Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Percutaneous management of paravalvular leaks

An Author Correction to this article was published on 18 March 2019

This article has been updated

Abstract

Paravalvular leak (PVL) is a complication that occurs in 5–17% of patients after surgical prosthetic valve implantation. Whereas PVLs can be benign, some PVLs are associated with substantial morbidity and mortality. Percutaneous closure using occluders specifically designed to improve closure and reduce procedural complications has now become the first-line treatment for PVL. In this Review, we first detail the frequency and clinical consequences of PVL closure. The role of cardiac imaging in the assessment and management of PVL, including echocardiographic imaging and adjunctive techniques such as CT, is then discussed, together with important considerations for the percutaneous closure of PVL, such as access site and device selection. Finally, we summarize the clinical evidence for percutaneous closure of PVL, including large national registries from Ireland, Spain and the UK, as well as head-to-head data comparing this procedure with surgical closure.

Key points

  • Paravalvular leak (PVL) is an important complication of valve replacement surgery and is associated with substantial morbidity and mortality.

  • Evidence is emerging for the important role of percutaneous transcatheter closure as the first-line treatment for patients with PVL.

  • The role of imaging, particularly fluoroscopy and 3D transoesophageal echocardiography, is important in the assessment, planning and treatment of PVLs.

  • A structural heart team approach (with all relevant specialists) is critical for good clinical decision making for patients with PVLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PVL assessment in general and specialist cardiology clinics.
Fig. 2: Assessment of a mitral PVL.
Fig. 3: Assessment of an aortic PVL.
Fig. 4: Fusion of fluoroscopic and 3D transoesophageal echocardiography during closure of a mitral PVL.
Fig. 5: Devices for PVL closure.

Similar content being viewed by others

Change history

  • 18 March 2019

    In the version of this article initially published online, the Paravalvular Leak Device (PLD; Occlutech) was incorrectly described as having a “proximal disc that is slightly larger than the distal disc”, whereas the distal disc is actually slightly larger than the proximal disc. This error has been corrected for the HTML, PDF and print versions of the article.

References

  1. Taramasso, M. et al. Surgical treatment of paravalvular leak: long-term results in a single-center experience (up to 14 years). J. Thorac Cardiovasc. Surg. 149, 1270–1275 (2015).

    PubMed  Google Scholar 

  2. Genoni, M. et al. Paravalvular leakage after mitral valve replacement: improved long-term survival with aggressive surgery? Eur. J. Cardiothorac Surg. 17, 14–19 (2000).

    CAS  PubMed  Google Scholar 

  3. Akins, C. W. et al. Early and late results of the surgical correction of cardiac prosthetic paravalvular leaks. J. Heart Valve Dis. 14, 792–799; discussion 799–800 (2005).

    PubMed  Google Scholar 

  4. Garcia, E. et al. Outcomes and predictors of success and complications for paravalvular leak closure: an analysis of the SpanisH real-wOrld paravalvular LEaks closure (HOLE) registry. EuroIntervention 12, 1962–1968 (2017).

    PubMed  Google Scholar 

  5. Calvert, P. A. et al. Percutaneous device closure of paravalvular leak: combined experience from the United Kingdom and Ireland. Circulation 134, 934–944 (2016).

    PubMed  Google Scholar 

  6. Ruiz, C. E. et al. Clinical outcomes in patients undergoing percutaneous closure of periprosthetic paravalvular leaks. J. Am. Coll. Cardiol. 58, 2210–2217 (2011).

    PubMed  Google Scholar 

  7. Sorajja, P., Cabalka, A. K., Hagler, D. J. & Rihal, C. S. Long-term follow-up of percutaneous repair of paravalvular prosthetic regurgitation. J. Am. Coll. Cardiol. 58, 2218–2224 (2011).

    PubMed  Google Scholar 

  8. Sorajja, P., Cabalka, A. K., Hagler, D. J. & Rihal, C. S. Percutaneous repair of paravalvular prosthetic regurgitation: acute and 30-day outcomes in 115 patients. Circ. Cardiovasc. Interv. 4, 314–321 (2011).

    PubMed  Google Scholar 

  9. Hein, R., Wunderlich, N., Robertson, G., Wilson, N. & Sievert, H. Catheter closure of paravalvular leak. EuroIntervention 2, 318–325 (2006).

    PubMed  Google Scholar 

  10. Seery, T. J. & Slack, M. C. Percutaneous closure of a prosthetic pulmonary paravalvular leak. Congenit. Heart Dis. 9, E19–E22 (2014).

    PubMed  Google Scholar 

  11. Turner, M. E., Lai, W. W. & Vincent, J. A. Percutaneous closure of tricuspid paravalvular leak. Catheter. Cardiovasc. Interv. 82, E511–E515 (2013).

    PubMed  Google Scholar 

  12. Hammermeister, K. et al. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J. Am. Coll. Cardiol. 36, 1152–1158 (2000).

    CAS  PubMed  Google Scholar 

  13. Ionescu, A., Fraser, A. G. & Butchart, E. G. Prevalence and clinical significance of incidental paraprosthetic valvar regurgitation: a prospective study using transoesophageal echocardiography. Heart 89, 1316–1321 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rallidis, L. S., Moyssakis, I. E., Ikonomidis, I. & Nihoyannopoulos, P. Natural history of early aortic paraprosthetic regurgitation: a five-year follow-up. Am. Heart J. 138, 351–357 (1999).

    CAS  PubMed  Google Scholar 

  15. Davila-Roman, V. G. et al. Prevalence and severity of paravalvular regurgitation in the Artificial Valve Endocarditis Reduction Trial (AVERT) echocardiography study. J. Am. Coll. Cardiol. 44, 1467–1472 (2004).

    PubMed  Google Scholar 

  16. De Cicco, G. et al. Mitral valve periprosthetic leakage: anatomical observations in 135 patients from a multicentre study. Eur. J. Cardiothorac Surg. 30, 887–891 (2006).

    PubMed  Google Scholar 

  17. Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363, 1597–1607 (2010).

    CAS  PubMed  Google Scholar 

  18. Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).

    CAS  PubMed  Google Scholar 

  19. Athappan, G. et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J. Am. Coll. Cardiol. 61, 1585–1595 (2013).

    PubMed  Google Scholar 

  20. Van Belle, E. et al. Postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: analysis of predictors and impact on long-term mortality: insights from the FRANCE2 Registry. Circulation 129, 1415–1427 (2014).

    PubMed  Google Scholar 

  21. Wendt, D. et al. Low incidence of paravalvular leakage with the balloon-expandable sapien 3 transcatheter heart valve. Ann. Thorac Surg. 100, 819–825; discussion 825–826 (2015).

    PubMed  Google Scholar 

  22. Webb, J. et al. Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J. Am. Coll. Cardiol. 64, 2235–2243 (2014).

    PubMed  Google Scholar 

  23. Thompson, D. S. et al. Analysis of left ventricular pressure during isovolumic relaxation in coronary artery disease. Circulation 65, 690–697 (1982).

    CAS  PubMed  Google Scholar 

  24. Sawant, D., Singh, A. K., Feng, W. C., Bert, A. A. & Rotenberg, F. St. Jude Medical cardiac valves in small aortic roots: follow-up to sixteen years. J. Thorac Cardiovasc. Surg. 113, 499–509 (1997).

    CAS  PubMed  Google Scholar 

  25. Nietlispach, F. et al. Percutaneous paravalvular leak closure: chasing the chameleon. Eur. Heart J. 37, 3495–3502 (2016).

    PubMed  Google Scholar 

  26. Yakubov, S. J. et al. 2-year outcomes after iliofemoral self-expanding transcatheter aortic valve replacement in patients with severe aortic stenosis deemed extreme risk for surgery. J. Am. Coll. Cardiol. 66, 1327–1334 (2015).

    PubMed  Google Scholar 

  27. Lancellotti, P. et al. Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imag. 17, 589–590 (2016).

    Google Scholar 

  28. Jayawardena, S., Sooriabalan, D., Burzyantseva, O. & Sinnapunayagm, S. Paravalvular mitral valve leakage presenting as congestive heart failure, missed by TTE but diagnosed by TEE: a case report. Cases J. 1, 216 (2008).

    PubMed  PubMed Central  Google Scholar 

  29. Deftereos, S., Giannopoulos, G., Raisakis, K., Kaoukis, A. & Kossyvakis, C. Intracardiac echocardiography imaging of periprosthetic valvular regurgitation. Eur. J. Echocardiogr. 11, E20 (2010).

    PubMed  Google Scholar 

  30. Jelnin, V. et al. Three dimensional CT angiography for patients with congenital heart disease: scanning protocol for pediatric patients. Catheter. Cardiovasc. Interv. 67, 120–126 (2006).

    PubMed  Google Scholar 

  31. Lesser, J. R. et al. Use of cardiac CT angiography to assist in the diagnosis and treatment of aortic prosthetic paravalvular leak: a practical guide. J. Cardiovasc. Comput. Tomogr. 9, 159–164 (2015).

    PubMed  Google Scholar 

  32. Suh, Y. J. et al. Assessment of mitral paravalvular leakage after mitral valve replacement using cardiac computed tomography: comparison with surgical findings. Circ. Cardiovasc. Imaging 9, e004153 (2016).

    PubMed  Google Scholar 

  33. Clegg, S. D. et al. Integrated 3D echo-x ray to optimize image guidance for structural heart intervention. JACC Cardiovasc. Imag. 8, 371–374 (2015).

    Google Scholar 

  34. de Agustin, J. A., Jimenez-Quevedo, P., Nombela-Franco, L., Gomez de Diego, J. J. & Perez de Isla, L. Paravalvular mitral leak closure under Eco-X-ray fusion guidance. Eur. Heart J. Cardiovasc. Imaging 19, 586 (2018).

    PubMed  Google Scholar 

  35. Faletra, F. F. et al. Echocardiographic-fluoroscopic fusion imaging for transcatheter mitral valve repair guidance. Eur. Heart J. Cardiovasc. Imaging 19, 715–726 (2018).

    PubMed  Google Scholar 

  36. Hascoet, S. et al. Multimodality imaging guidance for percutaneous paravalvular leak closure: insights from the multi-centre FFPP register. Arch. Cardiovasc. Dis. 111, 421–431 (2018).

    PubMed  Google Scholar 

  37. Pflaumer, A., Schwaiger, M., Hess, J., Lange, R. & Stern, H. Quantification of periprosthetic valve leakage with multiple regurgitation jets by magnetic resonance imaging. Pediatr. Cardiol. 26, 593–594 (2005).

    CAS  PubMed  Google Scholar 

  38. Zoghbi, W. A. et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 22, 975–1014 (2009).

    PubMed  Google Scholar 

  39. Becerra, J. M., Almeria, C., de Isla, L. P. & Zamorano, J. Usefulness of 3D transoesophageal echocardiography for guiding wires and closure devices in mitral perivalvular leaks. Eur. J. Echocardiogr. 10, 979–981 (2009).

    PubMed  Google Scholar 

  40. Enriquez-Sarano, M. et al. Determinants of pulmonary venous flow reversal in mitral regurgitation and its usefulness in determining the severity of regurgitation. Am. J. Cardiol. 83, 535–541 (1999).

    CAS  PubMed  Google Scholar 

  41. Mahjoub, H. et al. Description and assessment of a common reference method for fluoroscopic and transesophageal echocardiographic localization and guidance of mitral periprosthetic transcatheter leak reduction. JACC Cardiovasc. Interv. 4, 107–114 (2011).

    PubMed  Google Scholar 

  42. Lázaro, C., Hinojar, R. & Zamorano, J. L. Cardiac imaging in prosthetic paravalvular leaks. Cardiovasc. Diagn. Ther. 4, 307–313 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Garcia-Fernandez, M. A. et al. Utility of real-time three-dimensional transesophageal echocardiography in evaluating the success of percutaneous transcatheter closure of mitral paravalvular leaks. J. Am. Soc. Echocardiogr. 23, 26–32 (2010).

    PubMed  Google Scholar 

  44. Franco, E. et al. Three-dimensional color Doppler transesophageal echocardiography for mitral paravalvular leak quantification and evaluation of percutaneous closure success. J. Am. Soc. Echocardiogr. 27, 1153–1163 (2014).

    PubMed  Google Scholar 

  45. Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14, 611–644 (2013).

    PubMed  Google Scholar 

  46. Tribouilloy, C. et al. End diastolic flow velocity just beneath the aortic isthmus assessed by pulsed Doppler echocardiography: a new predictor of the aortic regurgitant fraction. Br. Heart J. 65, 37–40 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hildick-Smith, D., Behan, M. W. & De Giovanni, J. Percutaneous closure of an aortic paravalvular leak via the transradial approach. Catheter. Cardiovasc. Interv. 69, 708–710 (2007).

    CAS  PubMed  Google Scholar 

  48. Jolly, S. S. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377, 1409–1420 (2011).

    PubMed  Google Scholar 

  49. Ruparelia, N. et al. Paravalvular leak closure under intracardiac echocardiographic guidance. Catheter. Cardiovasc. Interv. 91, 958–965 (2018).

    PubMed  Google Scholar 

  50. Al’Aref, S. J., Devereux, R. B., Cheung, J. W. & Bergman, G. Bioprosthetic mitral valve paravalvular leak closure using intracardiac echocardiography-guided three dimensional electroanatomic mapping. Catheter. Cardiovasc. Interv. 92, E135–E138 (2018).

    PubMed  Google Scholar 

  51. Rihal, C. S., Sorajja, P., Booker, J. D., Hagler, D. J. & Cabalka, A. K. Principles of percutaneous paravalvular leak closure. JACC Cardiovasc. Interv. 5, 121–130 (2012).

    Google Scholar 

  52. Singh, P. et al. Live/real time three-dimensional transesophageal echocardiographic evaluation of mitral and aortic valve prosthetic paravalvular regurgitation. Echocardiography 26, 980–987 (2009).

    PubMed  Google Scholar 

  53. Arribas-Jimenez, A. et al. Utility of real-time 3-dimensional transesophageal echocardiography in the assessment of mitral paravalvular leak. Circ. J. 80, 738–744 (2016).

    PubMed  Google Scholar 

  54. Biner, S., Rafique, A. M., Kar, S. & Siegel, R. J. Live three-dimensional transesophageal echocardiography-guided transcatheter closure of a mitral paraprosthetic leak by Amplatzer occluder. J. Am. Soc. Echocardiogr. 21, 1282–1289 (2008).

    PubMed  Google Scholar 

  55. Smolka, G. et al. Multiplug paravalvular leak closure using amplatzer vascular plugs III: a prospective registry. Catheter. Cardiovasc. Interv. 87, 478–487 (2016).

    PubMed  Google Scholar 

  56. Goktekin, O. et al. Transcatheter trans-apical closure of paravalvular mitral and aortic leaks using a new device: first in man experience. Catheter. Cardiovasc. Interv. 83, 308–314 (2014).

    PubMed  Google Scholar 

  57. Bedair, R. et al. Early experience with the Occlutech PLD occluder for mitral paravalvar leak closure through a hybrid transapical approach. EuroIntervention 12, e1420–e1427 (2016).

    PubMed  Google Scholar 

  58. Pestrichella, V. et al. Transcatheter simultaneous double-transapical access for paravalvular mitral leak closure using the Occlutech PLD. J. Invasive Cardiol. 28, E66–E68 (2016).

    PubMed  Google Scholar 

  59. Roy, J. et al. Simultaneous transseptal para-ring leak closure and transcatheter mitral valve implantation for the treatment of surgical mitral repair failure. Heart Lung Circ. 26, e71–e75 (2017).

    PubMed  Google Scholar 

  60. McElhinney, D. B. Will there ever be a Food and Drug Administration-approved device for transcatheter paravalvular leak closure? Circ. Cardiovasc. Interv. 7, 2–5 (2014).

    PubMed  Google Scholar 

  61. Gafoor, S. et al. Tools and techniques — clinical: paravalvular leak closure. EuroIntervention 9, 1359–1363 (2014).

    PubMed  Google Scholar 

  62. Hahn, R. T. et al. Outcomes with post-dilation following transcatheter aortic valve replacement: the PARTNER I trial (placement of aortic transcatheter valve). JACC Cardiovasc. Interv. 7, 781–778 (2014).

    PubMed  Google Scholar 

  63. Nietlispach, F. & Maisano, F. Balloon post-dilation after transcatheter aortic valve replacement: a solution worth trying in patients with residual aortic insufficiency. JACC Cardiovasc. Interv. 7, 790–791 (2014).

    PubMed  Google Scholar 

  64. Murdoch, D. J., Sathananthan, J., Cheung, A. & Webb, J. G. Combined transapical valve-in-valve/valve-in-ring transcatheter mitral valve implantation and paravalvular leak closure for failed mitral valve surgery. Can J. Cardiol. 34, 1088.e3–1088.e6 (2018).

    Google Scholar 

  65. Eskandari, M. et al. Transcatheter valve-in-valve therapy using a balloon expanding valve for treatment of aortic paravalvular leakage. Heart Lung Circ. https://doi.org/10.1016/j.hlc.2018.06.1045 (2018).

    Article  PubMed  Google Scholar 

  66. Cruz-Gonzalez, I. et al. Transcatheter closure of paravalvular leaks: state of the art. Neth. Heart J. 25, 116–124 (2017).

    CAS  PubMed  Google Scholar 

  67. Emery, R. W., Krogh, C. C., McAdams, S., Emery, A. M. & Holter, A. R. Long-term follow up of patients undergoing reoperative surgery with aortic or mitral valve replacement using a St. Jude Medical prosthesis. J. Heart Valve Dis. 19, 473–484 (2010).

    PubMed  Google Scholar 

  68. Echevarria, J. R. et al. Reoperation for bioprosthetic valve dysfunction. A decade of clinical experience. Eur. J. Cardiothorac Surg. 5, 523–526; discussion 527 (1991).

    CAS  PubMed  Google Scholar 

  69. Hourihan, M. et al. Transcatheter umbrella closure of valvular and paravalvular leaks. J. Am. Coll. Cardiol. 20, 1371–1377 (1992).

    CAS  PubMed  Google Scholar 

  70. Piechaud, J. F. Percutaneous closure of mitral paravalvular leak. J. Interv Cardiol. 16, 153–155 (2003).

    PubMed  Google Scholar 

  71. Webb, J. G., Pate, G. E. & Munt, B. I. Percutaneous closure of an aortic prosthetic paravalvular leak with an Amplatzer duct occluder. Catheter. Cardiovasc. Interv. 65, 69–72 (2005).

    PubMed  Google Scholar 

  72. Sorajja, P., Cabalka, A. K., Hagler, D. J. & Rihal, C. S. The learning curve in percutaneous repair of paravalvular prosthetic regurgitation: an analysis of 200 cases. JACC Cardiovasc. Interv. 7, 521–529 (2014).

    PubMed  Google Scholar 

  73. Waterbury, T. M. et al. Techniques and outcomes of paravalvular leak repair after transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 90, 870–877 (2017).

    PubMed  Google Scholar 

  74. Feldman, T., Salinger, M. H., Levisay, J. P. & Smart, S. Low profile vascular plugs for paravalvular leaks after TAVR. Catheter. Cardiovasc. Interv. 83, 280–288 (2014).

    PubMed  Google Scholar 

  75. Angulo-Llanos, R. et al. Two-year follow up after surgical versus percutaneous paravalvular leak closure: a non-randomized analysis. Catheter. Cardiovasc. Interv. 88, 626–634 (2016).

    PubMed  Google Scholar 

  76. Pinheiro, C. P. et al. Paravalvular regurgitation: clinical outcomes in surgical and percutaneous treatments. Arq. Bras. Cardiol. 107, 55–62 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Wells, J. A. t. et al. Outcomes after paravalvular leak closure: transcatheter versus surgical approaches. JACC Cardiovasc. Interv. 10, 500–507 (2017).

    PubMed  Google Scholar 

  78. Taramasso, M. et al. Conventional surgery and transcatheter closure via surgical transapical approach for paravalvular leak repair in high-risk patients: results from a single-centre experience. Eur. Heart J. Cardiovasc. Imaging 15, 1161–1167 (2014).

    PubMed  Google Scholar 

  79. Millan, X. et al. Surgery versus transcatheter interventions for significant paravalvular prosthetic leaks. JACC Cardiovasc. Interv. 10, 1959–1969 (2017).

    PubMed  Google Scholar 

  80. Pilgrim, T. & Franzone, A. Strategies for paravalvular prosthetic leak closure: competing or complementary? JACC Cardiovasc. Interv. 10, 1970–1972 (2017).

    PubMed  Google Scholar 

  81. Alkhouli, M. et al. Transcatheter and surgical management of mitral paravalvular leak: long-term outcomes. JACC Cardiovasc. Interv. 10, 1946–1956 (2017).

    PubMed  Google Scholar 

  82. Ruiz, C. E. et al. Clinical trial principles and endpoint definitions for paravalvular leaks in surgical prosthesis: an expert statement. J. Am. Coll. Cardiol. 69, 2067–2087 (2017).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.P.G. researched data for the article and wrote the manuscript. B.S.R. produced the clinical images. All the authors provided substantial contribution to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Patrick A. Calvert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giblett, J.P., Rana, B.S., Shapiro, L.M. et al. Percutaneous management of paravalvular leaks. Nat Rev Cardiol 16, 275–285 (2019). https://doi.org/10.1038/s41569-018-0147-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0147-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing