Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications

Abstract

Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recognized and emerging characteristics of sex differences in antitumour immunity and response to therapy.
Fig. 2: Sex chromosomal alterations contribute to differences in immune responses.
Fig. 3: Epigenetic regulations potentially contribute to sex differences in immune responses.

Similar content being viewed by others

References

  1. Haupt, S., Caramia, F., Klein, S. L., Rubin, J. B. & Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 21, 393–407 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Clocchiatti, A., Cora, E., Zhang, Y. & Dotto, G. P. Sexual dimorphism in cancer. Nat. Rev. Cancer 16, 330–339 (2016).

    CAS  PubMed  Google Scholar 

  3. Schafer, J. M. et al. Sex-biased adaptive immune regulation in cancer development and therapy. iScience 25, 104717 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, C. et al. Androgen receptor-mediated CD8+ T cell stemness programs drive sex differences in antitumor immunity. Immunity 55, 1268–1283.e9 (2022).

    CAS  PubMed  Google Scholar 

  5. Bayik, D. et al. Myeloid-derived suppressor cell subsets drive glioblastoma growth in a sex-specific manner. Cancer Discov. 10, 1210–1225 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    CAS  PubMed  Google Scholar 

  7. Lee, J. et al. Sex-biased T-cell exhaustion drives differential immune responses in glioblastoma. Cancer Discov. 13, 2090–2105 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwon, H. et al. Androgen conspires with the CD8+ T cell exhaustion program and contributes to sex bias in cancer. Sci. Immunol. 7, eabq2630 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Attar, A., Presnell, S. R., Peterson, C. A., Thomas, D. T. & Lutz, C. T. The effect of sex on immune cells in healthy aging: elderly women have more robust natural killer lymphocytes than do elderly men. Mech. Ageing Dev. 156, 25–33 (2016).

    CAS  PubMed  Google Scholar 

  11. Huang, Z. et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl Acad. Sci. USA 118, e2023216116 (2021).

    Google Scholar 

  12. Ozdemir, B. C. & Dotto, G. P. Sex hormones and anticancer immunity. Clin. Cancer Res. 25, 4603–4610 (2019).

    CAS  PubMed  Google Scholar 

  13. Edwards, M., Dai, R. & Ahmed, S. A. Our environment shapes us: the importance of environment and sex differences in regulation of autoantibody production. Front. Immunol. 9, 478 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Tiniakou, E., Costenbader, K. H. & Kriegel, M. A. Sex-specific environmental influences on the development of autoimmune diseases. Clin. Immunol. 149, 182–191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan, M. H., Li, J., Xu, H. E., Melcher, K. & Yong, E. L. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36, 3–23 (2015).

    CAS  PubMed  Google Scholar 

  16. Benten, W. P. et al. Functional testosterone receptors in plasma membranes of T cells. FASEB J. 13, 123–133 (1999).

    CAS  PubMed  Google Scholar 

  17. Benten, W. P., Becker, A., Schmitt-Wrede, H. P. & Wunderlich, F. Developmental regulation of intracellular and surface androgen receptors in T cells. Steroids 67, 925–931 (2002).

    CAS  PubMed  Google Scholar 

  18. Viselli, S. M., Reese, K. R., Fan, J., Kovacs, W. J. & Olsen, N. J. Androgens alter B cell development in normal male mice. Cell. Immunol. 182, 99–104 (1997).

    CAS  PubMed  Google Scholar 

  19. Lai, J. J. et al. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-α expression. J. Clin. Invest. 119, 3739–3751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abu, E. O., Horner, A., Kusec, V., Triffitt, J. T. & Compston, J. E. The localization of androgen receptors in human bone. J. Clin. Endocrinol. Metab. 82, 3493–3497 (1997).

    CAS  PubMed  Google Scholar 

  21. Chuang, K. H. et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J. Exp. Med. 206, 1181–1199 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Khetawat, G. et al. Human megakaryocytes and platelets contain the estrogen receptor β and androgen receptor (AR): testosterone regulates AR expression. Blood 95, 2289–2296 (2000).

    CAS  PubMed  Google Scholar 

  23. Zhang, X. et al. Androgen signaling contributes to sex differences in cancer by inhibiting NF-κB activation in T cells and suppressing antitumor immunity. Cancer Res. 83, 906–921 (2023).

    CAS  PubMed  Google Scholar 

  24. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48, 838–847 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Heemers, H. V. & Tindall, D. J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28, 778–808 (2007).

    CAS  PubMed  Google Scholar 

  27. Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).

    CAS  PubMed  Google Scholar 

  29. Fijak, M. et al. Testosterone replacement effectively inhibits the development of experimental autoimmune orchitis in rats: evidence for a direct role of testosterone on regulatory T cell expansion. J. Immunol. 186, 5162–5172 (2011).

    CAS  PubMed  Google Scholar 

  30. Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Obradovic, A. Z. et al. T-cell infiltration and adaptive Treg resistance in response to androgen deprivation with or without vaccination in localized prostate cancer. Clin. Cancer Res. 26, 3182–3192 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang, S., Moore, M. L., Grayson, J. M. & Dubey, P. Increased CD8+ T-cell function following castration and immunization is countered by parallel expansion of regulatory T cells. Cancer Res. 72, 1975–1985 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Q. et al. Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Ther. 29, 1988–2000 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, M. et al. High dose androgen suppresses natural killer cytotoxicity of castration-resistant prostate cancer cells via altering AR/circFKBP5/miRNA-513a-5p/PD-L1 signals. Cell Death Dis. 13, 746 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, L. et al. Targeting androgen receptor (AR)–>IL12A signal enhances efficacy of sorafenib plus NK cells immunotherapy to better suppress HCC progression. Mol. Cancer Ther. 15, 731–742 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Izumi, K. et al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol. Med. 5, 1383–1401 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang, L. Y. et al. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res. 73, 5633–5646 (2013).

    CAS  PubMed  Google Scholar 

  38. Alsamraae, M. et al. Androgen receptor inhibition suppresses anti-tumor neutrophil response against bone metastatic prostate cancer via regulation of TβRI expression. Cancer Lett. https://doi.org/10.1016/j.canlet.2023.216468 (2023).

  39. Markman, J. L. et al. Loss of testosterone impairs anti-tumor neutrophil function. Nat. Commun. 11, 1613 (2020).

    PubMed  PubMed Central  Google Scholar 

  40. Cioni, B. et al. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat. Commun. 11, 4498 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Koh, Y. T., Gray, A., Higgins, S. A., Hubby, B. & Kast, W. M. Androgen ablation augments prostate cancer vaccine immunogenicity only when applied after immunization. Prostate 69, 571–584 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Corrales, J. J. et al. Enhanced immunological response by dendritic cells in male hypogonadism. Eur. J. Clin. Invest. 42, 1205–1212 (2012).

    CAS  PubMed  Google Scholar 

  43. Hepworth, M. R., Hardman, M. J. & Grencis, R. K. The role of sex hormones in the development of Th2 immunity in a gender-biased model of Trichuris muris infection. Eur. J. Immunol. 40, 406–416 (2010).

    CAS  PubMed  Google Scholar 

  44. Marino, M., Galluzzo, P. & Ascenzi, P. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics 7, 497–508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Malley, B. W. A life-long search for the molecular pathways of steroid hormone action. Mol. Endocrinol. 19, 1402–1411 (2005).

    PubMed  Google Scholar 

  46. Le Dily, F. & Beato, M. Signaling by steroid hormones in the 3D nuclear space. Int. J. Mol. Sci. 19, 306 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Klinge, C. M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 29, 2905–2919 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Filardo, E. et al. Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology 148, 3236–3245 (2007).

    CAS  PubMed  Google Scholar 

  49. Filardo, E. J. & Thomas, P. Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology 153, 2953–2962 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Molina, L., Figueroa, C. D., Bhoola, K. D. & Ehrenfeld, P. GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer. Expert Opin. Ther. Targets 21, 755–766 (2017).

    CAS  PubMed  Google Scholar 

  51. Losel, R. & Wehling, M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 4, 46–56 (2003).

    PubMed  Google Scholar 

  52. Barton, M. et al. Twenty years of the G protein-coupled estrogen receptor GPER: historical and personal perspectives. J. Steroid Biochem. Mol. Biol. 176, 4–15 (2018).

    CAS  PubMed  Google Scholar 

  53. Majumdar, S. et al. Differential actions of estrogen receptor α and β via nongenomic signaling in human prostate stem and progenitor cells. Endocrinology 160, 2692–2708 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Laffont, S. et al. X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 193, 5444–5452 (2014).

    CAS  PubMed  Google Scholar 

  55. Phiel, K. L., Henderson, R. A., Adelman, S. J. & Elloso, M. M. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol. Lett. 97, 107–113 (2005).

    CAS  PubMed  Google Scholar 

  56. Grimaldi, C. M., Cleary, J., Dagtas, A. S., Moussai, D. & Diamond, B. Estrogen alters thresholds for B cell apoptosis and activation. J. Clin. Invest. 109, 1625–1633 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Curran, E. M. et al. Natural killer cells express estrogen receptor-α and estrogen receptor-β and can respond to estrogen via a non-estrogen receptor-α-mediated pathway. Cell. Immunol. 214, 12–20 (2001).

    CAS  PubMed  Google Scholar 

  58. Lambert, K. C., Curran, E. M., Judy, B. M., Lubahn, D. B. & Estes, D. M. Estrogen receptor-α deficiency promotes increased TNF-α secretion and bacterial killing by murine macrophages in response to microbial stimuli in vitro. J. Leukoc. Biol. 75, 1166–1172 (2004).

    CAS  PubMed  Google Scholar 

  59. Ribas, V. et al. Myeloid-specific estrogen receptor α deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc. Natl Acad. Sci. USA 108, 16457–16462 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Calippe, B. et al. 17β-Estradiol promotes TLR4-triggered proinflammatory mediator production through direct estrogen receptor α signaling in macrophages in vivo. J. Immunol. 185, 1169–1176 (2010).

    CAS  PubMed  Google Scholar 

  61. Kovats, S. & Carreras, E. Regulation of dendritic cell differentiation and function by estrogen receptor ligands. Cell. Immunol. 252, 81–90 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Paharkova-Vatchkova, V., Maldonado, R. & Kovats, S. Estrogen preferentially promotes the differentiation of CD11c+ CD11bintermediate dendritic cells from bone marrow precursors. J. Immunol. 172, 1426–1436 (2004).

    CAS  PubMed  Google Scholar 

  63. Mao, A., Paharkova-Vatchkova, V., Hardy, J., Miller, M. M. & Kovats, S. Estrogen selectively promotes the differentiation of dendritic cells with characteristics of Langerhans cells. J. Immunol. 175, 5146–5151 (2005).

    CAS  PubMed  Google Scholar 

  64. Lelu, K. et al. Estrogen receptor α signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J. Immunol. 187, 2386–2393 (2011).

    CAS  PubMed  Google Scholar 

  65. Karpuzoglu, E., Phillips, R. A., Gogal, R. M. Jr & Ansar Ahmed, S. IFN-γ-inducing transcription factor, T-bet is upregulated by estrogen in murine splenocytes: role of IL-27 but not IL-12. Mol. Immunol. 44, 1808–1814 (2007).

    CAS  PubMed  Google Scholar 

  66. Maret, A. et al. Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor α expression in hematopoietic cells. Eur. J. Immunol. 33, 512–521 (2003).

    CAS  PubMed  Google Scholar 

  67. Fox, H. S., Bond, B. L. & Parslow, T. G. Estrogen regulates the IFN-γ promoter. J. Immunol. 146, 4362–4367 (1991).

    CAS  PubMed  Google Scholar 

  68. Polanczyk, M. J. et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol. 173, 2227–2230 (2004).

    CAS  PubMed  Google Scholar 

  69. Prieto, G. A. & Rosenstein, Y. Oestradiol potentiates the suppressive function of human CD4 CD25 regulatory T cells by promoting their proliferation. Immunology 118, 58–65 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fuseini, H. et al. ERα signaling increased IL-17A production in Th17 cells by upregulating IL-23R expression, mitochondrial respiration, and proliferation. Front. Immunol. 10, 2740 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, R. Y. et al. Estradiol inhibits Th17 cell differentiation through inhibition of RORγT transcription by recruiting the ERα/REA complex to estrogen response elements of the RORγT promoter. J. Immunol. 194, 4019–4028 (2015).

    CAS  PubMed  Google Scholar 

  72. Tyagi, A. M. et al. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS ONE 7, e44552 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Newcomb, D. C. et al. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17A production in patients with severe asthma. J. Allergy Clin. Immunol. 136, 1025–1034.e11 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chakir, J. et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol. 111, 1293–1298 (2003).

    CAS  PubMed  Google Scholar 

  75. Molet, S. et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin. Immunol. 108, 430–438 (2001).

    CAS  PubMed  Google Scholar 

  76. Al-Ramli, W. et al. TH17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol. 123, 1185–1187 (2009).

    CAS  PubMed  Google Scholar 

  77. Kim, D. H. et al. Estrogen receptor α in T cells suppresses follicular helper T cell responses and prevents autoimmunity. Exp. Mol. Med. 51, 1–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Mohammad, I. et al. Estrogen receptor α contributes to T cell-mediated autoimmune inflammation by promoting T cell activation and proliferation. Sci. Signal. 11, eaap9415 (2018).

    PubMed  Google Scholar 

  79. Yuan, B. et al. Estrogen receptor β signaling in CD8+ T cells boosts T cell receptor activation and antitumor immunity through a phosphotyrosine switch. J. Immunother. Cancer 9, e001932 (2021).

    PubMed  PubMed Central  Google Scholar 

  80. Hill, L., Jeganathan, V., Chinnasamy, P., Grimaldi, C. & Diamond, B. Differential roles of estrogen receptors α and β in control of B-cell maturation and selection. Mol. Med. 17, 211–220 (2011).

    CAS  PubMed  Google Scholar 

  81. Chung, H. H. et al. Estrogen reprograms the activity of neutrophils to foster protumoral microenvironment during mammary involution. Sci. Rep. 7, 46485 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Lyons, T. R. et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat. Med. 17, 1109–1115 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lyons, T. R. et al. Cyclooxygenase-2-dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer. J. Clin. Invest. 124, 3901–3912 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Svoronos, N. et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells. Cancer Discov. 7, 72–85 (2017).

    CAS  PubMed  Google Scholar 

  85. Milette, S. et al. Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases. Nat. Commun. 10, 5745 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ham, B. et al. TNF receptor-2 facilitates an immunosuppressive microenvironment in the liver to promote the colonization and growth of hepatic metastases. Cancer Res. 75, 5235–5247 (2015).

    CAS  PubMed  Google Scholar 

  87. Kozasa, K. et al. Estrogen stimulates female cancer progression by inducing myeloid-derived suppressive cells: investigations on pregnant and non-pregnant experimental models. Oncotarget 10, 1887–1902 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Ouyang, L. et al. Estrogen-induced SDF-1α production promotes the progression of ER-negative breast cancer via the accumulation of MDSCs in the tumor microenvironment. Sci. Rep. 6, 39541 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chakraborty, B. et al. Inhibition of estrogen signaling in myeloid cells increases tumor immunity in melanoma. J. Clin. Invest. 131, e151347 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hao, S., Li, P., Zhao, J., Hu, Y. & Hou, Y. 17β-Estradiol suppresses cytotoxicity and proliferative capacity of murine splenic NK1.1+ cells. Cell Mol. Immunol. 5, 357–364 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA 98, 11521–11526 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    CAS  PubMed  Google Scholar 

  94. Seaman, W. E., Sleisenger, M., Eriksson, E. & Koo, G. C. Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J. Immunol. 138, 4539–4544 (1987).

    CAS  PubMed  Google Scholar 

  95. Siiteri, P. K. et al. Progesterone and maintenance of pregnancy: is progesterone nature’s immunosuppressant? Ann. N. Y. Acad. Sci. 286, 384–397 (1977).

    CAS  PubMed  Google Scholar 

  96. Piccinni, M. P. et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J. Immunol. 155, 128–133 (1995).

    CAS  PubMed  Google Scholar 

  97. Hellberg, S. et al. Progesterone dampens immune responses in in vitro activated CD4+ T cells and affects genes associated with autoimmune diseases that improve during pregnancy. Front. Immunol. 12, 672168 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yao, Y., Li, H., Ding, J., Xia, Y. & Wang, L. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation. PLoS Pathog. 13, e1006736 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Lee, J. H., Ulrich, B., Cho, J., Park, J. & Kim, C. H. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J. Immunol. 187, 1778–1787 (2011).

    CAS  PubMed  Google Scholar 

  100. Monin, L. et al. γδ T cells compose a developmentally regulated intrauterine population and protect against vaginal candidiasis. Mucosal Immunol. 13, 969–981 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Werner, L. R. et al. Progesterone promotes immunomodulation and tumor development in the murine mammary gland. J. Immunother. Cancer 9, e001710 (2021).

    PubMed  PubMed Central  Google Scholar 

  102. Zhang, L., Chang, K. K., Li, M. Q., Li, D. J. & Yao, X. Y. Mouse endometrial stromal cells and progesterone inhibit the activation and regulate the differentiation and antibody secretion of mouse B cells. Int. J. Clin. Exp. Pathol. 7, 123–133 (2014).

    PubMed  Google Scholar 

  103. Canellada, A., Blois, S., Gentile, T. & Margni Idehu, R. A. In vitro modulation of protective antibody responses by estrogen, progesterone and interleukin-6. Am. J. Reprod. Immunol. 48, 334–343 (2002).

    PubMed  Google Scholar 

  104. Pauklin, S. & Petersen-Mahrt, S. K. Progesterone inhibits activation-induced deaminase by binding to the promoter. J. Immunol. 183, 1238–1244 (2009).

    CAS  PubMed  Google Scholar 

  105. Medina, K. L. & Kincade, P. W. Pregnancy-related steroids are potential negative regulators of B lymphopoiesis. Proc. Natl Acad. Sci. USA 91, 5382–5386 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hall, O. J. et al. Progesterone-based contraceptives reduce adaptive immune responses and protection against sequential influenza A virus infections. J. Virol. 91, e02160-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Buyon, J. P., Korchak, H. M., Rutherford, L. E., Ganguly, M. & Weissmann, G. Female hormones reduce neutrophil responsiveness in vitro. Arthritis Rheum. 27, 623–630 (1984).

    CAS  PubMed  Google Scholar 

  108. Roth, J. A., Kaeberle, M. L. & Hsu, W. H. Effect of estradiol and progesterone on lymphocyte and neutrophil functions in steers. Infect. Immun. 35, 997–1002 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Menzies, F. M., Henriquez, F. L., Alexander, J. & Roberts, C. W. Selective inhibition and augmentation of alternative macrophage activation by progesterone. Immunology 134, 281–291 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Butts, C. L. et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int. Immunol. 19, 287–296 (2007).

    CAS  PubMed  Google Scholar 

  111. Jones, L. A. et al. Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. J. Immunol. 185, 4525–4534 (2010).

    CAS  PubMed  Google Scholar 

  112. Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. 180, 5746–5753 (2008).

    CAS  PubMed  Google Scholar 

  113. Oettel, M. & Mukhopadhyay, A. K. Progesterone: the forgotten hormone in men? Aging Male 7, 236–257 (2004).

    CAS  PubMed  Google Scholar 

  114. Boumil, R. M. & Lee, J. T. Forty years of decoding the silence in X-chromosome inactivation. Hum. Mol. Genet. 10, 2225–2232 (2001).

    CAS  PubMed  Google Scholar 

  115. Heard, E., Chaumeil, J., Masui, O. & Okamoto, I. Mammalian X-chromosome inactivation: an epigenetics paradigm. Cold Spring Harb. Symp. Quant. Biol. 69, 89–102 (2004).

    CAS  PubMed  Google Scholar 

  116. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    CAS  PubMed  Google Scholar 

  118. Cotton, A. M. et al. Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome. Genome Biol. 14, R122 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Anderson, C. L. & Brown, C. J. Polymorphic X-chromosome inactivation of the human TIMP1 gene. Am. J. Hum. Genet. 65, 699–708 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Souyris, M., Mejia, J. E., Chaumeil, J. & Guery, J. C. Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin. Immunopathol. 41, 153–164 (2019).

    CAS  PubMed  Google Scholar 

  121. Kaneko, S. & Li, X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci. Adv. 4, eaar5598 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Mousavi, M. J., Mahmoudi, M. & Ghotloo, S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol. Med. 26, 127 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Dou, D. R. et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 187, 733–749.e16 (2024).

    CAS  PubMed  Google Scholar 

  124. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gao, X. & Cockburn, I. A. The development and function of CD11c+ atypical B cells — insights from single cell analysis. Front. Immunol. 13, 979060 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Han, W. et al. Pan-cancer analysis of lncRNA XIST and its potential mechanisms in human cancers. Heliyon 8, e10786 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Swerdlow, A. J. et al. Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J. Natl Cancer Inst. 97, 1204–1210 (2005).

    PubMed  Google Scholar 

  129. Mattei, J. et al. Gastrin-releasing peptide receptor expression in lung cancer. Arch. Pathol. Lab. Med. 138, 98–104 (2014).

    CAS  PubMed  Google Scholar 

  130. Lou, N. et al. Proteomics identifies circulating TIMP-1 as a prognostic biomarker for diffuse large B-cell lymphoma. Mol. Cell. Proteomics 22, 100625 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Schoemaker, M. J. et al. Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. Lancet Oncol. 9, 239–246 (2008).

    PubMed  Google Scholar 

  132. Jacobs, P. A., Brunton, M., Court Brown, W. M., Doll, R. & Goldstein, H. Change of human chromosome count distribution with age: evidence for a sex differences. Nature 197, 1080–1081 (1963).

    CAS  PubMed  Google Scholar 

  133. Jacobs, P. A., Court Brown, W. M. & Doll, R. Distribution of human chromosome counts in relation to age. Nature 191, 1178–1180 (1961).

    CAS  PubMed  Google Scholar 

  134. Forsberg, L. A. et al. Mosaic loss of chromosome Y in leukocytes matters. Nat. Genet. 51, 4–7 (2019).

    CAS  PubMed  Google Scholar 

  135. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Loftfield, E. et al. Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci. Rep. 8, 12316 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Dumanski, J. P. et al. Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am. J. Hum. Genet. 98, 1208–1219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Haitjema, S. et al. Loss of Y chromosome in blood is associated with major cardiovascular events during follow-up in men after carotid endarterectomy. Circ. Cardiovasc. Genet. 10, e001544 (2017).

    CAS  PubMed  Google Scholar 

  140. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Chandler, C., Liu, T., Buckanovich, R. & Coffman, L. G. The double edge sword of fibrosis in cancer. Transl. Res. 209, 55–67 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    CAS  PubMed  Google Scholar 

  143. Dumanski, J. P. et al. Immune cells lacking Y chromosome show dysregulation of autosomal gene expression. Cell. Mol. Life Sci. 78, 4019–4033 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Brunelli, M., Eble, J. N., Zhang, S., Martignoni, G. & Cheng, L. Gains of chromosomes 7, 17, 12, 16, and 20 and loss of Y occur early in the evolution of papillary renal cell neoplasia: a fluorescent in situ hybridization study. Mod. Pathol. 16, 1053–1059 (2003).

    PubMed  Google Scholar 

  145. Buscheck, F. et al. Y-chromosome loss is frequent in male renal tumors. Ann. Transl. Med. 9, 209 (2021).

    PubMed  PubMed Central  Google Scholar 

  146. Hunter, S., Gramlich, T., Abbott, K. & Varma, V. Y chromosome loss in esophageal carcinoma: an in situ hybridization study. Genes Chromosomes Cancer 8, 172–177 (1993).

    CAS  PubMed  Google Scholar 

  147. Komura, K. et al. Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proc. Natl Acad. Sci. USA 113, 6259–6264 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Komura, K. et al. ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. J. Clin. Invest. 128, 2979–2995 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Panani, A. D. & Roussos, C. Sex chromosome abnormalities in bladder cancer: Y polysomies are linked to PT1-grade III transitional cell carcinoma. Anticancer Res. 26, 319–323 (2006).

    PubMed  Google Scholar 

  150. Sauter, G. et al. Y chromosome loss detected by FISH in bladder cancer. Cancer Genet. Cytogenet. 82, 163–169 (1995).

    CAS  PubMed  Google Scholar 

  151. Powell, I., Tyrkus, M. & Kleer, E. Apparent correlation of sex chromosome loss and disease course in urothelial cancer. Cancer Genet. Cytogenet. 50, 97–101 (1990).

    CAS  PubMed  Google Scholar 

  152. Abdel-Hafiz, H. A. et al. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 619, 624–631 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dohner, H. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129, 424–447 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. United Kingdom Cancer Cytogenetics Group (UKCCG). Loss of the Y chromosome from normal and neoplastic bone marrows. Genes Chromosomes Cancer 5, 83–88 (1992).

    Google Scholar 

  155. Ouseph, M. M. et al. Genomic alterations in patients with somatic loss of the Y chromosome as the sole cytogenetic finding in bone marrow cells. Haematologica 106, 555–564 (2021).

    CAS  PubMed  Google Scholar 

  156. Ganster, C. et al. New data shed light on Y-loss-related pathogenesis in myelodysplastic syndromes. Genes Chromosomes Cancer 54, 717–724 (2015).

    CAS  PubMed  Google Scholar 

  157. Wong, A. K. et al. Loss of the Y chromosome: an age-related or clonal phenomenon in acute myelogenous leukemia/myelodysplastic syndrome? Arch. Pathol. Lab. Med. 132, 1329–1332 (2008).

    PubMed  Google Scholar 

  158. Ljungstrom, V. et al. Loss of Y and clonal hematopoiesis in blood — two sides of the same coin? Leukemia 36, 889–891 (2022).

    PubMed  Google Scholar 

  159. Holmes, R. I. et al. Loss of the Y chromosome in acute myelogenous leukemia: a report of 13 patients. Cancer Genet. Cytogenet. 17, 269–278 (1985).

    CAS  PubMed  Google Scholar 

  160. Tamaki, M. et al. Deletion of Y chromosome before allogeneic hematopoietic stem cell transplantation in male recipients with female donors. Blood Adv. 6, 1895–1903 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Caceres, A., Jene, A., Esko, T., Perez-Jurado, L. A. & Gonzalez, J. R. Extreme downregulation of chromosome Y and cancer risk in men. J. Natl Cancer Inst. 112, 913–920 (2020).

    PubMed  PubMed Central  Google Scholar 

  162. Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 49, 10–16 (2017).

    CAS  PubMed  Google Scholar 

  163. Qi, M., Pang, J., Mitsiades, I., Lane, A. A. & Rheinbay, E. Loss of chromosome Y in primary tumors. Cell https://doi.org/10.1016/j.cell.2023.06.006 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Arseneault, M. et al. Loss of chromosome Y leads to down regulation of KDM5D and KDM6C epigenetic modifiers in clear cell renal cell carcinoma. Sci. Rep. 7, 44876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, Q. et al. Mosaic loss of chromosome Y promotes leukemogenesis and clonal hematopoiesis. JCI Insight 7, e153768 (2022).

    PubMed  PubMed Central  Google Scholar 

  166. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    CAS  PubMed  Google Scholar 

  167. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    CAS  PubMed  Google Scholar 

  168. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhao, A., Zhou, H., Yang, J., Li, M. & Niu, T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct. Target. Ther. 8, 71 (2023).

    PubMed  PubMed Central  Google Scholar 

  170. Fernandez-Morera, J. L., Calvanese, V., Rodriguez-Rodero, S., Menendez-Torre, E. & Fraga, M. F. Epigenetic regulation of the immune system in health and disease. Tissue Antigens 76, 431–439 (2010).

    CAS  PubMed  Google Scholar 

  171. Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Bergstedt, J. et al. The immune factors driving DNA methylation variation in human blood. Nat. Commun. 13, 5895 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Correa, L. O., Jordan, M. S. & Carty, S. A. DNA methylation in T-cell development and differentiation. Crit. Rev. Immunol. 40, 135–156 (2020).

    PubMed  PubMed Central  Google Scholar 

  175. Roy, R. et al. DNA methylation signatures reveal that distinct combinations of transcription factors specify human immune cell epigenetic identity. Immunity 54, 2465–2480.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lin, S. et al. Sex-related DNA methylation differences in B cell chronic lymphocytic leukemia. Biol. Sex Differ. 10, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Golden, L. C. et al. Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proc. Natl Acad. Sci. USA 116, 26779–26787 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Arnold, A. P. & Chen, X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30, 1–9 (2009).

    PubMed  Google Scholar 

  179. Cisternas, C. D., Cortes, L. R., Bruggeman, E. C., Yao, B. & Forger, N. G. Developmental changes and sex differences in DNA methylation and demethylation in hypothalamic regions of the mouse brain. Epigenetics 15, 72–84 (2020).

    PubMed  Google Scholar 

  180. Cisternas, C. D., Cortes, L. R., Golynker, I., Castillo-Ruiz, A. & Forger, N. G. Neonatal inhibition of DNA methylation disrupts testosterone-dependent masculinization of neurochemical phenotype. Endocrinology 161, bqz022 (2020).

    PubMed  Google Scholar 

  181. McCartney, D. L. et al. An epigenome-wide association study of sex-specific chronological ageing. Genome Med. 12, 1 (2019).

    PubMed  PubMed Central  Google Scholar 

  182. Aubert, Y., Egolf, S. & Capell, B. C. The unexpected noncatalytic roles of histone modifiers in development and disease. Trends Genet. 35, 645–657 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Tricarico, R., Nicolas, E., Hall, M. J. & Golemis, E. A. X- and Y-linked chromatin-modifying genes as regulators of sex-specific cancer incidence and prognosis. Clin. Cancer Res. 26, 5567–5578 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, J. et al. Histone demethylase KDM5D upregulation drives sex differences in colon cancer. Nature 619, 632–639 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang, S. et al. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate 75, 936–946 (2015).

    CAS  PubMed  Google Scholar 

  186. Metzler, V. M. et al. The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer. Front. Cell Dev. Biol. 11, 1116424 (2023).

    PubMed  PubMed Central  Google Scholar 

  187. Wade, M. A. et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res. 43, 196–207 (2015).

    CAS  PubMed  Google Scholar 

  188. Jones, D., Wilson, L., Thomas, H., Gaughan, L. & Wade, M. A. The histone demethylase enzymes KDM3A and KDM4B co-operatively regulate chromatin transactions of the estrogen receptor in breast cancer. Cancers 11, 1122 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Cheng, M. I. et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat. Immunol. 24, 780–791 (2023).

    CAS  PubMed  Google Scholar 

  190. Itoh, Y. et al. The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. J. Clin. Invest. 129, 3852–3863 (2019).

    PubMed  PubMed Central  Google Scholar 

  191. Gagnidze, K., Weil, Z. M. & Pfaff, D. W. Histone modifications proposed to regulate sexual differentiation of brain and behavior. Bioessays 32, 932–939 (2010).

    CAS  PubMed  Google Scholar 

  192. Tsai, H. W., Grant, P. A. & Rissman, E. F. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 4, 47–53 (2009).

    CAS  PubMed  Google Scholar 

  193. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    CAS  PubMed  Google Scholar 

  194. Ghorai, A. & Ghosh, U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front. Genet. 5, 100 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Bhat-Nakshatri, P. et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 37, 4850–4861 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Hah, N. et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145, 622–634 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Fletcher, C. E. et al. Androgen-regulated processing of the oncomir miR-27a, which targets prohibitin in prostate cancer. Hum. Mol. Genet. 21, 3112–3127 (2012).

    CAS  PubMed  Google Scholar 

  198. Cui, C. et al. Identification and analysis of human sex-biased microRNAs. Genomics Proteomics Bioinformatics 16, 200–211 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Baulina, N. et al. Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J. Neuroimmunol. 317, 67–76 (2018).

    CAS  PubMed  Google Scholar 

  200. Cavone, L. & Chiarugi, A. Targeting poly(ADP-ribose) polymerase-1 as a promising approach for immunomodulation in multiple sclerosis? Trends Mol. Med. 18, 92–100 (2012).

    CAS  PubMed  Google Scholar 

  201. Malmhall, C., Weidner, J. & Radinger, M. MicroRNA-155 expression suggests a sex disparity in innate lymphoid cells at the single-cell level. Cell. Mol. Immunol. 17, 544–546 (2020).

    PubMed  Google Scholar 

  202. Johansson, K., Malmhall, C., Ramos-Ramirez, P. & Radinger, M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol. 139, 1007–1016.e9 (2017).

    CAS  PubMed  Google Scholar 

  203. Fuseini, H. & Newcomb, D. C. Mechanisms driving gender differences in asthma. Curr. Allergy Asthma Rep. 17, 19 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. Rahmawati, S. F. et al. Pharmacological rationale for targeting IL-17 in asthma. Front. Allergy 2, 694514 (2021).

    PubMed  PubMed Central  Google Scholar 

  205. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Han, J. et al. Pan-cancer analysis reveals sex-specific signatures in the tumor microenvironment. Mol. Oncol. 16, 2153–2173 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).

    PubMed  Google Scholar 

  209. Ye, Y. et al. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11, 1779 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Conforti, F. et al. Sex-based dimorphism of anticancer immune response and molecular mechanisms of immune evasion. Clin. Cancer Res. 27, 4311–4324 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Gubbels Bupp, M. R., Potluri, T., Fink, A. L. & Klein, S. L. The confluence of sex hormones and aging on immunity. Front. Immunol. 9, 1269 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Petralia, F. et al. Pan-cancer proteogenomics characterization of tumor immunity. Cell https://doi.org/10.1016/j.cell.2024.01.027 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    PubMed  PubMed Central  Google Scholar 

  214. Conforti, F. et al. Sex-based differences of the tumor mutational burden and T-cell inflammation of the tumor microenvironment. Ann. Oncol. 30, 653–655 (2019).

    CAS  PubMed  Google Scholar 

  215. Botticelli, A. et al. The sexist behaviour of immune checkpoint inhibitors in cancer therapy? Oncotarget 8, 99336–99346 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018).

    CAS  PubMed  Google Scholar 

  217. Wallis, C. J. D. et al. Association of patient sex with efficacy of immune checkpoint inhibitors and overall survival in advanced cancers: a systematic review and meta-analysis. JAMA Oncol. 5, 529–536 (2019).

    PubMed  PubMed Central  Google Scholar 

  218. Grassadonia, A. et al. Effect of gender on the outcome of patients receiving immune checkpoint inhibitors for advanced cancer: a systematic review and meta-analysis of phase III randomized clinical trials. J. Clin. Med. 7, 542 (2018).

    PubMed  PubMed Central  Google Scholar 

  219. Conforti, F. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: a systematic review and meta-analysis. J. Natl Cancer Inst. 111, 772–781 (2019).

    PubMed  PubMed Central  Google Scholar 

  220. Wang, L. et al. The role of the sex hormone–gut microbiome axis in tumor immunotherapy. Gut Microbes 15, 2185035 (2023).

    PubMed  PubMed Central  Google Scholar 

  221. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  225. Sinha, T. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes 10, 358–366 (2019).

    CAS  PubMed  Google Scholar 

  226. Miceli, R. et al. Sex differences in burden of adverse events in patients receiving immunotherapy. J. Clin. Oncol. https://doi.org/10.1200/JCO.2023.41.16_suppl.2646 (2023).

  227. Unger, J. M. et al. Sex differences in risk of severe adverse events in patients receiving immunotherapy, targeted therapy, or chemotherapy in cancer clinical trials. J. Clin. Oncol. 40, 1474–1486 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Duma, N. et al. Sex differences in tolerability to anti-programmed cell death protein 1 therapy in patients with metastatic melanoma and non-small cell lung cancer: are we all equal? Oncologist 24, E1148–E1155 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Bui, A.-T. N., Bougrine, A., Buchbinder, E. I., Giobbie-Hurder, A. & LeBoeuf, N. R. Female sex is associated with higher rates of dermatologic adverse events among patients with melanoma receiving immune checkpoint inhibitor therapy: a retrospective cohort study. J. Am. Acad. Dermatol. 87, 403–406 (2022).

    CAS  PubMed  Google Scholar 

  230. Kitagataya, T. et al. Prevalence, clinical course, and predictive factors of immune checkpoint inhibitor monotherapy-associated hepatitis in Japan. J. Gastroenterol. Hepatol. 35, 1782–1788 (2020).

    CAS  PubMed  Google Scholar 

  231. Chua, K. J. et al. Comparing the rate of immunotherapy treatment change due to toxicity by sex. Cancer Rep. 7, e1932 (2024).

    CAS  Google Scholar 

  232. Cortellini, A. et al. Immune-related adverse events of pembrolizumab in a large real-world cohort of patients with NSCLC with a PD-L1 expression ≥ 50% and their relationship with clinical outcomes. Clin. Lung Cancer 21, 498–508.e2 (2020).

    CAS  PubMed  Google Scholar 

  233. Kartolo, A., Sattar, J., Sahai, V., Baetz, T. & Lakoff, J. M. Predictors of immunotherapy-induced immune-related adverse events. Curr. Oncol. 25, E403–E410 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Chen, C., Zhang, C., Jin, Z., Wu, B. & Xu, T. Sex differences in immune-related adverse events with immune checkpoint inhibitors: data mining of the FDA adverse event reporting system. Int. J. Clin. Pharm. 44, 689–697 (2022).

    CAS  PubMed  Google Scholar 

  235. Seethapathy, H. et al. Immune-related adverse events and kidney function decline in patients with genitourinary cancers treated with immune checkpoint inhibitors. Eur. J. Cancer 157, 50–58 (2021).

    CAS  PubMed  Google Scholar 

  236. Ozdemir, B. C., Gerard, C. L. & Espinosa da Silva, C. Sex and gender differences in anticancer treatment toxicity: a call for revisiting drug dosing in oncology. Endocrinology 163, bqac058 (2022).

    PubMed  PubMed Central  Google Scholar 

  237. Desnoyer, A. et al. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 2, immune checkpoint inhibitor antibodies. Eur. J. Cancer 128, 119–128 (2020).

    CAS  PubMed  Google Scholar 

  238. Melhem, M. et al. Population pharmacokinetics and exposure-response of anti-programmed cell death protein-1 monoclonal antibody dostarlimab in advanced solid tumours. Br. J. Clin. Pharmacol. 88, 4142–4154 (2022).

    CAS  PubMed  Google Scholar 

  239. De Courcy, L., Bezak, E. & Marcu, L. G. Gender-dependent radiotherapy: the next step in personalised medicine? Crit. Rev. Oncol. Hematol. 147, 102881 (2020).

    PubMed  Google Scholar 

  240. Luo, H. S. et al. Impact of sex on the prognosis of patients with esophageal squamous cell cancer underwent definitive radiotherapy: a propensity score-matched analysis. Radiat. Oncol. 14, 74 (2019).

    PubMed  PubMed Central  Google Scholar 

  241. Ilnytskyy, Y., Zemp, F. J., Koturbash, I. & Kovalchuk, O. Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem. Biophys. Res. Commun. 377, 41–45 (2008).

    CAS  PubMed  Google Scholar 

  242. Longcope, C., Kato, T. & Horton, R. Conversion of blood androgens to estrogens in normal adult men and women. J. Clin. Invest. 48, 2191–2201 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Hilborn, E., Stal, O. & Jansson, A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 8, 30552–30562 (2017).

    PubMed  PubMed Central  Google Scholar 

  244. Miller, W. L. & Auchus, R. J. The “backdoor pathway” of androgen synthesis in human male sexual development. PLoS Biol. 17, e3000198 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Morozov, V. M., Li, Y., Clowers, M. M. & Ishov, A. M. Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer. Oncotarget 8, 62131–62142 (2017).

    PubMed  PubMed Central  Google Scholar 

  246. Xie, G. et al. UTX promotes hormonally responsive breast carcinogenesis through feed-forward transcription regulation with estrogen receptor. Oncogene 36, 5497–5511 (2017).

    CAS  PubMed  Google Scholar 

  247. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    CAS  PubMed  Google Scholar 

  248. Giefing-Kroll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321 (2015).

    PubMed  PubMed Central  Google Scholar 

  249. Cook, M. B. et al. Sex disparities in cancer incidence by period and age. Cancer Epidemiol. Biomarkers Prev. 18, 1174–1182 (2009).

    PubMed  PubMed Central  Google Scholar 

  250. Rubin, J. B. The spectrum of sex differences in cancer. Trends Cancer 8, 303–315 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Valeri, F. & Endres, K. How biological sex of the host shapes its gut microbiota. Front. Neuroendocrinol. 61, 100912 (2021).

    CAS  PubMed  Google Scholar 

  252. Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Fransen, F. et al. The impact of gut microbiota on gender-specific differences in immunity. Front. Immunol. 8, 754 (2017).

    PubMed  PubMed Central  Google Scholar 

  254. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  255. Li, X., Zhang, S., Guo, G., Han, J. & Yu, J. Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 82, 104163 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhao, R. et al. A GPR174-CCL21 module imparts sexual dimorphism to humoral immunity. Nature 577, 416–420 (2020).

    CAS  PubMed  Google Scholar 

  257. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    CAS  PubMed  Google Scholar 

  258. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Pan, Y. et al. Unique distribution of programmed death ligand 1 (PD-L1) expression in East Asian non-small cell lung cancer. J. Thorac. Dis. 9, 2579–2586 (2017).

    PubMed  PubMed Central  Google Scholar 

  260. Moutafi, M. K. et al. Comparison of programmed death-ligand 1 protein expression between primary and metastatic lesions in patients with lung cancer. J. Immunother. Cancer 9, e002230 (2021).

    PubMed  PubMed Central  Google Scholar 

  261. de Coana, Y. P. et al. Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their arginase1 production. Cancer Immunol. Res. 1, 158–162 (2013).

    Google Scholar 

  262. El-Khoueiry, A. B. et al. Results from a phase 1a/1b study of botensilimab (BOT), a novel innate/adaptive immune activator, plus balstilimab (BAL; anti-PD-1 antibody) in metastatic heavily pretreated microsatellite stable colorectal cancer (MSS CRC). J. Clin. Oncol. 41, LBA8 (2023).

    Google Scholar 

  263. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03860272 (2023).

  264. Straining, R. & Eighmy, W. Tazemetostat: EZH2 inhibitor. J. Adv. Pract. Oncol. 13, 158–163 (2022).

    PubMed  PubMed Central  Google Scholar 

  265. Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818 (2018).

    PubMed  PubMed Central  Google Scholar 

  266. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03480646 (2021).

  267. Aggarwal, R. R. et al. A phase Ib/IIa study of the pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 26, 5338–5347 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Besancon, M. et al. Combining antiandrogens with immunotherapy for bladder cancer treatment. Eur. Urol. Open. Sci. 43, 35–44 (2022).

    PubMed  PubMed Central  Google Scholar 

  269. Natale, C. A. et al. Pharmacologic activation of the G protein-coupled estrogen receptor inhibits pancreatic ductal adenocarcinoma. Cell. Mol. Gastroenterol. Hepatol. 10, 868–880.e1 (2020).

    PubMed  PubMed Central  Google Scholar 

  270. Natale, C. A. et al. Activation of G protein-coupled estrogen receptor signaling inhibits melanoma and improves response to immune checkpoint blockade. eLife 7, e31770 (2018).

    PubMed  PubMed Central  Google Scholar 

  271. Hu, W. Y. et al. Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology 152, 2150–2163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Mirza, N. et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    CAS  PubMed  Google Scholar 

  274. Vasquez-Dunddel, D. et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Invest. 123, 1580–1589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Pelotonia Institute for Immuno-Oncology (to Z.L.), the American Brain Tumour Association (to J.L.), the Cleveland Clinic (to J.L. and J.D.L.), the Case Comprehensive Cancer Center (to J.D.L.), the US National Institutes of Health grants P01 CA245705 (to J.D.L.), P01 CA278732 (to Z.L.), R01 CA262069 (to Z.L.), R35 NS127083 (to J.D.L.), R01 AG084250 (to J.D.L.) and T32 2T32CA09223-16A1 (to T.D.G.), and the Pelotonia Graduate Fellowship Program from The Ohio State University Comprehensive Cancer Center-James (to T.X.).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conceptualization and writing of the manuscript. J.D.L. and Z.L. also provided overall project management.

Corresponding authors

Correspondence to Justin D. Lathia or Zihai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Maureen Su and Sabra Klein, who co-reviewed with Joseph Hoffmann, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

All-cause mortality

The death rate from all causes of death for a population within a specific time period.

Castration

A medical procedure that involves the removal or suppression of the testes in males.

Four-core genotype (FCG) mouse model

A mouse strain that has four possible combinations of sex chromosome complement and gonadal sex — XX gonadal males (XXM), XY gonadal males (XYM), XX gonadal females (XXF) and XY gonadal females (XYF) — used to investigate the influence of sex chromosomes and gonadal hormones separately.

Graft-versus-leukaemia effect

The ability of donor immune cells to eliminate host leukaemic cells after allogeneic haematopoietic stem cell transplantation.

Hypogonadism

A condition in both males and females in which the body’s sex glands produce little or no sex hormones.

Pharmacodynamic

The biochemical and physiological effects of the foreign chemicals on the body.

Pharmacokinetic

The dynamic changes of foreign chemicals in the body.

Progenitor-exhausted CD8+ T cells

A subpopulation of CD8+ tumour-infiltrating lymphocytes that retain polyfunctionality, persist long term and differentiate into ‘terminally exhausted’ progenies.

Regulatory T (Treg) cells

A subset of CD4+ T lymphocytes that are defined by FOXP3 expression and suppress the immune system to prevent autoimmune reactions.

T follicular helper cell

A subset of CD4+ T lymphocytes that have a key role in regulating B cell responses and antibody production within lymphoid follicles during the immune response.

T helper 1 (TH1) cells

A subset of CD4+ T lymphocytes that promote cell-mediated immune responses and is required for host defence against intracellular viral and bacterial pathogens.

T helper 17 (TH17) cells

A subset of pro-inflammatory CD4+ T lymphocytes defined by their production of IL-17 and have an important role in maintaining mucosal barriers and contributing to pathogen clearance at mucosal surfaces.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Lee, J., Gauntner, T.D. et al. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 24, 338–355 (2024). https://doi.org/10.1038/s41568-024-00680-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00680-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer