 (2020).

    CAS  PubMed  Google Scholar 

  235. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03955146 (2019).

  236. Engebretsen, K. V. et al. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J. Mol. Cell Cardiol. 76, 148–157 (2014).

    CAS  PubMed  Google Scholar 

  237. Frantz, S. et al. Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res. Cardiol. 103, 485–492 (2008).

    CAS  PubMed  Google Scholar 

  238. Lucas, J. A. et al. Inhibition of transforming growth factor-beta signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart. Am. J. Physiol. Heart Circ. Physiol. 298, H424–432 (2010).

    CAS  PubMed  Google Scholar 

  239. Huang, C.-K., Kafert-Kasting, S. & Thum, T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ. Res. 126, 663–678 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Juni, R. P., Abreu, R. C. & da Costa Martins, P. A. Regulation of microvascularization in heart failure - an endothelial cell, non-coding RNAs and exosome liaison. Noncoding RNA Res. 2, 45–55 (2017).

    PubMed Central  PubMed  Google Scholar 

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03373786 (2019).

  242. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02855268 (2020).

  243. Deng, Z. et al. MicroRNA-29: a crucial player in fibrotic disease. Mol. Diagn. Ther. 21, 285–294 (2017).

    CAS  PubMed  Google Scholar 

  244. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    PubMed  PubMed Central  Google Scholar 

  245. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02603224 (2017).

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03601052 (2019).

  247. Chen, J. et al. Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation 123, 584–593 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Heydari, B. et al. Effect of Omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction: the OMEGA-REMODEL randomized clinical trial. Circulation 134, 378–391 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 18, 891–975 (2016).

    PubMed  Google Scholar 

  250. Siscovick, D. S. et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the american heart association. Circulation 135, e867–e884 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  251. González, A., López, B., Ravassa, S., San José, G. & Díez, J. The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1421–1432 (2019).

    PubMed  Google Scholar 

  252. El Hajj, E. C., El Hajj, M. C., Ninh, V. K. & Gardner, J. D. Inhibitor of lysyl oxidase improves cardiac function and the collagen/MMP profile in response to volume overload. Am. J. Physiol. Heart Circ. Physiol. 315, H463–H473 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Schilter, H. et al. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J. Cell Mol. Med. 23, 1759–1770 (2019).

    CAS  PubMed  Google Scholar 

  254. Raghu, G. et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Res. Med. 5, 22–32 (2017).

    CAS  Google Scholar 

  255. Lindsey, M. L. Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling. Nat. Rev. Cardiol. 15, 471–479 (2018).

    PubMed Central  PubMed  Google Scholar 

  256. Cerisano, G. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur. Heart J. 35, 184–191 (2014).

    CAS  PubMed  Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03508232 (2020).

  258. Xu, G. R. et al. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed. Pharmacother. 126, 110071 (2020).

    CAS  PubMed  Google Scholar 

  259. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01717248 (2013).

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04244825 (2020).

  261. Kang, S. C., Sohn, E.-H. & Lee, S. R. Hydrogen sulfide as a potential alternative for the treatment of myocardial fibrosis. Oxid. Med. Cell. Longev. 2020, 4105382 (2020).

    PubMed Central  PubMed  Google Scholar 

  262. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02899364 (2019).

  263. Verjans, R. et al. MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload-induced heart failure. Hypertension 71, 280–288 (2018).

    CAS  PubMed  Google Scholar 

  264. Schimmel, K. et al. Natural compound library screening identifies new molecules for the treatment of cardiac fibrosis and diastolic dysfunction. Circulation 141, 751–767 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Nosalski, R. et al. T-cell derived miRNA-214 mediates perivascular fibrosis in hypertension. Circ. Res. 126, 988–1003 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  266. Duan, J. et al. Metabolic remodeling induced by mitokines in heart failure. Aging 11, 7307–7327 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Wang, Z. et al. Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor. Cell Death Dis. 9, 613 (2018).

    PubMed Central  PubMed  Google Scholar 

  268. Han, J. et al. Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano 12, 1959–1977 (2018).

    CAS  PubMed  Google Scholar 

  269. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  270. Zannad, F. et al. Clinical outcome endpoints in heart failure trials: a European Society of Cardiology Heart Failure Association consensus document. Eur. J. Heart Fail. 15, 1082–1094 (2013).

    PubMed  Google Scholar 

  271. Wintrich, J. et al. Therapeutic approaches in heart failure with preserved ejection fraction: past, present, and future. Clin. Res. Cardiol. 109, 1079–1098 (2020).

    PubMed Central  PubMed  Google Scholar 

  272. Ravassa, S. et al. Biomarker-based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldo-DHF trial. Eur. J. Heart Fail. 20, 1290–1299 (2018).

    CAS  PubMed  Google Scholar 

  273. Gyöngyösi, M. et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur. J. Heart Fail. 19, 177–191 (2017).

    PubMed  Google Scholar 

  274. Dixon, J. A. & Spinale, F. G. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ. Heart Fail. 2, 262–271 (2009).

    PubMed Central  PubMed  Google Scholar 

  275. Barandiarán Aizpurua, A., Schroen, B., van Bilsen, M. & van Empel, V. Targeted HFpEF therapy based on matchmaking of human and animal models. Am. J. Physiol. Heart Circ. Physiol. 315, H1670–H1683 (2018).

    PubMed  Google Scholar 

  276. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–565 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are funded by the Spanish Ministry of Science, Innovation and Universities (Instituto de Salud Carlos III: CIBERCV CB16/11/00483, and PI17/01999 and PI18/01469 co-financed by FEDER funds), the ERA-CVD Joint Transnational Call 2016 LYMIT-DIS (AC16/00020) and LIPCAR-HF (AC16/00016), the European Commission H2020 Programme (CRUCIAL project 848109), and the Dirección General de Industria, Energía e Innovación, Gobierno de Navarra, Spain (MINERVA project 0011-1411-2018-000053).

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, provided substantial contributions to the discussion of content, wrote the manuscript, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Arantxa González or Javier Díez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks R. A. de Boer, M. L. Lindsey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Diffuse myocardial fibrosis

Diffuse and patchy deposition of excess fibrous tissue relative to the mass of cardiomyocytes within the myocardial interstitium and around intramyocardial vessels that alters the architecture and function of the extracellular matrix.

Extracellular matrix

(ECM). Part of the myocardial interstitium in which cardiac cells, fibroblasts and blood vessels are embedded and predominantly made up of structural collagen, with smaller amounts of other structural and non-structural proteins and other compounds.

Collagen crosslinking

Formation of intramolecular and intermolecular covalent bonds (crosslinks) between lysine residues in the collagen molecules that make the deposited collagen fibres stiffer and more resistant to degradation.

Myofibroblasts

Cells originating mainly but not exclusively from the differentiation of fibroblasts that have ultrastructural and phenotypical characteristics of smooth muscle cells and features of synthetically active fibroblasts.

Fibrocytes

Circulating mesenchymal cells that arise from monocyte precursors, are present in injured organs and have both the inflammatory features of macrophages and the tissue remodelling properties of fibroblasts.

Epithelial-to-mesenchymal transition

A cellular reprogramming process in which epithelial cells acquire a mesenchymal phenotype associated with modifications in the expression of genes and proteins, including those related to the extracellular matrix.

Endothelial-to-mesenchymal transition

A cellular reprogramming process in which endothelial cells acquire a mesenchymal phenotype associated with modifications in the expression of genes and proteins, including those related to the extracellular matrix.

Profibrotic secretome

Set of molecules secreted by activated fibroblasts and myofibroblasts that are required to modify the extracellular processing of fibrillary collagen, resulting in quantitative and qualitative alterations of the myocardial collagen network leading to diffuse myocardial fibrosis.

Matrikines

Bioactive fragments released from the degradation of extracellular matrix proteins (including fibrillary collagens), proteoglycans and glycosaminoglycans that regulate a number of processes, including fibrosis, inflammation and angiogenesis.

Extracellular volume fraction

(ECV). Parameter assessed with cardiovascular MRI to quantify the fractional distribution of extracellular volume in the myocardium. This parameter has been proposed as a biomarker for quantifying the diffuse deposition of fibrous tissue.

Collagen-derived peptides

Peptides generated during the extracellular processing of collagen and measurable in blood by immunoassays that have been proposed as biomarkers to quantify and qualify diffuse myocardial collagen deposition and crosslinking.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, B., Ravassa, S., Moreno, M.U. et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol 18, 479–498 (2021). https://doi.org/10.1038/s41569-020-00504-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00504-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing