Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The dynamic role of platelets in cancer progression and their therapeutic implications

Abstract

Systemic antiplatelet treatment represents a promising option to improve the therapeutic outcomes and therapeutic efficacy of chemotherapy and immunotherapy due to the critical contribution of platelets to tumour progression. However, until recently, targeting platelets as a cancer therapeutic has been hampered by the elevated risk of haemorrhagic and thrombocytopenic (low platelet count) complications owing to the lack of specificity for tumour-associated platelets. Recent work has advanced our understanding of the molecular mechanisms responsible for the contribution of platelets to tumour progression and metastasis. This has led to the identification of the biological changes in platelets in the presence of tumours, the complex interactions between platelets and tumour cells during tumour progression, and the effects of platelets on antitumour therapeutic response. In this Review, we present a detailed picture of the dynamic roles of platelets in tumour development and progression as well as their use in diagnosis, prognosis and monitoring response to therapy. We also provide our view on how to overcome challenges faced by the development of precise antiplatelet strategies for safe and efficient clinical cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour cells alter platelet biology.
Fig. 2: Direct and indirect platelet–tumour cell interactions promote platelet education and activation.
Fig. 3: The contribution of platelets to promoting tumour growth and progression.
Fig. 4: Anticancer strategies involve targeting platelet–tumour cell interactions or utilizing engineered platelets or platelet-like carriers for drug delivery.

Similar content being viewed by others

References

  1. van der Meijden, P. E. J. & Heemskerk, J. W. M. Platelet biology and functions: new concepts and clinical perspectives. Nat. Rev. Cardiol. 16, 166–179 (2019).

    Article  PubMed  Google Scholar 

  2. Gaertner, F. & Massberg, S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat. Rev. Immunol. 19, 747–760 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Levin, J. & Conley, C. L. Thrombocytosis associated with malignant disease. Arch. Intern. Med. 114, 497–500 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Lin, R. J., Afshar-Kharghan, V. & Schafer, A. I. Paraneoplastic thrombocytosis: the secrets of tumor self-promotion. Blood 124, 184–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho, M. S. et al. Platelets increase the proliferation of ovarian cancer cells. Blood 120, 4869–4872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011). This paper shows that platelets promote epithelial-to-mesenchymal-like transition of cancer cells through both contact-dependent and contact-independent mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Placke, T. et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 72, 440–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Rachidi, S. et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci. Immunol. 2, eaai7911 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Casagrande, N. et al. In ovarian cancer multicellular spheroids, platelet releasate promotes growth, expansion of ALDH+ and CD133+ cancer stem cells, and protection against the cytotoxic effects of cisplatin, carboplatin and paclitaxel. Int. J. Mol. Sci. 22, 3019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palumbo, J. S. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105, 178–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Gay, L. J. & Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 11, 123–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dangaj, D. et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35, 885–900.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stone, R. L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012). This paper shows that ovarian tumour cells secrete IL-6, which increases hepatic thrombopoietin production and promotes platelet generation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, X. R., Yousef, G. M. & Ni, H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 131, 1777–1789 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Bailey, S. E., Ukoumunne, O. C., Shephard, E. A. & Hamilton, W. Clinical relevance of thrombocytosis in primary care: a prospective cohort study of cancer incidence using English electronic medical records and cancer registry data. Br. J. Gen. Pract. 67, e405–e413 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abdulrahman, G. O., Das, N. & Lutchman Singh, K. The predictive role of thrombocytosis in benign, borderline and malignant ovarian tumors. Platelets 31, 795–800 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Hwang, S. G. et al. Impact of pretreatment thrombocytosis on blood-borne metastasis and prognosis of gastric cancer. Eur. J. Surg. Oncol. 38, 562–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Skorek, P., Stepien, K., Fila, M., Hauer, J. & Kuzdzal, J. Preoperative thrombocytosis in surgically treated patients with non-small cell lung cancer. Pol. Arch. Intern. Med. 128, 512–517 (2018).

    PubMed  Google Scholar 

  19. Sasaki, Y. et al. Production of thrombopoietin by human carcinomas and its novel isoforms. Blood 94, 1952–1960 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Josa, V. et al. Thrombocytosis and effects of IL-6 knock-out in a colitis-associated cancer model. Int. J. Mol. Sci. 21, 6218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harano, K. et al. Thrombocytosis as a prognostic factor in inflammatory breast cancer. Breast Cancer Res. Treat. 166, 819–832 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pucci, F. et al. PF4 promotes platelet production and lung cancer growth. Cell Rep. 17, 1764–1772 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suzuki, A. et al. Thrombocytosis in patients with tumors producing colony-stimulating factor. Blood 80, 2052–2059 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Roweth, H. G. et al. Pro-inflammatory megakaryocyte gene expression in murine models of breast cancer. Sci. Adv. 8, eabo5224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Egan, K. et al. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells. PLoS One 6, e26125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miao, S. et al. Cancer cell-derived immunoglobulin G activates platelets by binding to platelet FcγRIIa. Cell Death Dis. 10, 87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Calverley, D. C. et al. Significant downregulation of platelet gene expression in metastatic lung cancer. Clin. Transl. Sci. 3, 227–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sabrkhany, S. et al. Exploration of the platelet proteome in patients with early-stage cancer. J. Proteom. 177, 65–74 (2018).

    Article  CAS  Google Scholar 

  30. Denis, M. M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122, 379–391 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weyrich, A. S. et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc. Natl Acad. Sci. USA 95, 5556–5561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kerr, B. A., McCabe, N. P., Feng, W. & Byzova, T. V. Platelets govern pre-metastatic tumor communication to bone. Oncogene 32, 4319–4324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuznetsov, H. S. et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov. 2, 1150–1165 (2012). This paper shows that platelets take up pro-angiogenic and pro-inflammatory factors in the primary tumour and release them in the metastatic site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nilsson, R. J. et al. Blood platelets contain tumor-derived RNA biomarkers. Blood 118, 3680–3683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, R. et al. Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer. Proc. Natl Acad. Sci. USA 112, 14266–14271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, J. et al. Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood 120, 3030–3038 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ay, C. et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 112, 2703–2708 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Cooke, N. M. et al. Increased platelet reactivity in patients with late-stage metastatic cancer. Cancer Med. 2, 564–570 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khorana, A. A., Francis, C. W., Culakova, E., Kuderer, N. M. & Lyman, G. H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 5, 632–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Rayes, J., Watson, S. P. & Nieswandt, B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J. Clin. Invest. 129, 12–23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Costa, B. et al. Intratumoral platelet aggregate formation in a murine preclinical glioma model depends on podoplanin expression on tumor cells. Blood Adv. 3, 1092–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Riedl, J. et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 129, 1831–1839 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Kolar, K. et al. Podoplanin: a marker for reactive gliosis in gliomas and brain injury. J. Neuropathol. Exp. Neurol. 74, 64–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Sasano, T. et al. Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. J. Thromb. Haemost. 20, 104–114 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Shirai, T. et al. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J. Thromb. Haemost. 15, 513–525 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X. et al. Blocking podoplanin inhibits platelet activation and decreases cancer-associated venous thrombosis. Thromb. Res. 200, 72–80 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Mammadova-Bach, E. et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived galectin-3. Blood 135, 1146–1160 (2020).

    PubMed  Google Scholar 

  48. Saha, B. et al. Human tumor microenvironment chip evaluates the consequences of platelet extravasation and combinatorial antitumor-antiplatelet therapy in ovarian cancer. Sci. Adv. 7, eabg5283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ichikawa, J. et al. Role of platelet C-type lectin-like receptor 2 in promoting lung metastasis in osteosarcoma. J. Bone Miner. Res. 35, 1738–1750 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Mitrugno, A., Williams, D., Kerrigan, S. W. & Moran, N. A novel and essential role for FcγRIIa in cancer cell-induced platelet activation. Blood 123, 249–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Yu, L. X. et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat. Commun. 5, 5256 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Estevez, B. & Du, X. New concepts and mechanisms of platelet activation signaling. Physiology 32, 162–177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heinmoller, E. et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J. Cancer Res. Clin. Oncol. 122, 735–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Geddings, J. E. et al. Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J. Thromb. Haemost. 14, 153–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Peterson, J. E. et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis 15, 265–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Dudiki, T. et al. Mechanism of tumor-platelet communications in cancer. Circ. Res. 132, 1447–1461 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Bergstrand, J. et al. Super-resolution microscopy can identify specific protein distribution patterns in platelets incubated with cancer cells. Nanoscale 11, 10023–10033 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Bergstrand, J., Miao, X., Srambickal, C. V., Auer, G. & Widengren, J. Fast, streamlined fluorescence nanoscopy resolves rearrangements of SNARE and cargo proteins in platelets co-incubated with cancer cells. J. Nanobiotechnol. 20, 292 (2022).

    Article  CAS  Google Scholar 

  59. Sabrkhany, S. et al. A combination of platelet features allows detection of early-stage cancer. Eur. J. Cancer 80, 5–13 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Antunes-Ferreira, M., Koppers-Lalic, D. & Wurdinger, T. Circulating platelets as liquid biopsy sources for cancer detection. Mol. Oncol. 15, 1727–1743 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, X. et al. Microfluidic isolation of platelet-covered circulating tumor cells. Lab. Chip 17, 3498–3503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodriguez-Martinez, A. et al. Exchange of cellular components between platelets and tumor cells: impact on tumor cells behavior. Theranostics 12, 2150–2161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martins Castanheira, N., Spanhofer, A. K., Wiener, S., Bobe, S. & Schillers, H. Uptake of platelets by cancer cells and recycling of the platelet protein CD42a. J. Thromb. Haemost. 20, 170–181 (2022). This paper shows that CTCs upregulate expression of the immune-checkpoint molecule HLA-E by taking up peripheral platelets.

    Article  CAS  PubMed  Google Scholar 

  64. Liu, X. et al. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell 41, 272–287.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Hu, Q. et al. Role of platelet-derived Tgfβ1 in the progression of ovarian cancer. Clin. Cancer Res. 23, 5611–5621 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thun, M. J., Jacobs, E. J. & Patrono, C. The role of aspirin in cancer prevention. Nat. Rev. Clin. Oncol. 9, 259–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Li, F. et al. Platelet-derived extracellular vesicles inhibit ferroptosis and promote distant metastasis of nasopharyngeal carcinoma by upregulating ITGB3. Int. J. Biol. Sci. 18, 5858–5872 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lazar, S. & Goldfinger, L. E. Platelets and extracellular vesicles and their cross talk with cancer. Blood 137, 3192–3200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang, H. et al. MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol. Cancer 14, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cacic, D., Reikvam, H., Nordgard, O., Meyer, P. & Hervig, T. Platelet microparticles protect acute myelogenous leukemia cells against daunorubicin-induced apoptosis. Cancers 13, 1870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dean, W. L., Lee, M. J., Cummins, T. D., Schultz, D. J. & Powell, D. W. Proteomic and functional characterisation of platelet microparticle size classes. Thromb. Haemost. 102, 711–718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aatonen, M. T. et al. Isolation and characterization of platelet-derived extracellular vesicles. J. Extracell. Vesicles 3, https://doi.org/10.3402/jev.v3.24692 (2014).

  74. Haemmerle, M. et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J. Clin. Invest. 126, 1885–1896 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Miao, S. et al. Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1-CX3CR1 dependent manner and induce tumour cell apoptosis. Mol. Oncol. 14, 2546–2559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McCarty, O. J., Mousa, S. A., Bray, P. F. & Konstantopoulos, K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96, 1789–1797 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Gu, R. et al. Integrin β3/Akt signaling contributes to platelet-induced hemangioendothelioma growth. Sci. Rep. 7, 6455 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen, R., Jin, G., Li, W. & McIntyre, T. M. Epidermal growth factor (EGF) autocrine activation of human platelets promotes egf receptor-dependent oral squamous cell carcinoma invasion, migration, and epithelial mesenchymal transition. J. Immunol. 201, 2154–2164 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Takagi, S., Takemoto, A., Takami, M., Oh-Hara, T. & Fujita, N. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Sci. 105, 983–988 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Metelli, A. et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci. Transl. Med. 12, eaay4860 (2020). This paper shows that intratumoural platelets contribute to the immunosuppressive tumour microenvironment by releasing and activating TGFβ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zaslavsky, A. B. et al. Platelet-synthesized testosterone in men with prostate cancer induces androgen receptor signaling. Neoplasia 17, 490–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cho, M. S. et al. The effect of platelet G proteins on platelet extravasation and tumor growth in the murine model of ovarian cancer. Blood Adv. 5, 1947–1951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klement, G. L. et al. Platelets actively sequester angiogenesis regulators. Blood 113, 2835–2842 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Yamamoto, A. et al. Thymidine phosphorylase (platelet-derived endothelial cell growth factor), microvessel density and clinical outcome in hepatocellular carcinoma. J. Hepatol. 29, 290–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Zaslavsky, A. et al. Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 115, 4605–4613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yao, L., Dong, H., Luo, Y., Du, J. & Hu, W. Net platelet angiogenic activity (NPAA) correlates with progression and prognosis of non-small cell lung cancer. PLoS One 9, e96206 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Janowska-Wieczorek, A. et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 113, 752–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Anene, C., Graham, A. M., Boyne, J. & Roberts, W. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2633–2643 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Feng, W. et al. A novel role for platelet secretion in angiogenesis: mediating bone marrow-derived cell mobilization and homing. Blood 117, 3893–3902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kisucka, J. et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc. Natl Acad. Sci. USA 103, 855–860 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rhee, J. S. et al. The functional role of blood platelet components in angiogenesis. Thromb. Haemost. 92, 394–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Manegold, P. C., Hutter, J., Pahernik, S. A., Messmer, K. & Dellian, M. Platelet-endothelial interaction in tumor angiogenesis and microcirculation. Blood 101, 1970–1976 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Volz, J. et al. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood 133, 2696–2706 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Ho-Tin-Noe, B., Goerge, T., Cifuni, S. M., Duerschmied, D. & Wagner, D. D. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 68, 6851–6858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Y. et al. Platelet-specific PDGFB ablation impairs tumor vessel integrity and promotes metastasis. Cancer Res. 80, 3345–3358 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Riesenberg, B. P. et al. Cutting edge: targeting thrombocytes to rewire anticancer immunity in the tumor microenvironment and potentiate efficacy of PD-1 blockade. J. Immunol. 203, 1105–1110 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grout, J. A. et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T-cell exclusion in human lung tumors. Cancer Discov. 12, 2606–2625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Forsberg, K., Valyi-Nagy, I., Heldin, C. H., Herlyn, M. & Westermark, B. Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc. Natl Acad. Sci. USA 90, 393–397 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Y. et al. Platelet-derived PDGFB promotes recruitment of cancer-associated fibroblasts, deposition of extracellular matrix and Tgfβ signaling in the tumor microenvironment. Cancers 14, 1947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pietras, K. et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 61, 2929–2934 (2001).

    CAS  PubMed  Google Scholar 

  103. Kalimutho, M. et al. Blockade of PDGFRβ circumvents resistance to MEK-JAK inhibition via intratumoral CD8+ T-cells infiltration in triple-negative breast cancer. J. Exp. Clin. Cancer Res. 38, 85 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Singh, M. V. et al. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J. Leukoc. Biol. 109, 807–820 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Hilf, N. et al. Human platelets express heat shock protein receptors and regulate dendritic cell maturation. Blood 99, 3676–3682 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Saris, A. et al. Inhibition of dendritic cell activation and modulation of T cell polarization by the platelet secretome. Front. Immunol. 12, 631285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zamora, C. et al. Binding of platelets to lymphocytes: a potential anti-inflammatory therapy in rheumatoid arthritis. J. Immunol. 198, 3099–3108 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Mudd, J. C. et al. Inflammatory function of CX3CR1+ CD8+ T cells in treated HIV infection is modulated by platelet interactions. J. Infect. Dis. 214, 1808–1816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zaslavsky, A. B. et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci. Rep. 10, 19296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Asgari, A. et al. Platelets stimulate programmed death-ligand 1 expression by cancer cells: inhibition by anti-platelet drugs. J. Thromb. Haemost. 19, 2862–2872 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Dinkla, S. et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 127, 1976–1986 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Standiford, T. J. et al. TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 30, 2475–2484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schneider, M. A. et al. Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Sci. Transl. Med. 13, eabc8188 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Prima, V., Kaliberova, L. N., Kaliberov, S., Curiel, D. T. & Kusmartsev, S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl Acad. Sci. USA 114, 1117–1122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elaskalani, O., Falasca, M., Moran, N., Berndt, M. C. & Metharom, P. The role of platelet-derived ADP and ATP in promoting pancreatic cancer cell survival and gemcitabine resistance. Cancers 9, 142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bottsford-Miller, J. et al. Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin. Cancer Res. 21, 602–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zuo, X. X. et al. Platelets promote breast cancer cell MCF-7 metastasis by direct interaction: surface integrin α2β1-contacting-mediated activation of Wnt-β-catenin pathway. Cell Commun. Signal. 17, 142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Contursi, A. et al. Platelets induce free and phospholipid-esterified 12-hydroxyeicosatetraenoic acid generation in colon cancer cells by delivering 12-lipoxygenase. J. Lipid Res. 62, 100109 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lin, C. M. et al. Distinct tumor microenvironment at tumor edge as a result of astrocyte activation is associated with therapeutic resistance for brain tumor. Front. Oncol. 9, 307 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Labelle, M., Begum, S. & Hynes, R. O. Platelets guide the formation of early metastatic niches. Proc. Natl Acad. Sci. USA 111, E3053–E3061 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Egan, K., Cooke, N. & Kenny, D. Living in shear: platelets protect cancer cells from shear induced damage. Clin. Exp. Metastasis 31, 697–704 (2014).

    Article  PubMed  Google Scholar 

  125. Xiong, G. et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc. Natl Acad. Sci. USA 117, 3748–3758 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mammadova-Bach, E. et al. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight 1, e88245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lonsdorf, A. S. et al. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. J. Biol. Chem. 287, 2168–2178 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Reymond, N., d’Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Im, J. H. et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res. 64, 8613–8619 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Bauer, A. T. et al. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 125, 3153–3163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jain, S. et al. Platelet glycoprotein Ibα supports experimental lung metastasis. Proc. Natl Acad. Sci. USA 104, 9024–9028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Burdick, M. M. & Konstantopoulos, K. Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. Am. J. Physiol. Cell Physiol. 287, C539–C547 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N. & Offermanns, S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24, 130–137 (2013). This paper shows that platelet adherence to circulating tumour cells promotes the transendothelial migration of tumour cells.

    Article  CAS  PubMed  Google Scholar 

  135. Ward, Y. et al. Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep. 23, 808–822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Takagi, S. et al. Platelet-derived lysophosphatidic acid mediated LPAR1 activation as a therapeutic target for osteosarcoma metastasis. Oncogene 40, 5548–5558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ren, J. et al. Platelet TLR4-ERK5 axis facilitates NET-mediated capturing of circulating tumor cells and distant metastasis after surgical stress. Cancer Res. 81, 2373–2385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bakewell, S. J. et al. Platelet and osteoclast β3 integrins are critical for bone metastasis. Proc. Natl Acad. Sci. USA 100, 14205–14210 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lucotti, S. et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J. Clin. Invest. 129, 1845–1862 (2019). This study reports the contribution of platelets in facilitating metastasis at each stage of the metastatic process.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Thiele, W. et al. Platelet deficiency in Tpo−/− mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner. Clin. Exp. Metastasis 35, 679–689 (2018).

    Article  PubMed  Google Scholar 

  141. Anderson, R. L. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019).

    Article  PubMed  Google Scholar 

  142. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Boucharaba, A. et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest. 114, 1714–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Battinelli, E. M., Markens, B. A. & Italiano, J. E. Jr. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 118, 1359–1369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guillem-Llobat, P. et al. Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget 7, 32462–32477 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gebremeskel, S., LeVatte, T., Liwski, R. S., Johnston, B. & Bezuhly, M. The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. Int. J. Cancer 136, 234–240 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Amirkhosravi, A. et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb. Haemost. 90, 549–554 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, W. et al. A humanized single-chain antibody against beta 3 integrin inhibits pulmonary metastasis by preferentially fragmenting activated platelets in the tumor microenvironment. Blood 120, 2889–2898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pandey, A. et al. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery. Nanotechnology 25, 445101 (2014).

    Article  PubMed  Google Scholar 

  150. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT03245489 (2023).

  151. Mackman, N., Bergmeier, W., Stouffer, G. A. & Weitz, J. I. Therapeutic strategies for thrombosis: new targets and approaches. Nat. Rev. Drug Discov. 19, 333–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Mayer, K. et al. Efficacy and safety of revacept, a novel lesion-directed competitive antagonist to platelet glycoprotein VI, in patients undergoing elective percutaneous coronary intervention for stable ischemic heart disease: the randomized, double-blind, placebo-controlled ISAR-PLASTER phase 2 trial. JAMA Cardiol. 6, 753–761 (2021).

    Article  PubMed  Google Scholar 

  153. Suzuki-Inoue, K. Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. Blood 134, 1912–1918 (2019).

    Article  PubMed  Google Scholar 

  154. Zhou, Z. et al. Perfluorocarbon nanoparticle-mediated platelet inhibition promotes intratumoral infiltration of T cells and boosts immunotherapy. Proc. Natl Acad. Sci. USA 116, 11972–11977 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, S. et al. Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nat. Biomed. Eng. 1, 667–679 (2017). This paper presents a novel, smart nanodrug that effectively enhances the intratumoural penetration of chemotherapeutics through selective depletion of intratumoural platelets.

    Article  CAS  PubMed  Google Scholar 

  156. Cao, J. et al. Adhesion and release’ nanoparticle-mediated efficient inhibition of platelet activation disrupts endothelial barriers for enhanced drug delivery in tumors. Biomaterials 269, 120620 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Ke, Y. et al. Chlorogenic acid-conjugated nanoparticles suppression of platelet activation and disruption to tumor vascular barriers for enhancing drug penetration in tumor. Adv. Healthc. Mater. 12, e2202205 (2023).

    Article  PubMed  Google Scholar 

  158. Li, S. et al. Targeted inhibition of tumor inflammation and tumor-platelet crosstalk by nanoparticle-mediated drug delivery mitigates cancer metastasis. ACS Nano 16, 50–67 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Xu, P. et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci. Rep. 7, 42632 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wu, Y. W. et al. Clinical-grade cryopreserved doxorubicin-loaded platelets: role of cancer cells and platelet extracellular vesicles activation loop. J. Biomed. Sci. 27, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).

    Article  CAS  Google Scholar 

  162. Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    Article  PubMed  Google Scholar 

  163. Papa, A. L. et al. Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. Sci. Transl. Med. 11, eaau5898 (2019). This paper presents a novel biomaterial derived from platelets, referred to as a platelet decoy, and demonstrates its capability to suppress tumour metastasis by binding to CTCs in an experimental mouse model of breast cancer metastasis.

    Article  CAS  PubMed  Google Scholar 

  164. Mitrugno, A. et al. The role of coagulation and platelets in colon cancer-associated thrombosis. Am. J. Physiol. Cell Physiol. 316, C264–C273 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Li, B. et al. Platelet-membrane-coated nanoparticles enable vascular disrupting agent combining anti-angiogenic drug for improved tumor vessel impairment. Nano Lett. 21, 2588–2595 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Zhuang, J. et al. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 6, eaaz6108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Michael, J. V. et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 130, 567–580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wurtzel, J. G. T. et al. Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLoS One 16, e0261633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ma, Y. et al. A cascade synergetic strategy induced by photothermal effect based on platelet exosome nanoparticles for tumor therapy. Biomaterials 282, 121384 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Uslu, D., Abas, B. I., Demirbolat, G. M. & Cevik, O. Effect of platelet exosomes loaded with doxorubicin as a targeted therapy on triple-negative breast cancer cells. Mol. Divers. https://doi.org/10.1007/s11030-022-10591-6 (2022).

    Article  PubMed  Google Scholar 

  171. Tjon-Kon-Fat, L. A. et al. Platelets harbor prostate cancer biomarkers and the ability to predict therapeutic response to abiraterone in castration resistant patients. Prostate 78, 48–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).

    CAS  PubMed  Google Scholar 

  173. Hessels, D. & Schalken, J. A. The use of PCA3 in the diagnosis of prostate cancer. Nat. Rev. Urol. 6, 255–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Best, M. G. et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Best, M. G. et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell 32, 238–252.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Best, M. G., In’t Veld, S., Sol, N. & Wurdinger, T. RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA. Nat. Protoc. 14, 1206–1234 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Walraven, M. et al. Effects of cancer presence and therapy on the platelet proteome. Int. J. Mol. Sci. 22, 8236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hinterleitner, C. et al. Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer. Nat. Commun. 12, 7005 (2021). This paper describes the strong association between platelet PDL1 and immunotherapy response in NSCLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V. & Sood, A. K. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell 33, 965–983 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kim, J. et al. Prediction of tumor metastasis via extracellular vesicles-treated platelet adhesion on a blood vessel chip. Lab. Chip 22, 2726–2740 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Li, B. et al. Monitoring circulating platelet activity to predict cancer-associated thrombosis. Cell Rep. Methods 3, 100513 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Aslan, J. E., Itakura, A., Gertz, J. M. & McCarty, O. J. T. In Platelets and Megakaryocytes Methods in Molecular Biology Ch. 7, 91-100 (Springer, 2012).

  183. US Preventive Services Task Force et al. Aspirin use to prevent cardiovascular disease: US preventive services task force recommendation statement. JAMA 327, 1577–1584 (2022).

    Article  Google Scholar 

  184. McNeil, J. J. et al. Effect of aspirin on cancer incidence and mortality in older adults. J. Natl Cancer Inst. 113, 258–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. McNeil, J. J. et al. Effect of aspirin on all-cause mortality in the healthy elderly. N. Engl. J. Med. 379, 1519–1528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Morrow, D. A. et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 366, 1404–1413 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Floyd, J. S. & Serebruany, V. L. Prasugrel as a potential cancer promoter: review of the unpublished data. Arch. Intern. Med. 170, 1078–1080 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Abbas, R. et al. Development of a swine model of secondary liver tumor from a genetically induced swine fibroblast cell line. HPB 10, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Osum, S. H., Watson, A. L. & Largaespada, D. A. Spontaneous and engineered large animal models of neurofibromatosis type 1. Int. J. Mol. Sci. 22, 1954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hyslop, S. R. et al. Targeting platelets for improved outcome in KRAS-driven lung adenocarcinoma. Oncogene 39, 5177–5186 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Kim, H. K. et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur. J. Cancer 39, 184–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Carpinteiro, A. et al. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol. Med. 7, 714–734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ju, L., Chen, Y., Xue, L., Du, X. & Zhu, C. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. eLife 5, e15447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Quek, L. S. et al. Fyn and Lyn phosphorylate the Fc receptor γ chain downstream of glycoprotein VI in murine platelets, and Lyn regulates a novel feedback pathway. Blood 96, 4246–4253 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. Dutting, S., Bender, M. & Nieswandt, B. Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol. Sci. 33, 583–590 (2012).

    Article  PubMed  Google Scholar 

  196. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Offermanns, S. Activation of platelet function through G protein-coupled receptors. Circ. Res. 99, 1293–1304 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to express special thanks to T. Zhou, Westlake University, for providing helpful suggestions for our draft revision. This work was supported by grants from the Beijing Distinguished Young Scientist programme (JQ20037 to S.L.), CAS Interdisciplinary Innovation Team (JCTD-2020-04 to S.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000 to G.N.), CAS Project for Young Scientists in Basic Research (No. YSBR-036 to S.L.), the Key Area R&D Program of Guangdong Province (2020B0101020004 to S.L.), the National Basic Research Plan of China (2018YFA0208900 to G.N.), and the National Natural Science Foundation of China (31730032 to G.N., 31820103004 to G.N.).

Author information

Authors and Affiliations

Authors

Contributions

G.N., S.L., Z.L., S.W., T.C., B.L. and F.Q. researched the data for this article. All authors contributed substantially to the discussion of content. S.L., G.N. and Z.L. wrote the article. G.N., S.L., Z.L. and Y.Z. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Suping Li or Guangjun Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Florian Gaertner and Benoit Ho-Tin-Noé for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Area under the curve

(AUC). A measure of how well a parameter can distinguish normal groups from diseased groups; the greater the AUC, the better the parameter.

Blood shear stress

In the circulation, cancer cells are subjected to the tangential or frictional forces of the blood flow, causing mechanical stress and subsequent damage to circulating tumour cells.

Haemocyte

Haemocytes are cells that circulate in the blood and are generated via haematopoiesis; they include red blood cells, leukocytes and platelets.

Haemostasis

The physiological process of blood clot formation at the site of vessel injury while maintaining normal blood flow elsewhere.

Paraneoplastic

A syndrome that occurs when the body has a systemic reaction to a cancerous tumour.

Platelet releasates

Soluble factors, small molecules and vesicles secreted by platelets when activated.

Soluble N-ethylmaleimide factor attachment protein receptors

(SNAREs). Essential proteins involved in mediating protein secretion by membrane fusion of storage granules within cells.

Venous thromboembolism

(VTE). When a blood clot forms in the veins, including deep vein thrombosis and pulmonary embolism.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Lu, Z., Wu, S. et al. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat Rev Cancer 24, 72–87 (2024). https://doi.org/10.1038/s41568-023-00639-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00639-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer