Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Linking cell mechanical memory and cancer metastasis

Abstract

Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour cell biophysical adaptations in response to the increase in matrix stiffness during primary tumour development.
Fig. 2: Tumour cell mechanosensing, mechanotransduction and mechanical memory of matrix stiffness imprinted through persistent epigenetic changes.
Fig. 3: Mechanically induced tumour cell biophysical adaptations acquired in the primary tumour and retained in the distant organ foster extravasation, avoidance of dormancy and secondary site colonization.

Similar content being viewed by others

References

  1. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gensbittel, V. et al. Mechanical adaptability of tumor cells in metastasis. Dev. Cell 56, 164–179 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

    Article  CAS  Google Scholar 

  6. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J., Abdeen, A. A. & Kilian, K. A. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci. Rep. 4, 5188 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heo, S. J. et al. Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci. Rep. 5, 16895 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frank, V. et al. Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency. Sci. Rep. 6, 24264 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Killaars, A. R. et al. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Adv. Sci. 6, 1801483 (2019).

    Article  Google Scholar 

  12. Dunham, C., Havlioglu, N., Chamberlain, A., Lake, S. & Meyer, G. Adipose stem cells exhibit mechanical memory and reduce fibrotic contracture in a rat elbow injury model. FASEB J. 34, 12976–12990 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Nasrollahi, S. et al. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials 146, 146–155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hammer, A. M. et al. Stromal PDGFR-α activation enhances matrix stiffness, impedes mammary ductal development, and accelerates tumor growth. Neoplasia 19, 496–508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schrader, J. et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53, 1192–1205 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Ulrich, T. A., de Juan Pardo, E. M. & Kumar, S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69, 4167–4174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen, T. V., Sleiman, M., Moriarty, T., Herrick, W. G. & Peyton, S. R. Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials 35, 5749–5759 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Rice, A. J. et al. Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haage, A. & Schneider, I. C. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB J. 28, 3589–3599 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Nukuda, A. et al. Stiff substrates increase YAP-signaling-mediated matrix metalloproteinase-7 expression. Oncogenesis 4, e165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, S. et al. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. J. Exp. Clin. Cancer Res. 37, 99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, M. et al. Activation of Piezo1 contributes to matrix stiffness-induced angiogenesis in hepatocellular carcinoma. Cancer Commun. 42, 1162–1184 (2022).

    Article  CAS  Google Scholar 

  23. Taufalele, P. V. et al. Matrix stiffness enhances cancer-macrophage interactions and M2-like macrophage accumulation in the breast tumor microenvironment. Acta Biomater. 163, 365–377 (2022).

    Article  PubMed  Google Scholar 

  24. Kraning-Rush, C. M., Califano, J. P. & Reinhart-King, C. A. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7, e32572 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grasset, E. M. et al. Matrix stiffening and EGFR cooperate to promote the collective invasion of cancer cells. Cancer Res. 78, 5229–5242 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Tian, F. et al. Mechanical responses of breast cancer cells to substrates of varying stiffness revealed by single-cell measurements. J. Phys. Chem. Lett. 11, 7643–7649 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Molter, C. W. et al. Prostate cancer cells of increasing metastatic potential exhibit diverse contractile forces, cell stiffness, and motility in a microenvironment stiffness-dependent manner. Front. Cell Dev. Biol. 10, 932510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baker, E. L., Lu, J., Yu, D., Bonnecaze, R. T. & Zaman, M. H. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99, 2048–2057 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rianna, C. & Radmacher, M. Influence of microenvironment topography and stiffness on the mechanics and motility of normal and cancer renal cells. Nanoscale 9, 11222–11230 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Wullkopf, L. et al. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell 29, 2378–2385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci. USA 109, 10334–10339 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pogoda, K. et al. Soft substrates containing hyaluronan mimic the effects of increased stiffness on morphology, motility, and proliferation of glioma cells. Biomacromolecules 18, 3040–3051 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matte, B. F. et al. Matrix stiffness mechanically conditions EMT and migratory behavior of oral squamous cell carcinoma. J. Cell Sci. 132, jcs224360 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).

    Article  CAS  Google Scholar 

  35. Sinkus, R. et al. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med. 58, 1135–1144 (2007).

    Article  PubMed  Google Scholar 

  36. Evans, A. et al. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br. J. Cancer 107, 224–229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boyd, N. F. et al. Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS ONE 9, e100937 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Carrara, S. et al. EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions. Gastrointest. Endosc. 87, 1464–1473 (2018).

    Article  PubMed  Google Scholar 

  39. Shahryari, M. et al. Tomoelastography distinguishes noninvasively between benign and malignant liver lesions. Cancer Res. 79, 5704–5710 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Rouvière, O. et al. Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur. Radiol. 27, 1858–1866 (2017).

    Article  PubMed  Google Scholar 

  41. Cochlin, D. L., Ganatra, R. H. & Griffiths, D. F. Elastography in the detection of prostatic cancer. Clin. Radiol. 57, 1014–1020 (2002).

    Article  PubMed  Google Scholar 

  42. Singh, S. et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, 1573–1584 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ichikawa, S., Motosugi, U., Enomoto, N. & Onishi, H. Magnetic resonance elastography can predict development of hepatocellular carcinoma with longitudinally acquired two-point data. Eur. Radiol. 29, 1013–1021 (2019).

    Article  PubMed  Google Scholar 

  44. Northey, J. J. et al. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J. Clin. Invest. 130, 5721–5737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maskarinec, G. et al. Mammographic density as a predictor of breast cancer survival: the Multiethnic Cohort. Breast Cancer Res. 15, R7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang, J. et al. 3D MR elastography of hepatocellular carcinomas as a potential biomarker for predicting tumor recurrence. J. Magn. Reson. Imaging 49, 719–730 (2019).

    Article  PubMed  Google Scholar 

  47. Zanetti-Dällenbach, R. et al. Length scale matters: real-time elastography versus nanomechanical profiling by atomic force microscopy for the diagnosis of breast lesions. BioMed. Res. Int. 2018, 3840597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shen, Y., Schmidt, T. & Diz-Muñoz, A. Protocol on tissue preparation and measurement of tumor stiffness in primary and metastatic colorectal cancer samples with an atomic force microscope. STAR Protoc. 1, 100167 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article  ADS  PubMed  Google Scholar 

  50. Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Deligne, C. & Midwood, K. S. Macrophages and extracellular matrix in breast cancer: partners in crime or protective allies? Front. Oncol. 11, 620773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Offeddu, G. S. et al. Personalized models of breast cancer desmoplasia reveal biomechanical determinants of drug penetration. Preprint at bioRxiv https://doi.org/10.1101/2021.12.12.472296 (2023).

  54. Casey, T. M. et al. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: a population study. Breast Cancer Res. Treat. 110, 39–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Costea, D. E. et al. Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res. 73, 3888–3901 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Papageorgis, P. & Stylianopoulos, T. Role of TGFbeta in regulation of the tumor microenvironment and drug delivery (review). Int. J. Oncol. 46, 933–943 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pankova, D. et al. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol. Cancer Res. 14, 287–295 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Afik, R. et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med. 213, 2315–2331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Erez, N., Truitt, M., Olson, P. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Su, S. et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172, 841–856.e816 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Özdemir, BernaC. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rhim, AndrewD. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bhattacharjee, S. et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Invest. 131, e146987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wei, J. et al. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. Acta Biomater. 150, 34–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Xing, X. et al. Matrix stiffness-mediated effects on macrophages polarization and their LOXL2 expression. FEBS J. 288, 3465–3477 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Friedemann, M. et al. Instructing human macrophage polarization by stiffness and glycosaminoglycan functionalization in 3D collagen networks. Adv. Healthcares. Mater. 6, 1600967 (2017).

    Article  Google Scholar 

  71. Bordeleau, F. et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl Acad. Sci. USA 114, 492–497 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Ghosh, K. et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl Acad. Sci. USA 105, 11305–11310 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Kopanska, K. S., Alcheikh, Y., Staneva, R., Vignjevic, D. & Betz, T. Tensile forces originating from cancer spheroids facilitate tumor invasion. PLoS ONE 11, e0156442 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han, Y. L. et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl Acad. Sci. USA 115, 4075–4080 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature 427, 695 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Baxter, L. T. & Jain, R. K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37, 77–104 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Jain, R. K. & Baxter, L. T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032 (1988).

    CAS  PubMed  Google Scholar 

  82. Boucher, Y., Kirkwood, J. M., Opacic, D., Desantis, M. & Jain, R. K. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 51, 6691–6694 (1991).

    CAS  PubMed  Google Scholar 

  83. Gutmann, R. et al. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res. 52, 1993–1995 (1992).

    CAS  PubMed  Google Scholar 

  84. Nathanson, S. D. & Nelson, L. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann. Surg. Oncol. 1, 333–338 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Boucher, Y., Salehi, H., Witwer, B., Harsh, G. R. T. & Jain, R. K. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br. J. Cancer 75, 829–836 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990).

    CAS  PubMed  Google Scholar 

  87. Butler, T. P., Grantham, F. H. & Gullino, P. M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 35, 3084–3088 (1975).

    CAS  PubMed  Google Scholar 

  88. Pedersen, J. A., Lichter, S. & Swartz, M. A. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J. Biomech. 43, 900–905 (2010).

    Article  PubMed  Google Scholar 

  89. Hofmann, M. et al. Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia 8, 89–95 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Gonzalez-Molina, J. et al. Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration. Biomaterials 177, 113–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Pittman, M. et al. Membrane ruffling is a mechanosensor of extracellular fluid viscosity. Nat. Phys. 18, 1112–1121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bera, K. et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature 611, 365–373 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sevick, E. M. & Jain, R. K. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res. 49, 3513–3519 (1989).

    CAS  PubMed  Google Scholar 

  95. Yin, J., Kong, X. & Lin, W. Noninvasive cancer diagnosis in vivo based on a viscosity-activated near-infrared fluorescent probe. Anal. Chem. 93, 2072–2081 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Farino Reyes, C. J., Pradhan, S. & Slater, J. H. The influence of ligand density and degradability on hydrogel induced breast cancer dormancy and reactivation. Adv. Healthc. Mater. 10, e2002227 (2021).

    Article  PubMed  Google Scholar 

  98. Murphy, C. M., Haugh, M. G. & O’Brien, F. J. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31, 461–466 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Taubenberger, A. V. et al. 3D microenvironment stiffness regulates tumor spheroid growth and mechanics via p21 and ROCK. Adv. Biosyst. 3, e1900128 (2019).

    Article  PubMed  Google Scholar 

  100. Liu, X. et al. Niche stiffness sustains cancer stemness via TAZ and NANOG phase separation. Nat. Commun. 14, 238 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  101. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bao, M. et al. Extracellular matrix stiffness controls VEGF(165) secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis 25, 71–86 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Esbona, K. et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 18, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Munevar, S., Wang, Y. & Dembo, M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosel, D. et al. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol. Cancer Res. 6, 1410–1420 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Indra, I. et al. An in vitro correlation of mechanical forces and metastatic capacity. Phys. Biol. 8, 015015 (2011).

    Article  ADS  PubMed  Google Scholar 

  108. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Saez, A., Buguin, A., Silberzan, P. & Ladoux, B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89, L52–L54 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghibaudo, M. et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836 (2008).

    Article  ADS  CAS  Google Scholar 

  111. Califano, J. P. & Reinhart-King, C. A. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol. Bioeng. 3, 68–75 (2010).

    Article  PubMed  Google Scholar 

  112. Tee, S. Y., Fu, J., Chen, C. S. & Janmey, P. A. Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100, L25–L27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Song, D. et al. Recovery of tractions exerted by single cells in three-dimensional nonlinear matrices. J. Biomech. Eng. 142, 081012 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Afthinos, A. et al. Migration and 3D traction force measurements inside compliant microchannels. Nano Lett. 22, 7318–7327 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thoumine, O. & Ott, A. Comparison of the mechanical properties of normal and transformed fibroblasts. Biorheology 34, 309–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Coughlin, M. F. et al. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin. Exp. Metastasis 30, 237–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, Z. et al. Cancer cells display increased migration and deformability in pace with metastatic progression. FASEB J. 34, 9307–9315 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Swaminathan, V. et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rianna, C., Radmacher, M. & Kumar, S. Direct evidence that tumor cells soften when navigating confined spaces. Mol. Biol. Cell 31, 1726–1734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roberts, A. B. et al. Tumor cell nuclei soften during transendothelial migration. J. Biomech. 121, 110400 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wisniewski, E. O. et al. Dorsoventral polarity directs cell responses to migration track geometries. Sci. Adv. 6, eaba6505 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fattet, L. et al. Matrix rigidity controls epithelial–mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev. Cell 54, 302–316 e307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nader, G. P. F. et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 184, 5230–5246.e5222 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Andreu, I. et al. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat. Cell Biol. 24, 896–905 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ansardamavandi, A., Tafazzoli-Shadpour, M. & Shokrgozar, M. A. Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus. Cell Adh. Migr. 12, 472–488 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, J. et al. Transfer of assembled collagen fibrils to flexible substrates for mechanically tunable contact guidance cues. Integr. Biol. 10, 705–718 (2018).

    Article  CAS  Google Scholar 

  130. Peng, Y. et al. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomater. 88, 86–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Isomursu, A. et al. Directed cell migration towards softer environments. Nat. Mater. 21, 1081–1090 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Charras, G. & Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Ulrich, T. A., Jain, A., Tanner, K., MacKay, J. L. & Kumar, S. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31, 1875–1884 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Petrie, R. J., Koo, H. & Yamada, K. M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062–1065 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pathak, A. & Kumar, S. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5, 1067–1075 (2013).

    Article  CAS  Google Scholar 

  137. Zanotelli, M. R. et al. Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat. Commun. 10, 4185 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  138. Watson, A. W. et al. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep. 35, 109293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A. & Shenoy, V. B. Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophys. J. 120, 5074–5089 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e822 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Stowers, R. S. et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 3, 1009–1019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bica-Pop, C. et al. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol. Life Sci. 75, 3539–3551 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Zhu, S. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Wang, H. et al. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer 19, 738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Mistriotis, P. et al. Confinement hinders motility by inducing RhoA-mediated nuclear influx, volume expansion, and blebbing. J. Cell Biol. 218, 4093–4111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Keys, J., Cheung, B. C. H., Wu, M. & Lammerding, J. Rear cortex contraction aids in nuclear transit during confined migration by increasing pressure in the cell posterior. Preprint at bioRxiv https://doi.org/10.1101/2022.09.10.507419 (2022).

  150. Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O. & Kamm, R. D. Elucidation of the roles of tumor integrin beta1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  152. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Karreman, M. A. et al. Active remodeling of capillary endothelium via cancer cell-derived MMP9 promotes metastatic brain colonization. Cancer Res. 83, 1299–1314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Azadi, S., Tafazzoli Shadpour, M. & Warkiani, M. E. Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model. Biotechnol. Bioeng. 118, 823–835 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Javanmardi, Y. et al. Endothelium and subendothelial matrix mechanics modulate cancer cell transendothelial migration. Adv. Sci. 10, e2206554 (2023).

    Article  Google Scholar 

  156. Mierke, C. T. Cancer cells regulate biomechanical properties of human microvascular endothelial cells. J. Biol. Chem. 286, 40025–40037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shibue, T. & Weinberg, R. A. Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl Acad. Sci. USA 106, 10290–10295 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, Y. et al. Fibrin stiffness mediates dormancy of tumor-repopulating cells via a Cdc42-driven Tet2 epigenetic program. Cancer Res. 78, 3926–3937 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Barkan, D. et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70, 5706–5716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Price, T. T. et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 8, 340ra373 (2016).

    Article  Google Scholar 

  161. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shah, L., Latif, A., Williams, K. J., Mancuso, E. & Tirella, A. Invasion and secondary site colonization as a function of in vitro primary tumor matrix stiffness: breast to bone metastasis. Adv. Healthc. Mater. 12, e2201898 (2023).

    Article  PubMed  Google Scholar 

  163. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Yankaskas, C. L. et al. The fluid shear stress sensor TRPM7 regulates tumor cell intravasation. Sci. Adv. 7, eabh3457 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 4, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Godfrey (MIT Koch Institute for Integrative Cancer Research) for his valuable and insightful comments that helped to improve this article. E. Cambria was supported by an Early Postdoc Mobility fellowship from the Swiss National Science Foundation and a postdoctoral fellowship from the Ludwig Center at MIT Koch Institute for Integrative Cancer Research. G.S.O. received funding from Amgen, Inc., and an American Italian Cancer Foundation Postdoctoral Fellowship. S.E.S. was supported by fellowship K00CA212227 from the National Cancer Institute, NIH. This work was supported by a grant from the National Cancer Institute (U54-CA261694).

Author information

Authors and Affiliations

Authors

Contributions

E.C., M.F.C., M.A.F., G.S.O. and S.E.S. researched data for the article. All authors contributed substantially to discussion of the content. E.C., M.F.C., M.A.F., G.S.O. and S.E.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Elena Cambria or Roger D. Kamm.

Ethics declarations

Competing interests

R.D.K. is a co-founder of AIM Biotech, a company that markets microfluidic technologies and receives research support from Amgen, AbbVie, Boehringer-Ingelheim, GSK, Novartis, Roche, Takeda, Eisai, EMD Serono and Visterra. None of these activities is related to the content of this article. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Konstantinos Konstantopoulos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Atomic force microscopy

A technique that imposes a small, local deformation to a sample to probe mechanical properties.

Compressive stresses

The component of stress that pushes on a surface to shorten or squeeze a material in the direction perpendicular to the surface.

Elastic modulus

The slope of the stress–strain relationship that gives a quantitative measurement of material stiffness.

Shear wave elastography

A technique that uses sound to induce shear deformation in a material to quantify mechanical properties.

Strain-stiffening

A phenomenon whereby the elastic modulus of a material increases with deformation.

Tensile stresses

The component of stress that pulls on a surface to elongate a material in the direction perpendicular to the surface.

Traction forces

Forces exerted tangential to a substrate to generate motion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambria, E., Coughlin, M.F., Floryan, M.A. et al. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 24, 216–228 (2024). https://doi.org/10.1038/s41568-023-00656-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00656-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer