Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic remodelling in heart failure

Abstract

The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts — discovered >2 decades ago — might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.

Key points

  • The healthy heart is metabolically flexible and can derive energy from various circulating substrates.

  • Heart failure (HF) and diabetes mellitus are characterized by an increased reliance on ketone bodies and fatty acid oxidation, respectively, for cardiac ATP production.

  • Metabolic inflexibility and accumulation of toxic intermediates, rather than unbalanced substrate utilization, might detrimentally affect cardiac function.

  • Metabolic intermediates can operate as signalling factors, inducing post-translational and epigenetic modifications or activating intracellular signalling cascades, which ultimately affect several cellular functions.

  • In the failing heart, derangements in metabolism and excitation–contraction coupling contribute to mitochondrial dysfunction and oxidative stress.

  • Targeting metabolic alterations and/or oxidative stress in mitochondria ameliorates HF development in animal models, and translation of these approaches to patients with HF is ongoing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Interplay of mitochondrial redox and energetics with excitation–contraction coupling.
Fig. 2: Metabolic and transcriptional remodelling in heart failure.
Fig. 3: Mouse models of imbalanced substrate utilization.

References

  1. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 18, 891–975 (2016).

    Google Scholar 

  2. Neubauer, S. The failing heart—an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    PubMed  Google Scholar 

  3. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    CAS  PubMed  Google Scholar 

  4. Münzel, T. et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J. Am. Coll. Cardiol. 70, 212–229 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Bers, D. M. Altered cardiac myocyte Ca regulation in heart failure. Physiology 21, 380–387 (2006).

    CAS  PubMed  Google Scholar 

  6. Ingwall, J. S. ATP and the Heart (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002).

    Google Scholar 

  7. Bers, D. M. Excitation-Contraction Coupling and Cardiac Contractile Force 2nd Edition (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001).

    Google Scholar 

  8. Goodwin, G. W., Taylor, C. S. & Taegtmeyer, H. Regulation of energy metabolism of the heart during acute increase in heart work. J. Biol. Chem. 273, 29530–29539 (1998).

    CAS  PubMed  Google Scholar 

  9. Taegtmeyer, H., Golfman, L., Sharma, S., Razeghi, P. & van Arsdall, M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann. NY Acad. Sci. 1015, 202–213 (2004).

    CAS  PubMed  Google Scholar 

  10. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    CAS  PubMed  Google Scholar 

  11. Hardie, D. G. & Carling, D. The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur. J. Biochem. 246, 259–273 (1997).

    CAS  PubMed  Google Scholar 

  12. Zaha, V. G. & Young, L. H. AMP-activated protein kinase regulation and biological actions in the heart. Circ. Res. 111, 800–814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dufour, C. R. et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 5, 345–356 (2007).

    CAS  PubMed  Google Scholar 

  14. Lehman, J. J. et al. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106, 847–856 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rowe, G. C., Jiang, A. & Arany, Z. PGC-1 coactivators in cardiac development and disease. Circ. Res. 107, 825–838 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haemmerle, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat. Med. 17, 1076–1085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Balaban, R. S. Domestication of the cardiac mitochondrion for energy conversion. J. Mol. Cell. Cardiol. 46, 832–841 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Balaban, R. S. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J. Mol. Cell. Cardiol. 34, 1259–1271 (2002).

    CAS  PubMed  Google Scholar 

  19. Balaban, R., Kantor, H., Katz, L. & Briggs, R. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science 232, 1121–1123 (1986).

    CAS  PubMed  Google Scholar 

  20. Conway, M. A. et al. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338, 973–976 (1991).

    CAS  PubMed  Google Scholar 

  21. Neubauer, S. et al. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86, 1810–1818 (1992).

    CAS  PubMed  Google Scholar 

  22. Hardy, C. J., Weiss, R. G., Bottomley, P. A. & Gerstenblith, G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am. Heart J. 122, 795–801 (1991).

    CAS  PubMed  Google Scholar 

  23. Neubauer, S. et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96, 2190–2196 (1997).

    CAS  PubMed  Google Scholar 

  24. Beer, M. et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol. 40, 1267–1274 (2002).

    CAS  PubMed  Google Scholar 

  25. Ingwall, J. S. & Weiss, R. G. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ. Res. 95, 135–145 (2004).

    CAS  PubMed  Google Scholar 

  26. Gupta, A. et al. Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J. Clin. Invest. 122, 291–302 (2012).

    CAS  PubMed  Google Scholar 

  27. Lygate, C. A. et al. Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ. Res. 112, 945–955 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nahrendorf, M. et al. Creatine kinase knockout mice show left ventricular hypertrophy and dilatation, but unaltered remodeling post-myocardial infarction. Cardiovasc. Res. 65, 419–427 (2005).

    CAS  PubMed  Google Scholar 

  29. Nicholls, D. G. & Ferguson, S. J. Bioenergetics. 4th Edition (Academic Press, Cambridge, MA, 2013).

    Google Scholar 

  30. Gupta, A., Chacko, V. P., Schar, M., Akki, A. & Weiss, R. G. Impaired ATP kinetics in failing in vivo mouse heart. Circ. Cardiovasc. Imaging 4, 42–50 (2011).

    CAS  PubMed  Google Scholar 

  31. Weiss, R. G., Gerstenblith, G. & Bottomley, P. A. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc. Natl Acad. Sci. USA 102, 808–813 (2005).

    CAS  PubMed  Google Scholar 

  32. Bottomley, P. A. et al. Metabolic rates of ATP transfer through creatine kinase (CK Flux) predict clinical heart failure events and death. Sci. Transl. Med. 5, 215re3 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Nickel, A., Loffler, J. & Maack, C. Myocardial energetics in heart failure. Basic Res. Cardiol. 108, 358 (2013).

    PubMed  Google Scholar 

  34. Doenst, T. et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc. Res. 86, 461–470 (2010).

    CAS  PubMed  Google Scholar 

  35. Christe, M. E. & Rodgers, R. L. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J. Mol. Cell. Cardiol. 26, 1371–1375 (1994).

    CAS  PubMed  Google Scholar 

  36. Allard, M. F., Schonekess, B. O., Henning, S. L., English, D. R. & Lopaschuk, G. D. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. 267, H742–H750 (1994).

    CAS  PubMed  Google Scholar 

  37. Degens, H. et al. Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res. Cardiol. 101, 17–26 (2006).

    CAS  PubMed  Google Scholar 

  38. Kato, T. et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 3, 420–430 (2010).

    PubMed  Google Scholar 

  39. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 113, 709–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolwicz, S. C. Jr, Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).

    CAS  PubMed  Google Scholar 

  41. Heather, L. C. et al. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc. Res. 72, 430–437 (2006).

    CAS  PubMed  Google Scholar 

  42. Osorio, J. C. et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106, 606–612 (2002).

    CAS  PubMed  Google Scholar 

  43. Davila-Roman, V. G. et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 40, 271–277 (2002).

    CAS  PubMed  Google Scholar 

  44. Bedi, K. C. Jr et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133, 706–716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Barger, P. M., Brandt, J. M., Leone, T. C., Weinheimer, C. J. & Kelly, D. P. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J. Clin. Invest. 105, 1723–1730 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lahey, R., Wang, X., Carley, A. N. & Lewandowski, E. D. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 130, 1790–1799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Krishnan, J. et al. Activation of a HIF1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab. 9, 512–524 (2009).

    CAS  PubMed  Google Scholar 

  48. Sack, M. N. et al. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94, 2837–2842 (1996).

    CAS  PubMed  Google Scholar 

  49. Opie, L. H. & Knuuti, J. The adrenergic-fatty acid load in heart failure. J. Am. Coll. Cardiol. 54, 1637–1646 (2009).

    CAS  PubMed  Google Scholar 

  50. Sharma, S. et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 18, 1692–1700 (2004).

    CAS  PubMed  Google Scholar 

  51. Wende, A. R. & Abel, E. D. Lipotoxicity in the heart. Biochim. Biophys. Acta 1801, 311–319 (2010).

    CAS  PubMed  Google Scholar 

  52. Goldberg, I. J., Trent, C. M. & Schulze, P. C. Lipid metabolism and toxicity in the heart. Cell Metab. 15, 805–812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, J. K. et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J. Clin. Invest. 114, 823–827 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    CAS  PubMed  Google Scholar 

  55. Chokshi, A. et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125, 2844–2853 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Taegtmeyer, H., Beauloye, C., Harmancey, R. & Hue, L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am. J. Physiol. Heart Circ. Physiol. 305, H1693–H1697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sorokina, N. et al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115, 2033–2041 (2007).

    CAS  PubMed  Google Scholar 

  58. Pound, K. M. et al. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ. Res. 104, 805–812 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Diakos, N. A. et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl Sci. 1, 432–444 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Nascimben, L. et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44, 662–667 (2004).

    CAS  PubMed  Google Scholar 

  61. Atherton, H. J. et al. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study. Circulation 123, 2552–2561 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mori, J. et al. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ. Heart Fail. 5, 493–503 (2012).

    CAS  PubMed  Google Scholar 

  63. Zhabyeyev, P. et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc. Res. 97, 676–685 (2013).

    CAS  PubMed  Google Scholar 

  64. Mori, J. et al. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304, H1103–H1113 (2013).

    CAS  PubMed  Google Scholar 

  65. Zhang, L. et al. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ. Heart Fail. 6, 1039–1048 (2013).

    CAS  PubMed  Google Scholar 

  66. Fukushima, A. & Lopaschuk, G. D. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim. Biophys. Acta 1861, 1525–1534 (2016).

    CAS  PubMed  Google Scholar 

  67. Swan, J. W. et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J. Am. Coll. Cardiol. 30, 527–532 (1997).

    CAS  PubMed  Google Scholar 

  68. Lydell, C. P. et al. Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovasc. Res. 53, 841–851 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Aubert, G. et al. The failing heart relies on ketone bodies as a fuel. Circulation 133, 698–705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cahill, G. F. Jr Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).

    CAS  PubMed  Google Scholar 

  71. Seferovic, P. M. & Paulus, W. J. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur. Heart J. 36, 1718–1727, 1727a-1727c (2015).

    PubMed  Google Scholar 

  72. Bayeva, M., Sawicki, K. T. & Ardehali, H. Taking diabetes to heart—deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J. Am. Heart Assoc. 2, e000433 (2013).

    PubMed  PubMed Central  Google Scholar 

  73. Herrero, P. et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J. Am. Coll. Cardiol. 47, 598–604 (2006).

    CAS  PubMed  Google Scholar 

  74. Paternostro, G. et al. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J. Clin. Invest. 98, 2094–2099 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Scheuermann-Freestone, M. et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107, 3040–3046 (2003).

    CAS  PubMed  Google Scholar 

  76. Buchanan, J. et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146, 5341–5349 (2005).

    CAS  Google Scholar 

  77. Razeghi, P., Young, M. E., Cockrill, T. C., Frazier, O. H. & Taegtmeyer, H. Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106, 407–411 (2002).

    CAS  PubMed  Google Scholar 

  78. Anderson, E. J. et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J. Am. Coll. Cardiol. 54, 1891–1898 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sankaralingam, S. et al. Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox. Diabetes 64, 1643–1657 (2015).

    CAS  PubMed  Google Scholar 

  80. Alrob, O. A. et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc. Res. 103, 485–497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Murray, A. J., Anderson, R. E., Watson, G. C., Radda, G. K. & Clarke, K. Uncoupling proteins in human heart. Lancet 364, 1786–1788 (2004).

    CAS  PubMed  Google Scholar 

  82. Hesselink, M. K. et al. Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo. J. Clin. Invest. 111, 479–486 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hesselink, M. K. & Schrauwen, P. Uncoupling proteins in the failing human heart: friend or foe? Lancet 365, 385–386 (2005).

    PubMed  Google Scholar 

  84. Turner, J. D., Gaspers, L. D., Wang, G. & Thomas, A. P. Uncoupling protein-2 modulates myocardial excitation-contraction coupling. Circ. Res. 106, 730–738 (2010).

    CAS  PubMed  Google Scholar 

  85. How, O. J. et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55, 466–473 (2006).

    CAS  PubMed  Google Scholar 

  86. Mather, K. J. et al. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. Am. J. Physiol. Endocrinol. Metab. 310, E452–E460 (2016).

    CAS  PubMed  Google Scholar 

  87. McGavock, J. M. et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116, 1170–1175 (2007).

    PubMed  Google Scholar 

  88. Balteau, M. et al. NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1. Cardiovasc. Res. 92, 237–246 (2011).

    CAS  PubMed  Google Scholar 

  89. Serpillon, S. et al. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am. J. Physiol. Heart Circ. Physiol. 297, H153–H162 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shah, M. S. & Brownlee, M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ. Res. 118, 1808–1829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bodiga, V. L., Eda, S. R. & Bodiga, S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail. Rev. 19, 49–63 (2014).

    CAS  PubMed  Google Scholar 

  92. Ramasamy, R. & Goldberg, I. J. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ. Res. 106, 1449–1458 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ritterhoff, J. & Tian, R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc. Res. 113, 411–421 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Peterzan, M. A., Lygate, C. A., Neubauer, S. & Rider, O. J. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am. J. Physiol. Heart Circ. Physiol. 313, H597–H616 (2017).

    PubMed  Google Scholar 

  95. Pereira, R. O. et al. GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J. Mol. Cell. Cardiol. 72, 95–103 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Abel, E. D. et al. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J. Clin. Invest. 104, 1703–1714 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kolwicz, S. C. Jr et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ. Res. 111, 728–738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Finck, B. N. et al. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109, 121–130 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Nagendran, J. et al. Cardiomyocyte-specific ablation of CD36 improves post-ischemic functional recovery. J. Mol. Cell. Cardiol. 63, 180–188 (2013).

    CAS  PubMed  Google Scholar 

  100. Kienesberger, P. C. et al. Myocardial ATGL overexpression decreases the reliance on fatty acid oxidation and protects against pressure overload-induced cardiac dysfunction. Mol. Cell. Biol. 32, 740–750 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Luptak, I. et al. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112, 2339–2346 (2005).

    CAS  PubMed  Google Scholar 

  102. Cheng, L. et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat. Med. 10, 1245–1250 (2004).

    CAS  PubMed  Google Scholar 

  103. He, L. et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 126, 1705–1716 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Luptak, I. et al. Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation 116, 901–909 (2007).

    CAS  PubMed  Google Scholar 

  105. McCommis, K. S., Douglas, D. L., Krenz, M. & Baines, C. P. Cardiac-specific hexokinase 2 overexpression attenuates hypertrophy by increasing pentose phosphate pathway flux. J. Am. Heart Assoc. 2, e000355 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. Yan, J. et al. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119, 2818–2828 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. McKnight, S. L. On getting there from here. Science 330, 1338–1339 (2010).

    CAS  PubMed  Google Scholar 

  108. Gibb, A. A. et al. Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation 136, 2144–2157 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Riquelme, C. A. et al. Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334, 528–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mailleux, F., Gelinas, R., Beauloye, C., Horman, S. & Bertrand, L. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim. Biophys. Acta 1862, 2232–2243 (2016).

    CAS  PubMed  Google Scholar 

  111. Facundo, H. T. et al. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 302, H2122–H2130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Erickson, J. R. et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502, 372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gelinas, R. et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat. Commun. 9, 374 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Lehmann, L. H. et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 24, 62–72 (2018).

    CAS  PubMed  Google Scholar 

  115. Matsuhashi, T. et al. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J. Mol. Cell. Cardiol. 82, 116–124 (2015).

    CAS  PubMed  Google Scholar 

  116. Dunn, W. B. et al. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2- oxoglutarate. Metabolomics 3, e426 (2007).

    Google Scholar 

  117. Nulton-Persson, A. C. & Szweda, L. I. Modulation of mitochondrial function by hydrogen peroxide. J. Biol. Chem. 276, 23357–23361 (2001).

    CAS  PubMed  Google Scholar 

  118. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    CAS  PubMed  Google Scholar 

  119. Omede, A. et al. The oxoglutarate receptor 1 (OXGR1) modulates pressure overload-induced cardiac hypertrophy in mice. Biochem. Biophys. Res. Commun. 479, 708–714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Karlstaedt, A. et al. Oncometabolite d-2-hydroxyglutarate impairs alpha-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl Acad. Sci. USA 113, 10436–10441 (2016).

    CAS  PubMed  Google Scholar 

  121. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    CAS  Google Scholar 

  122. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fukushima, A. & Lopaschuk, G. D. Acetylation control of cardiac fatty acid beta-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim. Biophys. Acta 1862, 2211–2220 (2016).

    CAS  PubMed  Google Scholar 

  124. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Rardin, M. J. et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl Acad. Sci. USA 110, 6601–6606 (2013).

    CAS  PubMed  Google Scholar 

  126. Horton, J. L. et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 1, e84897 (2016).

    PubMed Central  Google Scholar 

  127. Lai, L. et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 7, 1022–1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Brookes, P. S. & Taegtmeyer, H. Metabolism: a direct link between cardiac structure and function. Circulation 136, 2158–2161 (2017).

    PubMed  Google Scholar 

  130. Nickel, A., Kohlhaas, M. & Maack, C. Mitochondrial reactive oxygen species production and elimination. J. Mol. Cell. Cardiol. 73, 26–33 (2014).

    CAS  PubMed  Google Scholar 

  131. Kohlhaas, M., Nickel, A. G. & Maack, C. Mitochondrial energetics and calcium coupling in the heart. J. Physiol. 595, 3753–3763 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Murphy, E. et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ. Res. 118, 1960–1991 (2016).

    CAS  PubMed  Google Scholar 

  133. Shirihai, O. S., Song, M. & Dorn, G. W. How mitochondrial dynamism orchestrates mitophagy. Circ. Res. 116, 1835–1849 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tsushima, K. et al. Mitochondrial reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ. Res. 122, 58–73 (2018).

    CAS  PubMed  Google Scholar 

  135. Coronado, M. et al. Physiological mitochondrial fragmentation is a normal cardiac adaptation to increased energy demand. Circ. Res. 122, 282–295 (2018).

    CAS  PubMed  Google Scholar 

  136. Goikoetxea, M. J. et al. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc. Res. 69, 899–907 (2006).

    CAS  PubMed  Google Scholar 

  137. Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C. & Lehman, J. J. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J. Mol. Cell. Cardiol. 46, 201–212 (2009).

    CAS  PubMed  Google Scholar 

  138. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    PubMed  PubMed Central  Google Scholar 

  140. Palty, R. et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl Acad. Sci. USA 107, 436–441 (2010).

    CAS  PubMed  Google Scholar 

  141. Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004).

    CAS  Google Scholar 

  142. Giacomello, M. et al. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol. Cell 38, 280–290 (2010).

    CAS  PubMed  Google Scholar 

  143. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    PubMed  Google Scholar 

  144. Chen, Y. et al. Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca2+ crosstalk. Circ. Res. 111, 863–875 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wu, S. et al. Binding of FUN14 domain containing 1 with Inositol 1,4,5-Trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation 136, 2248–2266 (2017).

    CAS  PubMed  Google Scholar 

  146. Pinali, C., Bennett, H., Davenport, J. B., Trafford, A. W. & Kitmitto, A. Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ. Res. 113, 1219–1230 (2013).

    CAS  PubMed  Google Scholar 

  147. Kohlhaas, M. & Maack, C. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes. Circulation 122, 2273–2280 (2010).

    CAS  PubMed  Google Scholar 

  148. Despa, S., Islam, M. A., Weber, C. R., Pogwizd, S. M. & Bers, D. M. Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105, 2543–2548 (2002).

    CAS  PubMed  Google Scholar 

  149. Kohlhaas, M. et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121, 1606–1613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, T. & O’Rourke, B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ. Res. 103, 279–288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Valdivia, C. R. et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J. Mol. Cell. Cardiol. 38, 475–483 (2005).

    CAS  PubMed  Google Scholar 

  152. Baartscheer, A. et al. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc. Res. 57, 1015–1024 (2003).

    CAS  PubMed  Google Scholar 

  153. Schwinger, R. H. et al. Reduced sodium pump α1, α3, and β1-isoform protein levels and Na+,K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure. Circulation 99, 2105–2112 (1999).

    CAS  PubMed  Google Scholar 

  154. Swift, F. et al. Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase α2-isoform in heart failure. Cardiovasc. Res. 78, 71–78 (2008).

    CAS  PubMed  Google Scholar 

  155. Lambert, R. et al. Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na+-glucose cotransport. J. Am. Heart Assoc. 4, e002183 (2015).

    PubMed  PubMed Central  Google Scholar 

  156. Bay, J., Kohlhaas, M. & Maack, C. Intracellular Na+ and cardiac metabolism. J. Mol. Cell. Cardiol. 61, 20–27 (2013).

    CAS  PubMed  Google Scholar 

  157. Nickel, A. G. et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 22, 472–484 (2015).

    CAS  PubMed  Google Scholar 

  158. Ide, T. et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ. Res. 85, 357–363 (1999).

    CAS  PubMed  Google Scholar 

  159. Beadle, R. M. et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC Heart Fail. 3, 202–211 (2015).

    PubMed  Google Scholar 

  160. Abozguia, K. et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562–1569 (2010).

    CAS  PubMed  Google Scholar 

  161. Fragasso, G. et al. Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur. Heart J. 27, 942–948 (2006).

    CAS  PubMed  Google Scholar 

  162. Fragasso, G. et al. Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am. Heart J. 146, E18 (2003).

    CAS  PubMed  Google Scholar 

  163. Fragasso, G. et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J. Am. Coll. Cardiol. 48, 992–998 (2006).

    CAS  PubMed  Google Scholar 

  164. Winter, J. L. et al. Effects of trimetazidine in nonischemic heart failure: a randomized study. J. Card. Fail. 20, 149–154 (2014).

    CAS  PubMed  Google Scholar 

  165. Tuunanen, H. et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118, 1250–1258 (2008).

    CAS  PubMed  Google Scholar 

  166. Cook, W. S., Yeldandi, A. V., Rao, M. S., Hashimoto, T. & Reddy, J. K. Less extrahepatic induction of fatty acid beta-oxidation enzymes by PPAR alpha. Biochem. Biophys. Res. Commun. 278, 250–257 (2000).

    CAS  PubMed  Google Scholar 

  167. Yue, T. L. et al. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation 108, 2393–2399 (2003).

    CAS  PubMed  Google Scholar 

  168. Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375, 1875–1884 (2010).

    CAS  PubMed  Google Scholar 

  169. Tuunanen, H. et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114, 2130–2137 (2006).

    CAS  PubMed  Google Scholar 

  170. Bersin, R. M. et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J. Am. Coll. Cardiol. 23, 1617–1624 (1994).

    CAS  PubMed  Google Scholar 

  171. Lewis, J. F., DaCosta, M., Wargowich, T. & Stacpoole, P. Effects of dichloroacetate in patients with congestive heart failure. Clin. Cardiol. 21, 888–892 (1998).

    CAS  PubMed  Google Scholar 

  172. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Google Scholar 

  173. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    CAS  PubMed  Google Scholar 

  174. Ferrannini, E., Mark, M. & Mayoux, E. CV protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis. Diabetes Care 39, 1108–1114 (2016).

    Google Scholar 

  175. Mudaliar, S., Alloju, S. & Henry, R. R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unify. hypothesis. Diabetes Care 39, 1115–1122 (2016).

    CAS  PubMed  Google Scholar 

  176. Lopaschuk, Gary, D. & Verma, S. Empagliflozin’s fuel hypothesis: not so soon. Cell Metab. 24, 200–202 (2016).

    CAS  PubMed  Google Scholar 

  177. Baartscheer, A. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60, 568–573 (2017).

    CAS  Google Scholar 

  178. Packer, M., Anker, S. D., Butler, J., Filippatos, G. & Zannad, F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2, 1025–1029 (2017).

    PubMed  Google Scholar 

  179. Bertero, E., Prates Roma, L., Ameri, P. & Maack, C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc. Res. 114, 12–18 (2018).

    PubMed  Google Scholar 

  180. Folkers, K., Wolaniuk, J., Simonsen, R., Morishita, M. & Vadhanavikit, S. Biochemical rationale and the cardiac response of patients with muscle disease to therapy with coenzyme Q10. Proc. Natl Acad. Sci. USA 82, 4513–4516 (1985).

    CAS  PubMed  Google Scholar 

  181. Mortensen, S. A. et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2, 641–649 (2014).

    PubMed  Google Scholar 

  182. Smith, R. A., Hartley, R. C., Cocheme, H. M. & Murphy, M. P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33, 341–352 (2012).

    CAS  PubMed  Google Scholar 

  183. Szeto, H. H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 171, 2029–2050 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Daubert, M. A. et al. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ. Heart Fail. 10, e004389 (2017).

    CAS  PubMed  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02814097 (2017).

  186. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02914665 (2018).

  187. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02788747 (2018).

  188. Burgoyne, J. R., Mongue-Din, H., Eaton, P. & Shah, A. M. Redox signaling in cardiac physiology and pathology. Circ. Res. 111, 1091–1106 (2012).

    CAS  PubMed  Google Scholar 

  189. Liu, T. et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ. Res. 115, 44–54 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Dorn, G. W. 2nd. Mitochondrial dynamics in heart disease. Biochim. Biophys. Acta 1833, 233–241 (2013).

    CAS  PubMed  Google Scholar 

  192. Chambers, K. T. et al. Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J. Biol. Chem. 286, 11155–11162 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Choi, Y. S. et al. Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J. Mol. Cell. Cardiol. 100, 64–71 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Liang, Q., Donthi, R. V., Kralik, P. M. & Epstein, P. N. Elevated hexokinase increases cardiac glycolysis in transgenic mice. Cardiovasc. Res. 53, 423–430 (2002).

    CAS  PubMed  Google Scholar 

  195. Liao, R. et al. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106, 2125–2131 (2002).

    CAS  PubMed  Google Scholar 

  196. Pereira, R. O. et al. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J. Am. Heart Assoc. 2, e000301 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.M.’s research is currently supported by the Deutsche Forschungsgemeinschaft (DFG; SFB 894, TRR-219, and Ma 2528/7-1) and the Bundesministerium für Bildung und Forschung (BMBF; 01EO1504).

Reviewer information

Nature Reviews Cardiology thanks C. Lygate, H. Taegtmeyer, and the other anonymous reviewer for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Christoph Maack.

Ethics declarations

Competing interests

C.M. serves as an adviser to Boehringer Ingelheim and Servier, and has received speaker honoraria from Berlin Chemie. E.B. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertero, E., Maack, C. Metabolic remodelling in heart failure. Nat Rev Cardiol 15, 457–470 (2018). https://doi.org/10.1038/s41569-018-0044-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0044-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing