Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiplex protein imaging in tumour biology

Abstract

Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40–50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiplex protein imaging can interrogate a tumour and its microenvironment across scales.
Fig. 2: Multiplex protein imaging can be applied to clinical cohorts.
Fig. 3: An overview of spatial analysis approaches for multiplex protein imaging data.
Fig. 4: The principles of single-cell multiplex protein imaging methods.
Fig. 5: Canonical pipeline for multiplex protein image processing.
Fig. 6: The principles of spatial multi-omics techniques.

Similar content being viewed by others

References

  1. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). The second iteration of this seminal review of the hallmarks of cancer, synthesizing evidence for immune evasion, inflammation and the TME as important features of the disease.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, B. et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 184, 6262–6280.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).

    CAS  PubMed  Google Scholar 

  8. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhaduri, A. et al. Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell 26, 48–63.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, L. et al. A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets. Nat. Cancer 3, 1534–1552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vegliante, R., Pastushenko, I. & Blanpain, C. Deciphering functional tumor states at single-cell resolution. EMBO J. 41, e109221 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 1271–1279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Massalha, H. et al. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 16, e9682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y. et al. Predicting response to immunotherapy in gastric cancer via multi-dimensional analyses of the tumour immune microenvironment. Nat. Commun. 13, 4851 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bolis, M. et al. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat. Commun. 12, 7033 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  21. Kumar, V. et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 12, 670–691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tietscher, S. et al. A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer. Nat. Commun. 14, 98 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chijimatsu, R. et al. Establishment of a reference single-cell RNA sequencing dataset for human pancreatic adenocarcinoma. iScience 25, 104659 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 41, 404–420 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. de Vries, N. L., Mahfouz, A., Koning, F. & de Miranda, N. Unraveling the complexity of the cancer microenvironment with multidimensional genomic and cytometric technologies. Front. Oncol. 10, 1254 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018). A MIBI study of triple-negative breast cancer that defines immune cell patterns, immunoregulatory protein expression and spatial features of tumour tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Danenberg, E. et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat. Genet. 54, 660–669 (2022). An IMC study of the TME in breast cancer that identifies spatial patterns associated with specific driver mutations and with patient survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sorin, M. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature 614, 548–554 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferguson, A. L. et al. High-dimensional and spatial analysis reveals immune landscape-dependent progression in cutaneous squamous cell carcinoma. Clin. Cancer Res. 28, 4677–4688 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Xiao, X. et al. Multiplexed imaging mass cytometry reveals distinct tumor-immune microenvironments linked to immunotherapy responses in melanoma. Commun. Med. 2, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022). A RNA-IMC study of metastatic melanoma that identifies local patches of chemokine-secreting cells together with the phenotypes of the cells in the surrounding milieus.

    Article  CAS  PubMed  Google Scholar 

  37. Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 186, 363–381.e19 (2023). A CycIF study of colorectal cancer that identifies molecular features underlying large-scale histological patterns and highlights the limitations of imaging small fields of view such as those in tumour microarrays.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matusiak, M. et al. A spatial map of human macrophage niches reveals context-dependent macrophage functions in colon and breast cancer. Res. Sq. https://doi.org/10.21203/rs.3.rs-2393443/v1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021). A MIBI and mass cytometry study that examines metabolic programmes of different cell types in colorectal cancer and maps their spatial organization.

    Article  CAS  PubMed  Google Scholar 

  40. Remark, R. et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci. Immunol. 1, aaf6925 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Banik, G. et al. High-dimensional multiplexed immunohistochemical characterization of immune contexture in human cancers. Methods Enzymol. 635, 1–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Toki, M. I. et al. High-plex predictive marker discovery for melanoma immunotherapy-treated patients using digital spatial profiling. Clin. Cancer Res. 25, 5503–5512 (2019).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 6, 25–36.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaglia, G. et al. Temporal and spatial topography of cell proliferation in cancer. Nat. Cell Biol. 24, 316–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020). An IMC study of breast cancer showing that multiplex imaging-defined single-cell pathology groups correlate with patient survival beyond the information provided by clinical subtypes.

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Fischer, J. R. et al. Multiplex imaging of breast cancer lymph node metastases identifies prognostic single-cell populations independent of clinical classifiers. Cell Rep. Med. 4, 100977 (2023). An IMC study showing cell phenotypic divergence between paired primary breast tumours and lymph node metastases, and identifying prognostic phenotypes in metastatic tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, X. Q. et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 621, 868–876 (2023). An IMC study conducted on a cohort of patients with breast cancer within a clinical trial and identifying cell phenotypic and spatial predictors of immunotherapy response.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, J. R. et al. High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers. Nat. Cancer 4, 1036–1052 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Radtke, A. J. et al. A multi-scale, multi-omic atlas of human normal and follicular lymphoma lymph nodes. Preprint at bioRxiv https://doi.org/10.1101/2022.06.03.494716 (2022).

    Article  Google Scholar 

  55. Milosevic, V. Different approaches to imaging mass cytometry data analysis. Bioinform Adv. 3, vbad046 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, M. et al. Spatial molecular profiling: platforms, applications and analysis tools.Brief. Bioinform. 22, bbaa145 (2021).

    Article  PubMed  Google Scholar 

  58. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020). A CODEX study on colorectal cancer illustrating the definition of cellular neighbourhoods and showing that spatial organization differs in samples with and without TLSs.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen, Z., Soifer, I., Hilton, H., Keren, L. & Jojic, V. Modeling multiplexed images with spatial-LDA reveals novel tissue microenvironments. J. Comput. Biol. 27, 1204–1218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Phillips, D. et al. Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat. Commun. 12, 6726 (2021). A CODEX study on cutaneous T cell lymphoma showing that spatial organization but not cell phenotypes is associated with patient response to immunotherapy.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhate, S. S., Barlow, G. L., Schürch, C. M. & Nolan, G. P. Tissue schematics map the specialization of immune tissue motifs and their appropriation by tumors. Cell Syst. 13, 109–130.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768.e55 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022). A MIBI study of early-stage breast cancer that used histological staining to define areas of interest for multiplex imaging and identifies features prognostic for disease progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022). A detailed practical guide to many aspects of multiplex protein imaging.

    Article  CAS  PubMed  Google Scholar 

  65. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Windhager, J. et al. An end-to-end workflow for multiplexed image processing and analysis. Nat. Protoc. 18, 3565–3613 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, C. C. et al. Multiplexed ion beam imaging: insights into pathobiology. Annu. Rev. Pathol. 17, 403–423 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Kuswanto, W., Nolan, G. & Lu, G. Highly multiplexed spatial profiling with CODEX: bioinformatic analysis and application in human disease. Semin. Immunopathol. 45, 145–157 (2023).

    Article  PubMed  Google Scholar 

  69. Baharlou, H., Canete, N. P., Cunningham, A. L., Harman, A. N. & Patrick, E. Mass cytometry imaging for the study of human diseases-applications and data analysis strategies. Front. Immunol. 10, 2657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014). The first methodological report of MIBI applied to human breast tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014). The first methodological report of IMC applied to human breast tumours.

    Article  CAS  PubMed  Google Scholar 

  73. Jiang, S. et al. Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity 55, 1118–1134.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Hosogane, T., Casanova, R. & Bodenmiller, B. DNA-barcoded signal amplification for imaging mass cytometry enables sensitive and highly multiplexed tissue imaging. Nat. Methods 20, 1304–1309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rovira-Clavé, X. et al. Subcellular localization of biomolecules and drug distribution by high-definition ion beam imaging. Nat. Commun. 12, 4628 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Goossens, P. et al. Integrating multiplex immunofluorescent and mass spectrometry imaging to map myeloid heterogeneity in its metabolic and cellular context. Cell Metab. 34, 1214–1225.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Radtke, A. J. et al. IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc. Natl Acad. Sci. USA 117, 33455–33465 (2020). A methodological paper describing the rapid, flexible and highly-multiplex IBEX method for cyclic immunofluorescence imaging.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schubert, W. et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Lin, J. R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018). An early methodological report of highly multiplex CycIF applied to tissue.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wählby, C., Erlandsson, F., Bengtsson, E. & Zetterberg, A. Sequential immunofluorescence staining and image analysis for detection of large numbers of antigens in individual cell nuclei. Cytometry 47, 32–41 (2002). The first multiplex imaging paper, showing that immunofluorescence signals can be sequentially removed without destroying antigenicity in fixed and paraffin-embedded tissue.

    Article  PubMed  Google Scholar 

  83. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

    Article  PubMed  Google Scholar 

  84. Gaglia, G. et al. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell 41, 871–886.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, K. et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 40, 1374–1391.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, M. et al. Spatiotemporal analysis of B cell- and antibody secreting cell-subsets in human melanoma reveals metastasis-, tumor stage-, and age-associated dynamics. Front. Cell Dev. Biol. 9, 677944 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021). A methodological paper describing the CODEX workflow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01676-0 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ben-Chetrit, N. et al. Integration of whole transcriptome spatial profiling with protein markers. Nat. Biotechnol. 41, 788–793 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Kishi, J. Y. et al. Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. Nat. Methods 19, 1393–1402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hu, K. H. et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat. Methods 17, 833–843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sha, L. et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen tissue based on stereo-seq. Preprint at: bioRxiv https://doi.org/10.1101/2023.04.28.538364 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. McNamara, K. L. et al. Spatial proteomic characterization of HER2-positive breast tumors through neoadjuvant therapy predicts response. Nat. Cancer 2, 400–413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat. Commun. 12, 1426 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martinez-Morilla, S. et al. Digital spatial profiling of melanoma shows CD95 expression in immune cells is associated with resistance to immunotherapy. Oncoimmunology 12, 2260618 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gavrielatou, N. et al. Digital spatial profiling links beta-2-microglobulin expression with immune checkpoint blockade outcomes in head and neck squamous cell carcinoma. Cancer Res. Commun. 3, 558–563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schoenfeld, D. A. et al. Immune dysfunction revealed by digital spatial profiling of immuno-oncology markers in progressive stages of renal cell carcinoma and in brain metastases. J. Immunother. Cancer 11, e007240 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Carter, J. M. et al. Distinct spatial immune microlandscapes are independently associated with outcomes in triple-negative breast cancer. Nat. Commun. 14, 2215 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bonnett, S. A. et al. Ultra high-plex spatial proteogenomic investigation of giant cell glioblastoma multiforme immune infiltrates reveals distinct protein and RNA expression profiles. Cancer Res. Commun. 3, 763–779 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Govek, K. W. et al. Single-cell transcriptomic analysis of mIHC images via antigen mapping. Sci. Adv. 7, eabc5464 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhu, B. et al. Robust single-cell matching and multimodal analysis using shared and distinct features. Nat. Methods 20, 304–315 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chen, S. et al. Integration of spatial and single-cell data across modalities with weakly linked features. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01935-0 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Strand, S. H. et al. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell 40, 1521–1536.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 39, 1479–1496.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vázquez-García, I. et al. Ovarian cancer mutational processes drive site-specific immune evasion. Nature 612, 778–786 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  115. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ravi, V. M. et al. Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell 40, 639–655.e13 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Müller, W. H., De Pauw, E., Far, J., Malherbe, C. & Eppe, G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: a concise review of the last decade. Prog. Lipid Res. 83, 101114 (2021).

    Article  PubMed  Google Scholar 

  118. Balluff, B., Hanselmann, M. & Heeren, R. M. Mass spectrometry imaging for the investigation of intratumor heterogeneity. Adv. Cancer Res. 134, 201–230 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Ma, X. & Fernández, F. M. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrom. Rev. 2022, e21804 (2022).

    Google Scholar 

  120. Spraggins, J. M. et al. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (timsTOF) mass spectrometry. Anal. Chem. 91, 14552–14560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Niehaus, M., Soltwisch, J., Belov, M. E. & Dreisewerd, K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16, 925–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Zavalin, A., Yang, J., Hayden, K., Vestal, M. & Caprioli, R. M. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal. Bioanal. Chem. 407, 2337–2342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Neumann, E. K., Comi, T. J., Rubakhin, S. S. & Sweedler, J. V. Lipid heterogeneity between astrocytes and neurons revealed by single-cell MALDI-MS combined with immunocytochemical classification. Angew. Chem. Int. Ed. Engl. 58, 5910–5914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cuypers, E. et al. ‘On the Spot’ digital pathology of breast cancer based on single-cell mass spectrometry imaging. Anal. Chem. 94, 6180–6190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bien, T. et al. MALDI-2 mass spectrometry and immunohistochemistry imaging of Gb3Cer, Gb4Cer, and further glycosphingolipids in human colorectal cancer tissue. Anal. Chem. 92, 7096–7105 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. O’Neill, K. C., Liapis, E., Harris, B. T., Perlin, D. S. & Carter, C. L. Mass spectrometry imaging discriminates glioblastoma tumor cell subpopulations and different microvascular formations based on their lipid profiles. Sci. Rep. 12, 17069 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  127. Andersen, M. K. et al. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab. 9, 9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ščupáková, K. et al. Clinical importance of high-mannose, fucosylated, and complex N-glycans in breast cancer metastasis. JCI Insight 6, e146945 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Prentice, B. M. et al. Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia 62, 1036–1047 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Prade, V. M. et al. De novo discovery of metabolic heterogeneity with immunophenotype-guided imaging mass spectrometry. Mol. Metab. 36, 100953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Baker, E. A. G., Schapiro, D., Dumitrascu, B., Vickovic, S. & Regev, A. In silico tissue generation and power analysis for spatial omics. Nat. Methods 20, 424–431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bost, P., Schulz, D., Engler, S., Wasserfall, C. & Bodenmiller, B. Optimizing multiplexed imaging experimental design through tissue spatial segregation estimation. Nat. Methods 20, 418–423 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Edfors, F. et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 12, 883 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016). A paper discussing the imperfect relationship between transcript and protein levels and arguing that protein-level measurements are needed to understand biological systems in many contexts.

    Article  CAS  PubMed  Google Scholar 

  136. Du, Z. et al. Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat. Protoc. 14, 2900–2930 (2019). A methodological paper that describes a pipeline for antibody validation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Uhlen, M. et al. A proposal for validation of antibodies. Nat. Methods 13, 823–827 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Quardokus, E. M. et al. Organ mapping antibody panels: a community resource for standardized multiplexed tissue imaging. Nat. Methods 20, 1174–1178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, C. C. et al. Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering. Nat. Commun. 14, 4618 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Spitzer, H., Berry, S., Donoghoe, M., Pelkmans, L. & Theis, F. J. Learning consistent subcellular landmarks to quantify changes in multiplexed protein maps. Nat. Methods https://doi.org/10.1038/s41592-023-01894-z (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bai, Y. et al. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. Nat. Commun. 14, 4013 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Strotton, M. et al. Multielement Z-tag imaging by X-ray fluorescence microscopy for next-generation multiplex imaging. Nat. Methods 20, 1310–1322 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yagnik, G., Liu, Z., Rothschild, K. J. & Lim, M. J. Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J. Am. Soc. Mass Spectrom. 32, 977–988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Claes, B. S. R. et al. MALDI-IHC-guided in-depth spatial proteomics: targeted and untargeted MSI combined. Anal. Chem. 95, 2329–2338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shi, L. et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat. Biotechnol. 40, 364–373 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Wu, E. et al. 7-UP: generating in silico CODEX from a small set of immunofluorescence markers. PNAS Nexus 2, pgad171 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ben-Uri, R. et al. Escalating high-dimensional imaging using combinatorial channel multiplexing and deep learning. Preprint at: bioRxiv https://doi.org/10.1101/2023.09.09.556962 (2023).

    Article  Google Scholar 

  151. Zhang, W. et al. Identification of cell types in multiplexed in situ images by combining protein expression and spatial information using CELESTA. Nat. Methods 19, 759–769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brbić, M. et al. Annotation of spatially resolved single-cell data with STELLAR. Nat. Methods 19, 1411–1418 (2022).

    Article  PubMed  Google Scholar 

  153. Amitay, Y. et al. CellSighter: a neural network to classify cells in highly multiplexed images. Nat. Commun. 14, 4302 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cui, Y. et al. Expansion microscopy using a single anchor molecule for high-yield multiplexed imaging of proteins and RNAs. PLoS One 18, e0291506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ghazanfar, S., Guibentif, C. & Marioni, J. C. Stabilized mosaic single-cell data integration using unshared features. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01766-z (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01767-y (2023).

    Article  PubMed  Google Scholar 

  158. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  161. Ozeki, M. et al. Susceptibility of actin to modification by 4-hydroxy-2-nonenal. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 827, 119–126 (2005).

    Article  CAS  Google Scholar 

  162. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Montanari, N. R. et al. Multi-parametric analysis of human livers reveals variation in intrahepatic inflammation across phases of chronic hepatitis B infection. J. Hepatol. 77, 332–343 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Hoyt, C. C. Multiplex immunofluorescence and multispectral imaging: forming the basis of a clinical test platform for immuno-oncology. Front. Mol. Biosci. 8, 674747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hurov, K. et al. BT7480, a novel fully synthetic Bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™) induces tumor localized CD137 agonism. J. Immunother. Cancer 9, e002883 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Rivest, F. et al. Fully automated sequential immunofluorescence (seqIF) for hyperplex spatial proteomics. Sci. Rep. 13, 16994 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jarosch, S. et al. Multiplexed imaging and automated signal quantification in formalin-fixed paraffin-embedded tissues by ChipCytometry. Cell Rep. Methods 1, 100104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  170. Peng, T. et al. A BaSiC tool for background and shading correction of optical microscopy images. Nat. Commun. 8, 14836 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lu, P. et al. IMC-Denoise: a content aware denoising pipeline to enhance imaging mass cytometry. Nat. Commun. 14, 1601 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  172. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Marconato, L. et al. SpatialData: an open and universal data framework for spatial omics. Preprint at bioRxiv https://doi.org/10.1101/2023.05.05.539647 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Nils Eling and Daniel Schulz for critical reading and feedback on the manuscript. We thank all Bodenmiller laboratory members for helpful discussions. B.B. was funded by two SNSF grants (310030_205007, 316030_213512), an NIH grant (UC4 DK108132), the CRUK IMAXT Grand Challenge, and the European Research Council (ERC) under the European Union’s Horizon 2020 Program under the ERC grant agreement no. 866074 (“Precision Motifs”).

Author information

Authors and Affiliations

Authors

Contributions

N.d.S. and S.Z. researched data for the article. All authors contributed substantially to discussion of the content. N.d.S. wrote and revised the article. S.Z. prepared and revised the figures and tables with input from the other authors. N.d.S. and B.B. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Bernd Bodenmiller.

Ethics declarations

Competing interests

B.B. has founded and is a shareholder and member of the board of Navignostics, a precision oncology spin-off from the University of Zurich. N.d.S. and S.Z. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Sizun Jiang who co-reviewed with Hendrik Michel, Christian Schürch and Sean Bendall for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human protein atlas: https://www.proteinatlas.org/

Napari: https://zenodo.org/record/7276432

Online documentation of IMC data analysis: https://bodenmillergroup.github.io/IMCDataAnalysis/

Supplementary information

Glossary

Cell segmentation

An image processing step that delineates the boundaries of individual cells.

Chromogen

A compound that can be converted into a coloured product that can be detected by light microscopy.

Co-detection by indexing

(CODEX). A highly multiplex protein imaging technique that uses iterative hybridization and stripping of fluorophore-tagged DNA oligonucleotide probes to image samples stained with DNA barcode-tagged antibodies.

Cyclic immunofluorescence

(CycIF). A highly multiplex imaging technique using iterative staining with fluorophore-tagged antibodies coupled with chemical inactivation of fluorophores between staining cycles to build a multiplex image of a labelled sample.

Digital spatial profiling

(DSP). A highly multiplex profiling technique for mRNA or protein that uses patterned light to release UV-photocleavable oligonucleotide tags attached to antibodies or to RNA probes in a defined spatial region, followed by sequencing or single molecule counting as a readout.

Dimensionality reduction

A data-processing approach whereby high-dimensional data are projected into a low number of dimensions represented by a smaller subset of variables with essentially the same information content as the full measured set.

Expansion microscopy

An approach that uses polymer-based physical expansion of a sample to improve the resolution of fluorescence microscopy beyond the diffraction limit of light.

Haptens

Small molecules that are not intrinsically antigenic but become so in combination with a macromolecule such as a protein.

Image registration

Data processing steps that bring two or more different images into a single coordinate system such that the images can be aligned.

Imaging mass cytometry

(IMC). A highly multiplex protein or RNA imaging technique that couples mass cytometry by time of flight with high-resolution laser ablation to image samples labelled with metal isotope reporter-tagged antibodies.

Imputation

An approach for handling missing data, typically by replacement with substitute values.

Multiplexed ion beam imaging

(MIBI). A highly multiplex protein imaging technique that uses secondary ion mass spectrometry to image samples labelled with metal isotope reporter-tagged antibodies.

Raman microscopy

Spatially resolved chemical analysis of a sample based on the detection of vibrational modes by scattered light.

Signal amplification by exchange reaction

(SABER). A signal amplification approach based on hybridization of imager DNA strands to concatemerized DNA barcodes assembled on antibodies used to label a sample; compatible with fluorescence and mass cytometric multiplex imaging.

Spillover correction

Data processing steps that compensate for fluorescent or metal signals from one channel that are detected artefactually in a different channel.

Synchrotron

A machine that accelerates charged particles (electrons) to almost the speed of light and thereby generates very intense light, mostly in the X-ray region.

Tertiary lymphoid structures

(TLS). Structured multicellular aggregates of immune cells found outside of lymph nodes, in peripheral tissue, and that reflect inflammatory signalling in the tissue.

Tyramide-based amplification

A signal amplification approach in which horseradish peroxidase (typically coupled to an antibody) catalyses the conversion of labelled tyramide to a reactive molecule that covalently labels nearby proteins at high density.

Voxel gating

Data processing steps to identify a cell of interest based on selecting voxels that are positive for expected markers and negative for incorrect or irrelevant markers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, N., Zhao, S. & Bodenmiller, B. Multiplex protein imaging in tumour biology. Nat Rev Cancer 24, 171–191 (2024). https://doi.org/10.1038/s41568-023-00657-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00657-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer