Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular genetic framework underlying pulmonary arterial hypertension

Abstract

Pulmonary arterial hypertension (PAH) is a rare, progressive disorder typified by occlusion of the pulmonary arterioles owing to endothelial dysfunction and uncontrolled proliferation of pulmonary artery smooth muscle cells and fibroblasts. Vascular occlusion can lead to increased pressure in the pulmonary arteries, often resulting in right ventricular failure with shortness of breath and syncope. Since the identification of BMPR2, which encodes a receptor in the transforming growth factor-β superfamily, the development of high-throughput sequencing approaches to identify novel causal genes has substantially advanced our understanding of the molecular genetics of PAH. In the past 6 years, additional pathways involved in PAH susceptibility have been described through the identification of deleterious genetic variants in potassium channels (KCNK3 and ABCC8) and transcription factors (TBX4 and SOX17), among others. Although familial PAH most often has an autosomal-dominant pattern of inheritance, cases of incomplete penetrance and evidence of genetic heterogeneity support a model of PAH as a Mendelian disorder with complex disease features. In this Review, we outline the latest advances in the detection of rare and common genetic variants underlying PAH susceptibility and disease progression. These findings have clinical implications for lung vascular function and can help to identify mechanistic pathways amenable to pharmacological intervention.

Key points

  • Heterozygous germline mutations in BMPR2 represent the central susceptibility factor in the precipitation and progression of pulmonary arterial hypertension (PAH).

  • Causal rare disease alleles have been identified in both bone morphogenetic protein (BMP) signalling and non-BMP pathways, confirming locus heterogeneity in PAH.

  • Next-generation sequencing has been instrumental in expanding the genetic architecture of PAH by broadening the mutation spectrum in known genes and identifying novel genetic risk alleles.

  • Childhood-onset PAH is associated with greater morbidity and mortality than adult-onset disease and has a distinctive genetic signature.

  • PAH is a Mendelian disorder with complex disease traits, indicating a role for modifying common variation in disease development.

  • Elucidating the genetic architecture of PAH provides unprecedented potential for the development of novel, precision medicine options in disease management.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major pathways and gene variants in heritable pulmonary arterial hypertension.

References

  1. Peacock, A. J., Murphy, N. F., McMurray, J. J. V., Caballero, L. & Stewart, S. An epidemiological study of pulmonary arterial hypertension. Eur. Respir. J. 30, 104–109 (2007).

    CAS  PubMed  Google Scholar 

  2. Simonneau, G. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 53, 1801913 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gaine, S. P. & Rubin, L. J. Primary pulmonary hypertension. Lancet 352, 719–725 (1998).

    CAS  PubMed  Google Scholar 

  4. Romberg, E. Ueber sklerose der lungen arterie. Dtsch. Arch. Klin. Med. 48, 197–206 (1891).

    Google Scholar 

  5. Dresdale, D. T., Schultz, M. & Michtom, R. J. Primary pulmonary hypertension. I. Clinical and hemodynamic study. Am. J. Med. 11, 686–705 (1951).

    CAS  PubMed  Google Scholar 

  6. Simonneau, G. et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 43, S5–S12 (2004).

    Google Scholar 

  7. Simonneau, G. et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 62, D34–D41 (2013).

    PubMed  Google Scholar 

  8. Ivy, D. Pulmonary hypertension in children. Cardiol. Clin. 34, 451–472 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Humbert, M. et al. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 173, 1023–1030 (2006).

    PubMed  Google Scholar 

  10. Badesch, D. B. et al. Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry. Chest 137, 376–387 (2010).

    PubMed  Google Scholar 

  11. Tuder, R. M. et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J. Am. Coll. Cardiol. 62, D4–D12 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Larkin, E. K. et al. Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 892–896 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Batton, K. A. et al. Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biol. Sex Differ. 9, 15 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Machado, R. D. et al. A physical and transcript map based upon refinement of the critical interval for PPH1, a gene for familial primary pulmonary hypertension. The International PPH Consortium. Genomics 68, 220–228 (2000).

    CAS  PubMed  Google Scholar 

  15. International PPH Consortium et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26, 81–84 (2000).

    Google Scholar 

  16. Deng, Z. et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67, 737–744 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomson, J. R. et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J. Med. Genet. 37, 741–745 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Machado, R. D. et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Genet. 68, 92–102 (2001).

    CAS  PubMed  Google Scholar 

  19. Liu, F., Ventura, F., Doody, J. & Massagué, J. Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol. Cell. Biol. 15, 3479–3486 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. David, L., Feige, J.-J. & Bailly, S. Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev. 20, 203–212 (2009).

    CAS  PubMed  Google Scholar 

  21. Rigueur, D. et al. The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development. J. Bone Miner. Res. 30, 733–741 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, Y. & Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    CAS  Google Scholar 

  23. Machado, R. D. et al. Pulmonary arterial hypertension: a current perspective on established and emerging molecular genetic defects. Hum. Mutat. 36, 1113–1127 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sankelo, M. et al. BMPR2 mutations have short lifetime expectancy in primary pulmonary hypertension. Hum. Mutat. 26, 119–124 (2005).

    CAS  PubMed  Google Scholar 

  25. Aldred, M. A., Machado, R. D., James, V., Morrell, N. W. & Trembath, R. C. Characterization of the BMPR2 5′-untranslated region and a novel mutation in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 176, 819–824 (2007).

    CAS  PubMed  Google Scholar 

  26. Wang, H. et al. Novel promoter and exon mutations of the BMPR2 gene in Chinese patients with pulmonary arterial hypertension. Eur. J. Hum. Genet. 17, 1063–1069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberts, K. E. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur. Respir. J. 24, 371–374 (2004).

    CAS  PubMed  Google Scholar 

  28. Beppu, H. et al. BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis. Dev. Biol. 331, 167–175 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrison, R. E. et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J. Med. Genet. 40, 865–871 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Harrison, R. E. et al. Transforming growth factor-beta receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111, 435–441 (2005).

    CAS  PubMed  Google Scholar 

  31. Fujiwara, M. et al. Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. Circ. J. 72, 127–133 (2008).

    CAS  PubMed  Google Scholar 

  32. Shintani, M., Yagi, H., Nakayama, T., Saji, T. & Matsuoka, R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J. Med. Genet. 46, 331–337 (2009).

    CAS  PubMed  Google Scholar 

  33. Nasim, M. T. et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum. Mutat. 32, 1385–1389 (2011).

    CAS  PubMed  Google Scholar 

  34. Wang, G. et al. Novel homozygous BMP9 nonsense mutation causes pulmonary arterial hypertension: a case report. BMC Pulm. Med. 16, 17 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Austin, E. D. et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ. Cardiovasc. Genet. 5, 336–343 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, L. et al. A novel channelopathy in pulmonary arterial hypertension. N. Engl. J. Med. 369, 351–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nohe, A., Keating, E., Underhill, T. M., Knaus, P. & Petersen, N. O. Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J. Cell Sci. 118, 643–650 (2005).

    CAS  PubMed  Google Scholar 

  38. Saldanha, S. et al. Caveolae regulate Smad signaling as verified by novel imaging and system biology approaches. J. Cell. Physiol. 228, 1060–1069 (2013).

    CAS  PubMed  Google Scholar 

  39. Zhu, N. et al. Exome sequencing in children with pulmonary arterial hypertension demonstrates differences compared with adults. Circ. Genom. Precis. Med. 11, e001887 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. den Dunnen, J. T. et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum. Mutat. 37, 564–569 (2016).

    Google Scholar 

  41. Copeland, C. A. et al. A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal. Mol. Biol. Cell 28, 3095–3111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Marsboom, G. et al. Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol. Biol. Cell 28, 1177–1185 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452 (2001).

    CAS  PubMed  Google Scholar 

  44. Zhao, Y.-Y. et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl Acad. Sci. USA 99, 11375–11380 (2002).

    CAS  PubMed  Google Scholar 

  45. Maniatis, N. A. et al. Increased pulmonary vascular resistance and defective pulmonary artery filling in caveolin-1–/– mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L865–L873 (2008).

    CAS  PubMed  Google Scholar 

  46. Yuan, X.-J., Wang, J., Juhaszova, M., Gaine, S. P. & Rubin, L. J. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351, 726–727 (1998).

    CAS  PubMed  Google Scholar 

  47. Yuan, J. X. et al. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98, 1400–1406 (1998).

    CAS  PubMed  Google Scholar 

  48. Young, K. A., Ivester, C., West, J., Carr, M. & Rodman, D. M. BMP signaling controls PASMC KV channel expression in vitro and in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L841–L848 (2006).

    CAS  PubMed  Google Scholar 

  49. Remillard, C. V. et al. Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am. J. Physiol. Cell Physiol. 292, C1837–C1853 (2007).

    CAS  PubMed  Google Scholar 

  50. Wang, G. et al. Early onset severe pulmonary arterial hypertension with ‘two-hit’ digenic mutations in both BMPR2 and KCNA5 genes. Int. J. Cardiol. 177, e167–e169 (2014).

    PubMed  Google Scholar 

  51. Bohnen, M. S. et al. The impact of heterozygous KCNK3 mutations associated with pulmonary arterial hypertension on channel function and pharmacological recovery. J. Am. Heart Assoc. 6, e006465 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Navas Tejedor, P. et al. An homozygous mutation in KCNK3 is associated with an aggressive form of hereditary pulmonary arterial hypertension. Clin. Genet. 91, 453–457 (2017).

    CAS  PubMed  Google Scholar 

  53. Montani, D. et al. Pulmonary veno-occlusive disease. Eur. Respir. J. 47, 1518–1534 (2016).

    PubMed  Google Scholar 

  54. O’Keefe, M. C. & Post, M. D. Pulmonary capillary hemangiomatosis: a rare cause of pulmonary hypertension. Arch. Pathol. Lab. Med. 139, 274–277 (2015).

    PubMed  Google Scholar 

  55. Montani, D. et al. Clinical phenotypes and outcomes of heritable and sporadic pulmonary veno-occlusive disease: a population-based study. Lancet Respir. Med. 5, 125–134 (2017).

    CAS  PubMed  Google Scholar 

  56. Dorfmüller, P. et al. Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. Hum. Pathol. 38, 893–902 (2007).

    PubMed  Google Scholar 

  57. Eyries, M. et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat. Genet. 46, 65–69 (2014).

    CAS  PubMed  Google Scholar 

  58. Best, D. H. et al. EIF2AK4 mutations in pulmonary capillary hemangiomatosis. Chest 145, 231–236 (2014).

    CAS  PubMed  Google Scholar 

  59. Dever, T. E. et al. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585–596 (1992).

    CAS  PubMed  Google Scholar 

  60. Best, D. H. et al. EIF2AK4 mutations in patients diagnosed with pulmonary arterial hypertension. Chest 151, 821–828 (2017).

    PubMed  Google Scholar 

  61. Hadinnapola, C. et al. Phenotypic characterization of mutation carriers in a large cohort of patients diagnosed clinically with pulmonary arterial hypertension. Circulation 136, 2022–2033 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Meyer, E. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat. Genet. 49, 223–237 (2017).

    CAS  PubMed  Google Scholar 

  63. Carss, K. J. et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am. J. Hum. Genet. 100, 75–90 (2017).

    CAS  PubMed  Google Scholar 

  64. Westbury, S. K. et al. Expanded repertoire of variants responsible for platelet dysfunction and severe bleeding. Blood 130, 1026–1030 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gräf, S. et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat. Commun. 9, 1416 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Eyries, M. et al. Widening the landscape of heritable pulmonary hypertension mutations in pediatric and adult cases. Eur. Respir. J. 53, 1801371 (2019).

    PubMed  Google Scholar 

  67. Wang, X.-J. et al. Germline BMP9 mutation causes idiopathic pulmonary arterial hypertension. Eur. Respir. J. 53, 1801609 (2019).

    CAS  PubMed  Google Scholar 

  68. Madan, M. et al. ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers. Am. J. Cancer Res. 6, 1231–1252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Archer, S. L. Pyruvate kinase and Warburg metabolism in pulmonary arterial hypertension: uncoupled glycolysis and the cancer-like phenotype of pulmonary arterial hypertension. Circulation 136, 2486–2490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Taraseviciene-Stewart, L. et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 15, 427–438 (2001).

    CAS  PubMed  Google Scholar 

  71. Teichert-Kuliszewska, K. et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ. Res. 98, 209–217 (2006).

    CAS  PubMed  Google Scholar 

  72. Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    CAS  PubMed  Google Scholar 

  73. Schuoler, C. et al. Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension. Basic Res. Cardiol. 112, 30 (2017).

    PubMed  Google Scholar 

  74. Saadoun, S., Papadopoulos, M. C., Hara-Chikuma, M. & Verkman, A. S. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786–792 (2005).

    CAS  PubMed  Google Scholar 

  75. Yun, X., Jiang, H., Lai, N., Wang, J. & Shimoda, L. A. Aquaporin 1-mediated changes in pulmonary arterial smooth muscle cell migration and proliferation involve β-catenin. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L889–L898 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Remenyi, A. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev. 17, 2048–2059 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sinner, D., Rankin, S., Lee, M. & Zorn, A. M. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 131, 3069–3080 (2004).

    CAS  PubMed  Google Scholar 

  78. Zhu, N. et al. Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease. Genome Med. 10, 56 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Hiraide, T. et al. SOX17 mutations in Japanese patients with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 198, 1231–1233 (2018).

    CAS  PubMed  Google Scholar 

  80. Matsui, T. et al. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J. Cell Sci. 119, 3513–3526 (2006).

    CAS  PubMed  Google Scholar 

  81. Corada, M. et al. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4, 2609 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Lange, A. W. et al. Sox17 is required for normal pulmonary vascular morphogenesis. Dev. Biol. 387, 109–120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, S.-H. et al. Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ. Res. 115, 215–226 (2014).

    CAS  PubMed  Google Scholar 

  84. Goveia, J. et al. Endothelial cell differentiation by SOX17: promoting the tip cell or stalking its neighbor instead? Circ. Res. 115, 205–207 (2014).

    CAS  PubMed  Google Scholar 

  85. David, L., Mallet, C., Mazerbourg, S., Feige, J.-J. & Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961 (2007).

    CAS  PubMed  Google Scholar 

  86. Bidart, M. et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell. Mol. Life Sci. 69, 313–324 (2012).

    CAS  PubMed  Google Scholar 

  87. Mi, L.-Z. et al. Structure of bone morphogenetic protein 9 procomplex. Proc. Natl Acad. Sci. USA 112, 3710–3715 (2015).

    CAS  PubMed  Google Scholar 

  88. Chida, A. et al. Outcomes of childhood pulmonary arterial hypertension in BMPR2 and ALK1 mutation carriers. Am. J. Cardiol. 110, 586–593 (2012).

    CAS  PubMed  Google Scholar 

  89. Pfarr, N. et al. Hemodynamic and genetic analysis in children with idiopathic, heritable, and congenital heart disease associated pulmonary arterial hypertension. Respir. Res. 14, 3 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Levy, M. et al. Genetic analyses in a cohort of children with pulmonary hypertension. Eur. Respir. J. 48, 1118–1126 (2016).

    CAS  PubMed  Google Scholar 

  91. Chida, A. et al. Missense mutations of the BMPR1B (ALK6) gene in childhood idiopathic pulmonary arterial hypertension. Circ. J. 76, 1501–1508 (2012).

    CAS  PubMed  Google Scholar 

  92. Bongers, E. M. H. F. et al. Mutations in the human TBX4 gene cause small patella syndrome. Am. J. Hum. Genet. 74, 1239–1248 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kerstjens-Frederikse, W. S. et al. TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J. Med. Genet. 50, 500–506 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vanlerberghe, C. et al. Small patella syndrome: new clinical and molecular insights into a consistent phenotype. Clin. Genet. 92, 676–678 (2017).

    CAS  PubMed  Google Scholar 

  95. Glaser, A. et al. Tbx4 interacts with the short stature homeobox gene Shox2 in limb development. Dev. Dyn. 243, 629–639 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Arora, R., Metzger, R. J. & Papaioannou, V. E. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLOS Genet. 8, e1002866 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bohnen, M. S. et al. Loss-of-function ABCC8 mutations in pulmonary arterial hypertension. Circ. Genom. Precis. Med. 11, e002087 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Germain, M. et al. Genome-wide association analysis identifies a susceptibility locus for pulmonary arterial hypertension. Nat. Genet. 45, 518–521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kimura, M. et al. A genome-wide association analysis identifies PDE1A|DNAJC10 locus on chromosome 2 associated with idiopathic pulmonary arterial hypertension in a Japanese population. Oncotarget 8, 74917–74926 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Rhodes, C. J. et al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respir. Med. 7, 227–238 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Chung, W. K., Austin, E. D., Best, D. H., Brown, L. M. & Elliott, C. G. When to offer genetic testing for pulmonary arterial hypertension. Can. J. Cardiol. 31, 544–547 (2015).

    PubMed  Google Scholar 

  103. Girerd, B. et al. Genetic counselling in a national referral centre for pulmonary hypertension. Eur. Respir. J. 47, 541–552 (2015).

    PubMed  Google Scholar 

  104. Morrell, N. W. et al. Genetics and genomics of pulmonary arterial hypertension. Eur. Respir. J. 53, 1801899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dunmore, B. J. et al. The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. Hum. Mol. Genet. 22, 3667–3679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Drake, K. M., Dunmore, B. J., McNelly, L. N., Morrell, N. W. & Aldred, M. A. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 49, 403–409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Long, L. et al. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ. Res. 112, 1159–1170 (2013).

    CAS  PubMed  Google Scholar 

  108. Spiekerkoetter, E. et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Invest. 123, 3600–3613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hurst, L. A. et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat. Commun. 8, 14079 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Morrell, N. W. et al. Targeting BMP signalling in cardiovascular disease and anaemia. Nat. Rev. Cardiol. 13, 106–120 (2016).

    CAS  PubMed  Google Scholar 

  111. Spiekerkoetter, E. et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur. Respir. J. 50, 1602449 (2017).

    PubMed  Google Scholar 

  112. Sitbon, O. et al. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur. Respir. J. 53, 1801908 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Long, L. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21, 777–785 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ormiston, M. L., Upton, P. D., Li, W. & Morrell, N. W. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Glob. Cardiol. Sci. Pract. 2015, 47 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Upton, P. D., Long, L., Trembath, R. C. & Morrell, N. W. Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells. Mol. Pharmacol. 73, 539–552 (2008).

    CAS  PubMed  Google Scholar 

  116. Hemnes, A. R. et al. PVDOMICS: a multi-center study to improve understanding of pulmonary vascular disease through phenomics. Circ. Res. 121, 1136–1139 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Newman, J. H. et al. Enhancing insights into pulmonary vascular disease through a precision medicine approach. A joint NHLBI–Cardiovascular Medical Research and Education Fund workshop report. Am. J. Respir. Crit. Care Med. 195, 1661–1670 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.S. is supported by the Wellcome Trust Institutional Strategic Support Fund (204809/Z/16/Z) awarded to St George’s, University of London, UK. N.W.M. is supported by a British Heart Foundation Personal Chair Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed its content, wrote the manuscript and reviewed and edited it before submission.

Corresponding author

Correspondence to Nicholas W. Morrell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks E. Austin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Institute for Health Research BioResource for Rare Diseases: https://bioresource.nihr.ac.uk/rare-diseases/rare-diseases/

Morphogen-IX Limited: https://www.morphogen-ix.com/

International Consortium for Genetic Studies in PAH: http://www.pahicon.com

Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics: https://phassociation.org/pvdomics/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Southgate, L., Machado, R.D., Gräf, S. et al. Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol 17, 85–95 (2020). https://doi.org/10.1038/s41569-019-0242-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0242-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing