Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How chemokines organize the tumour microenvironment

Abstract

For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or ‘biopatterns’) based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological response programmes and their chemokines.
Fig. 2: Type 1, 2 and 3 immunity chemokines in the tumour microenvironment.
Fig. 3: Post-translational regulation of chemokines.
Fig. 4: Therapeutic opportunities based on the chemokine system.

Similar content being viewed by others

References

  1. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Bill, R. et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science 381, 515–524 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, R. et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat. Med. 27, 141–151 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556–571.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e22 (2021). This paper highlights how chemokines can promote immune cell survival and proliferation in the TME indirectly by guiding them to engage in cellular interactions.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Morein, D., Erlichman, N. & Ben-Baruch, A. Beyond cell motility: the expanding roles of chemokines and their receptors in malignancy. Front. Immunol. 11, 952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rot, A. & von Andrian, U. H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004). This study is an insightful comparison of the chemokine system to a language.

    Article  CAS  PubMed  Google Scholar 

  15. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mikucki, M. E. et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat. Commun. 6, 7458 (2015). This study is the first direct demonstration of a role for a chemokine in immune cell extravasation to tumours.

    Article  CAS  PubMed  Google Scholar 

  17. Marangoni, F. et al. Tumor tolerance-promoting function of regulatory T cells is optimized by CD28, but strictly dependent on calcineurin. J. Immunol. 200, 3647–3661 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Moreno Ayala, M. A. et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity 56, 1613–1630.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. González-Martín, A., Gómez, L., Lustgarten, J., Mira, E. & Mañes, S. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4+ and CD8+ T cells. Cancer Res. 71, 5455–5466 (2011).

    Article  PubMed  Google Scholar 

  20. Walens, A. et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 8, e43653 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rozhok, A. I. & DeGregori, J. The evolution of lifespan and age-dependent cancer risk. Trends Cancer 2, 552–560 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Foster, A. D., Sivarapatna, A. & Gress, R. E. The aging immune system and its relationship with cancer. Aging Health 7, 707–718 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Bachelerie, F. et al. International union of basic and clinical pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66, 1–79 (2014). This study is a comprehensive and systematic overview of the chemokine system.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zlotnik, A., Yoshie, O. & Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7, 243 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol. 7, 224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Murphy, P. M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Lämmermann, T. & Kastenmüller, W. Concepts of GPCR‐controlled navigation in the immune system. Immunol. Rev. 289, 205–231 (2019). This study is a review of the in vivo mechanisms of chemotactic cell guidance.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Teicher, B. A. & Fricker, S. P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 16, 2927–2931 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crijns, H., Vanheule, V. & Proost, P. Targeting chemokine — glycosaminoglycan interactions to inhibit inflammation. Front. Immunol. 11, 483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J. & Knaut, H. Chemokine signaling in development and disease. Development 141, 4199–4205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schall, T. J. & Proudfoot, A. E. I. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat. Rev. Immunol. 11, 355–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Murphy, P. M. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat. Immunol. 2, 116–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. D’Ambrosio, D. et al. Quantitative differences in chemokine receptor engagement generate diversity in integrin-dependent lymphocyte adhesion. J. Immunol. 169, 2303–2312 (2002).

    Article  PubMed  Google Scholar 

  37. Mariani, M., Lang, R., Binda, E., Panina-Bordignon, P. & D’Ambrosio, D. Dominance of CCL22 over CCL17 in induction of chemokine receptor CCR4 desensitization and internalization on human Th2 cells. Eur. J. Immunol. 34, 231–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Chheda, Z. S., Sharma, R. K., Jala, V. R., Luster, A. D. & Haribabu, B. Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors. J. Immunol. 197, 2016–2026 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Wendel, M., Galani, I. E., Suri-Payer, E. & Cerwenka, A. Natural killer cell accumulation in tumors is dependent on IFN-γ and CXCR3 ligands. Cancer Res. 68, 8437–8445 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Luster, A. D., Unkeless, J. C. & Ravetch, J. V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315, 672–676 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Groom, J. R. & Luster, A. D. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 89, 207–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Bronger, H. et al. CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br. J. Cancer 115, 553–563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duckworth, B. C. et al. Effector and stem-like memory cell fates are imprinted in distinct lymph node niches directed by CXCR3 ligands. Nat. Immunol. 22, 434–448 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Groom, J. R. et al. CXCR3 chemokine receptor–ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37, 1091–1103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kastenmüller, W. et al. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8 + T cell responses in the lymph node. Immunity 38, 502–513 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sung, J. H. et al. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150, 1249–1263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hickman, H. D. et al. CXCR3 chemokine receptor enables local CD8+ T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ariotti, S. et al. Subtle CXCR3-dependent chemotaxis of CTLs within infected tissue allows efficient target localization. J. Immunol. 195, 5285–5295 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Bangs, D. J. et al. CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Rep. 38, 110266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dähling, S. et al. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 55, 656–670.e8 (2022).

    Article  PubMed  Google Scholar 

  52. Ozga, A. J. et al. CXCL10 chemokine regulates heterogeneity of the CD8+ T cell response and viral set point during chronic infection. Immunity 55, 82–97.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Meiser, P. et al. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity. Cancer Cell 41, 1498–1515.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Dorner, B. G. et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823–833 (2009). This paper demonstrates a previously elusive role of XCR1 in CD8+ T cell activation.

    Article  CAS  PubMed  Google Scholar 

  57. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eickhoff, S. et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322–1337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hor, J. L. et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43, 554–565 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Kitano, M. et al. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. Proc. Natl Acad. Sci. USA 113, 1044–1049 (2016). This study, along with Eickhoff et al. (2015) and Hor et al. (2015), uses state-of-the-art intravital microscopy techniques to resolve complex patterns of cooperativity in DC–T cell interactions in lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018). This paper presents a key advance in understanding cancer cell-initiated immune-suppression mediated by interference with chemokine function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Traynor, T. R., Kuziel, W. A., Toews, G. B. & Huffnagle, G. B. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 164, 2021–2027 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Blease, K. et al. Enhanced pulmonary allergic responses to Aspergillus in CCR2−/− mice. J. Immunol. 165, 2603–2611 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Luther, S. A. & Cyster, J. G. Chemokines as regulators of T cell differentiation. Nat. Immunol. 2, 102–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature 440, 890–895 (2006). This study demonstrates an elegant solution to the ‘three cell problem’ in the provision of CD4+ T cell help to CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  66. Hickman, H. D. et al. Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. J. Exp. Med. 208, 2511–2524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Galeano Niño, J. L. et al. Cytotoxic T cells swarm by homotypic chemokine signalling. eLife 9, e56554 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun. 12, 5217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gause, W. C., Wynn, T. A. & Allen, J. E. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat. Rev. Immunol. 13, 607–614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mattes, J. et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells. J. Exp. Med. 197, 387–393 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat. Immunol. 16, 609–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, M. et al. TGF-β suppresses type 2 immunity to cancer. Nature 587, 115–120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hollande, C. et al. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat. Immunol. 20, 257–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Loetscher, P. et al. The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J. Biol. Chem. 276, 2986–2991 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    Article  PubMed  Google Scholar 

  77. Bruchard, M. et al. Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses. Nat. Immunol. 23, 262–274 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shimaoka, T. et al. Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells. J. Leukoc. Biol. 75, 267–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Abel, S. et al. The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J. Immunol. 172, 6362–6372 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Darash-Yahana, M. et al. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS ONE 4, e6695 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gutwein, P. et al. Tumoural CXCL16 expression is a novel prognostic marker of longer survival times in renal cell cancer patients. Eur. J. Cancer 45, 478–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Hojo, S. et al. High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res. 67, 4725–4731 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Muthuswamy, R. et al. CXCR6 by increasing retention of memory CD8 + T cells in the ovarian tumor microenvironment promotes immunosurveillance and control of ovarian cancer. J. Immunother. Cancer 9, e003329 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Matsumura, S. et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 181, 3099–3107 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Oldham, K. A. et al. T lymphocyte recruitment into renal cell carcinoma tissue: a role for chemokine receptors CXCR3, CXCR6, CCR5, and CCR6. Eur. Urol. 61, 385–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Parsonage, G. et al. CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma. Am. J. Pathol. 180, 1215–1222 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Jerby-Arnon, L. et al. Pan-cancer mapping of single T cell profiles reveals a TCF1:CXCR6-CXCL16 regulatory axis essential for effective anti-tumor immunity. Preprint at bioRxiv https://doi.org/10.1101/2021.10.31.466532 (2021).

  91. Karaki, S. et al. CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T-cell recruitment in head and neck and lung tumors. J. Immunother. Cancer 9, e001948 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vella, J. L. et al. Dendritic cells maintain anti-tumor immunity by positioning CD8 skin-resident memory T cells. Life Sci. Alliance 4, e202101056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, B. et al. CXCR6 is required for antitumor efficacy of intratumoral CD8(+) T cell. J. Immunother. Cancer 9, e003100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rivas-Fuentes, S., Salgado-Aguayo, A., Arratia-Quijada, J. & Gorocica-Rosete, P. Regulation and biological functions of the CX3CL1–CX3CR1 axis and its relevance in solid cancer: a mini-review. J. Cancer 12, 571–583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hochreiter-Hufford, A. & Ravichandran, K. S. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sheridan, G. K. & Murphy, K. J. Neuron–glia crosstalk in health and disease: fractalkine and CX 3 CR1 take centre stage. Open Biol. 3, 130181 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cormican, S. & Griffin, M. D. Fractalkine (CX3CL1) and its receptor CX3CR1: a promising therapeutic target in chronic kidney disease? Front. Immunol. 12, 664202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Imai, T. et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Jung, S. et al. Analysis of fractalkine receptor CX 3 CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Böttcher, J. P. et al. Functional classification of memory CD8+ T cells by CX 3 CR1 expression. Nat. Commun. 6, 8306 (2015).

    Article  PubMed  Google Scholar 

  102. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1(+) stem-like CD8(+) T cells during chronic infection. Immunity 51, 1043–1058.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zander, R. et al. CD4(+) T cell help is required for the formation of a cytolytic CD8(+) T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamauchi, T. et al. CX3CR1-CD8+ T cells are critical in antitumor efficacy but functionally suppressed in the tumor microenvironment. JCI Insight 5, e133920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yamauchi, T. et al. T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. Nat. Commun. 12, 1402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Siddiqui, I., Erreni, M., van Brakel, M., Debets, R. & Allavena, P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient. J. Immunother. Cancer 4, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kee, J.-Y. et al. Antitumor immune activity by chemokine CX3CL1 in an orthotopic implantation of lung cancer model in vivo. Mol. Clin. Oncol. 1, 35–40 (2013).

    Article  PubMed  Google Scholar 

  108. Batista, N. V. et al. T cell–intrinsic CX3CR1 marks the most differentiated effector CD4 + T cells, but is largely dispensable for CD4 + T cell responses during chronic viral infection. Immunohorizons 4, 701–712 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Gordon, C. L. et al. Induction and maintenance of CX3CR1-intermediate peripheral memory CD8(+) T cells by persistent viruses and vaccines. Cell Rep. 23, 768–782 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sakai, S. et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma–homing CD4 T cells. J. Immunol. 192, 2965–2969 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Konradt, C. & Hunter, C. A. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur. J. Immunol. 48, 1607–1620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Campbell, D. J. & Koch, M. A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 11, 119–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mempel, T. R. & Marangoni, F. Guidance factors orchestrating regulatory T cell positioning in tissues during development, homeostasis, and response. Immunol. Rev. 289, 129–141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, L. et al. Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer. Nat. Immunol. 20, 1220–1230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Rapp, M. et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J. Exp. Med. 216, 1170–1181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Marangoni, F. et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 184, 3998–4015.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mikhak, Z. et al. Contribution of CCR4 and CCR8 to antigen-specific TH2 cell trafficking in allergic pulmonary inflammation. J. Allergy Clin. Immunol. 123, 67–73.e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Islam, S. A. et al. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5 + TH2 cells. Nat. Immunol. 12, 167–177 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Sokol, C. L., Camire, R. B., Jones, M. C. & Luster, A. D. The chemokine receptor CCR8 promotes the migration of dendritic cells into the lymph node parenchyma to initiate the allergic immune response. Immunity 49, 449–463.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cucolo, L. et al. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade. Immunity 55, 671–685.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Eberlein, J. et al. Chemokine signatures of pathogen-specific T cells I: effector T cells. J. Immunol. 205, 2169–2187 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Li, A. et al. IL-33 signaling alters regulatory T cell diversity in support of tumor development. Cell Rep. 29, 2998–3008.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Köhler, A. et al. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 117, 4349–4357 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Girbl, T. et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity 49, 1062–1076.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chao, T., Furth, E. E. & Vonderheide, R. H. CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 4, 968–982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li, J. et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49, 178–193.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Teijeira, Á. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Kryczek, I. et al. Inflammatory regulatory T cells in the microenvironments of ulcerative colitis and colon carcinoma. OncoImmunol 5, e1105430 (2016).

    Article  Google Scholar 

  137. Tecchio, C. & Cassatella, M. A. Neutrophil-derived chemokines on the road to immunity. Semin. Immunol. 28, 119–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhou, S.-L. et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology 150, 1646–1658.e17 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Mishalian, I. et al. Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17 — a new mechanism of impaired antitumor immunity. Int. J. Cancer 135, 1178–1186 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017). This paper provides a clear demonstration that presumed cellular ‘subsets’ can represent stages of a linear differentiation process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

    Article  PubMed  Google Scholar 

  144. Roehle, K. et al. cIAP1/2 antagonism eliminates MHC class I-negative tumors through T cell-dependent reprogramming of mononuclear phagocytes. Sci. Transl. Med. 13, 23–25 (2021).

    Article  Google Scholar 

  145. Li, X. et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66, 157–167 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Loberg, R. D. et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 67, 9417–9424 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Qian, B.-Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011). This study presents the critical role of CCR2 in monocyte recruitment to tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sanford, D. E. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 19, 3404–3415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dyer, D. P. et al. Chemokine receptor redundancy and specificity are context dependent. Immunity 50, 378–389.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Trzebanski, S. & Jung, S. Plasticity of monocyte development and monocyte fates. Immunol. Lett. 227, 66–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science 350, 985–990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jung, K. et al. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J. Clin. Invest. 127, 3039–3051 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Fantuzzi, L. et al. Loss of CCR2 expression and functional response to monocyte chemotactic protein (MCP-1) during the differentiation of human monocytes: role of secreted MCP-1 in the regulation of the chemotactic response. Blood 94, 875–883 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Kaufmann, A., Salentin, R., Gemsa, D. & Sprenger, H. Increase of CCR1 and CCR5 expression and enhanced functional response to MIP‐1α during differentiation of human monocytes to macrophages. J. Leukoc. Biol. 69, 248–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Medina-Ruiz, L. et al. Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice. eLife 11, e72418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Halama, N. et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29, 587–601 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Frankenberger, C. et al. Metastasis suppressors regulate the tumor microenvironment by blocking recruitment of prometastatic tumor-associated macrophages. Cancer Res. 75, 4063–4073 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Braun, A. et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration. Nat. Immunol. 12, 879–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Roberts, E. W. et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Worbs, T., Mempel, T. R., Bölter, J., von Andrian, U. H. & Förster, R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204, 489–495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Riedel, A., Shorthouse, D., Haas, L., Hall, B. A. & Shields, J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat. Immunol. 17, 1118–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mueller, S. N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Villablanca, E. J. et al. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat. Med. 16, 98–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015). This paper highlights that TLSs can also support tolerogenic function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wurbel, M.-A. et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol. 30, 262–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Chen, H. J. et al. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. J. Clin. Invest. 122, 3184–3196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen, H. et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci. Adv. 6, eaax4690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bianchi, M. E. & Mezzapelle, R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front. Immunol. 11, 2109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bonavita, O., Mollica Poeta, V., Massara, M., Mantovani, A. & Bonecchi, R. Regulation of hematopoiesis by the chemokine system. Cytokine 109, 76–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Scimone, M. L. et al. CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J. Exp. Med. 199, 1113–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010). This study showcases a technical milestone that enabled the in vivo roles of chemokines in fine-tuned microenvironmental immune cell positioning to be pinpointed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ostrand-Rosenberg, S. & Fenselau, C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J. Immunol. 200, 422–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Chiodoni, C. et al. Transcriptional profiles and stromal changes reveal bone marrow adaptation to early breast cancer in association with deregulated circulating microRNAs. Cancer Res. 80, 484–498 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Arwert, E. N. et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23, 1239–1248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Steele, M. M. et al. T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control. Nat. Immunol. 24, 664–675 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Chen, Y. et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice: hepatobiliary malignancies. Hepatology 61, 1591–1602 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Seo, Y. D. et al. Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin. Cancer Res. 25, 3934–3945 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020). This paper demonstrates that chemokine targeting can have clinical anti-cancer efficacy.

    Article  CAS  PubMed  Google Scholar 

  194. Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001). This study demonstrates the role of chemokines in guiding organ-specific cancer metastasis.

    Article  PubMed  Google Scholar 

  195. Murakami, T. et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res. 62, 7328–7334 (2002).

    CAS  PubMed  Google Scholar 

  196. Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chan, D. A. & Giaccia, A. J. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev. 26, 333–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Staller, P. et al. Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Takanami, I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis: CCR7 expression in lung cancer. Int. J. Cancer 105, 186–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Günther, K. et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int. J. Cancer 116, 726–733 (2005).

    Article  PubMed  Google Scholar 

  201. Amersi, F. F. et al. Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine. Clin. Cancer Res. 14, 638–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zlotnik, A., Burkhardt, A. M. & Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 11, 597–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015). This study, along with Staller et al. (2003) and Spranger et al. (2015), highlights the importance of cancer genetics and epigenetics in chemokine effects on TME inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Martin, T. D. et al. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 373, 1327–1335 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Zeng, Q. et al. Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion. Science 378, eabl7207 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Thompson, S. et al. Regulation of chemokine function: the roles of GAG-binding and post-translational nitration. Int. J. Mol. Sci. 18, 1692 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Stone, M. J., Hayward, J. A., Huang, C., Huma, Z. E. & Sanchez, J. Mechanisms of regulation of the chemokine-receptor network. Int. J. Mol. Sci. 18, 342 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Hartmann, T. N. et al. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34 + cells. J. Leukoc. Biol. 84, 1130–1140 (2008).

    Article  CAS  PubMed  Google Scholar 

  211. Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F. & Lagane, B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113, 6085–6093 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Nibbs, R. J. B. & Graham, G. J. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol. 13, 815–829 (2013).

    Article  PubMed  Google Scholar 

  213. Rot, A. Contribution of Duffy antigen to chemokine function. Cytokine Growth Factor Rev. 16, 687–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Addison, C. L., Belperio, J. A., Burdick, M. D. & Strieter, R. M. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis. BMC Cancer 4, 28 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wang, J. et al. Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene 25, 7201–7211 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Shen, H., Schuster, R., Stringer, K. F., Waltz, S. E. & Lentsch, A. B. The Duffy antigen/receptor for chemokines (DARC) regulates prostate tumor growth. FASEB J. 20, 59–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Horton, L. W., Yu, Y., Zaja-Milatovic, S., Strieter, R. M. & Richmond, A. Opposing roles of murine Duffy antigen receptor for chemokine and murine CXC chemokine receptor-2 receptors in murine melanoma tumor growth. Cancer Res. 67, 9791–9799 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zeng, X.-H. et al. Coexpression of atypical chemokine binders (ACBs) in breast cancer predicts better outcomes. Breast Cancer Res. Treat. 125, 715–727 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Maeda, S. et al. Duffy antigen receptor for chemokines (DARC) expressing in cancer cells inhibits tumor progression by suppressing CXCR2 signaling in human pancreatic ductal adenocarcinoma. Cytokine 95, 12–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Sun, G., Wang, Y., Zhu, Y., Huang, C. & Ji, Q. Duffy antigen receptor for chemokines in laryngeal squamous cell carcinoma as a negative regulator. Acta Otolaryngol. 131, 197–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. Latini, F. R. M. et al. DARC (Duffy) and BCAM (Lutheran) reduced expression in thyroid cancer. Blood Cells Mol. Dis. 50, 161–165 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Farnsworth, R. H., Karnezis, T., Maciburko, S. J., Mueller, S. N. & Stacker, S. A. The interplay between lymphatic vessels and chemokines. Front. Immunol. 10, 518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wu, F.-Y. et al. Chemokine decoy receptor D6 plays a negative role in human breast cancer. Mol. Cancer Res. 6, 1276–1288 (2008).

    Article  CAS  PubMed  Google Scholar 

  224. Nibbs, R. J. B. et al. The atypical chemokine receptor D6 suppresses the development of chemically induced skin tumors. J. Clin. Invest. 117, 1884–1892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Vetrano, S. et al. The lymphatic system controls intestinal inflammation and inflammation-associated colon cancer through the chemokine decoy receptor D6. Gut 59, 197–206 (2010).

    Article  PubMed  Google Scholar 

  226. Zeng, X.-H. et al. Absence of multiple atypical chemokine binders (ACBs) and the presence of VEGF and MMP-9 predict axillary lymph node metastasis in early breast carcinomas. Med. Oncol. 31, 145 (2014).

    Article  PubMed  Google Scholar 

  227. Hou, T. et al. Atypical chemokine receptors predict lymph node metastasis and prognosis in patients with cervical squamous cell cancer. Gynecol. Oncol. 130, 181–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. Hansell, C. A. H. et al. The atypical chemokine receptor Ackr2 constrains NK cell migratory activity and promotes metastasis. J. Immunol. 201, 2510–2519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Massara, M. et al. ACKR2 in hematopoietic precursors as a checkpoint of neutrophil release and anti-metastatic activity. Nat. Commun. 9, 676 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Savino, B. et al. ERK-dependent downregulation of the atypical chemokine receptor D6 drives tumor aggressiveness in kaposi sarcoma. Cancer Immunol. Res. 2, 679–689 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Smit, M. J. et al. The CXCL12/CXCR4/ACKR3 axis in the tumor microenvironment: signaling, crosstalk, and therapeutic targeting. Annu. Rev. Pharmacol. Toxicol. 61, 541–563 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Sierro, F. et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc. Natl Acad. Sci. USA 104, 14759–14764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Burns, J. M. et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203, 2201–2213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Berahovich, R. D. et al. Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 141, 111–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. D’Alterio, C. et al. Concomitant CXCR4 and CXCR7 expression predicts poor prognosis in renal cancer. Curr. Cancer Drug Targets 10, 772–781 (2010).

    Article  PubMed  Google Scholar 

  236. Yao, X., Zhou, L., Han, S. & Chen, Y. High expression of CXCR4 and CXCR7 predicts poor survival in gallbladder cancer. J. Int. Med. Res. 39, 1253–1264 (2011).

    Article  CAS  PubMed  Google Scholar 

  237. D’Alterio, C. et al. A prognostic model comprising pT stage, N status, and the chemokine receptors CXCR4 and CXCR7 powerfully predicts outcome in neoadjuvant resistant rectal cancer patients: predictive model in rectal cancer patients. Int. J. Cancer 135, 379–390 (2014).

    Article  PubMed  Google Scholar 

  238. Liberman, J. et al. Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma. PLoS ONE 7, e43665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Miao, Z. et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc. Natl Acad. Sci. USA 104, 15735–15740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Stacer, A. C. et al. Endothelial CXCR7 regulates breast cancer metastasis. Oncogene 35, 1716–1724 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Ulvmar, M. H. et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 15, 623–630 (2014). This is a seminal study demonstrating the importance of ACKRs in chemokine gradient formation.

    Article  CAS  PubMed  Google Scholar 

  242. Bryce, S. A. et al. ACKR4 on stromal cells scavenges CCL19 to enable CCR7-dependent trafficking of APCs from inflamed skin to lymph nodes. J. Immunol. 196, 3341–3353 (2016).

    Article  CAS  PubMed  Google Scholar 

  243. Whyte, C. E. et al. ACKR4 restrains antitumor immunity by regulating CCL21. J. Exp. Med. 217, e20190634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Peske, J. D. et al. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat. Commun. 6, 7114 (2015).

    Article  CAS  PubMed  Google Scholar 

  245. Wangmo, D. et al. ACKR4 in tumor cells regulates dendritic cell migration to tumor-draining lymph nodes and T-cell priming. Cancers 13, 5021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Feng, L.-Y., Ou, Z.-L., Wu, F.-Y., Shen, Z.-Z. & Shao, Z.-M. Involvement of a novel chemokine decoy receptor CCX-CKR in breast cancer growth, metastasis and patient survival. Clin. Cancer Res. 15, 2962–2970 (2009).

    Article  CAS  PubMed  Google Scholar 

  247. Torphy, R. J., Yee, E. J., Schulick, R. D. & Zhu, Y. Atypical chemokine receptors: emerging therapeutic targets in cancer. Trends Pharmacol. Sci. 43, 1085–1097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Torphy, R. J. et al. GPR182 limits antitumor immunity via chemokine scavenging in mouse melanoma models. Nat. Commun. 13, 97 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ludwig, A. & Weber, C. Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb. Haemost. 97, 694–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  250. Metzemaekers, M., Van Damme, J., Mortier, A. & Proost, P. Regulation of chemokine activity — a focus on the role of dipeptidyl peptidase IV/CD26. Front. Immunol. 7, 1–23 (2016).

    Article  Google Scholar 

  251. Busek, P., Duke-Cohan, J. S. & Sedo, A. Does DPP-iv inhibition offer new avenues for therapeutic intervention in malignant disease? Cancers 14, 2072 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Barreira Da Silva, R. et al. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol. 16, 850–858 (2015).

    Article  CAS  PubMed  Google Scholar 

  253. Nishina, S. et al. Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cell. Mol. Gastroenterol. Hepatol. 7, 115–134 (2019).

    Article  PubMed  Google Scholar 

  254. Scheltens, P. et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res. Ther. 10, 107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Barreira da Silva, R. et al. Loss of the intracellular enzyme QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. Nat. Immunol. 23, 568–580 (2022). This paper reveals unanticipated complexity in the proteolytic regulation of chemokine activity.

    Article  CAS  PubMed  Google Scholar 

  256. Messina, J. L. et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci. Rep. 2, 765 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wang, X., Lu, X.-L., Zhao, H.-Y., Zhang, F.-C. & Jiang, X.-B. A novel recombinant protein of IP10-EGFRvIIIscFv and CD8+ cytotoxic T lymphocytes synergistically inhibits the growth of implanted glioma in mice. Cancer Immunol. Immunother. 62, 1261–1272 (2013).

    Article  CAS  PubMed  Google Scholar 

  259. Lin, X. et al. A single-chain variable fragment antibody/chemokine fusion protein targeting human endoglin to enhance the anti-tumor activity of cytokine-induced killer cells. J. Biomed. Nanotechnol. 17, 1574–1583 (2021).

    Article  CAS  PubMed  Google Scholar 

  260. Williford, J.-M. et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci. Adv. 5, eaay1357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Eckert, E. C. et al. Generation of a tumor-specific chemokine gradient using oncolytic vesicular stomatitis virus encoding CXCL9. Mol. Ther. Oncol. 16, 63–74 (2020).

    Article  CAS  Google Scholar 

  262. Liu, Z. et al. CXCL11-armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. OncoImmunol 5, e1091554 (2016).

    Article  Google Scholar 

  263. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  264. Goto, S. et al. Enhanced anti-tumor efficacy of IL-7/CCL19-producing human CAR-T cells in orthotopic and patient-derived xenograft tumor models. Cancer Immunol. Immunother. 70, 2503–2515 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Pang, N. et al. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin. J. Hematol. Oncol. 14, 118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Luo, H. et al. Coexpression of IL7 and CCL21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion. Clin. Cancer Res. 26, 5494–5505 (2020).

    Article  CAS  PubMed  Google Scholar 

  267. Pienta, K. J. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. N. Drugs 31, 760–768 (2013).

    Article  CAS  Google Scholar 

  268. Dominguez, C., McCampbell, K. K., David, J. M. & Palena, C. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight 2, e94296 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Bilusic, M. et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 7, 240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Kurose, K. et al. Phase Ia study of FoxP3+ CD4 treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. Clin. Cancer Res. 21, 4327–4336 (2015).

    Article  CAS  PubMed  Google Scholar 

  271. Saito, T. et al. Phase Ib study on the humanized anti-CCR4 antibody, KW-0761, in advanced solid tumors. Nagoya J. Med. Sci. 83, 827–840 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Maeda, Y. et al. Depletion of central memory CD8+ T cells might impede the antitumor therapeutic effect of mogamulizumab. Nat. Commun. 12, 7280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Kim, Y. H. et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19, 1192–1204 (2018).

    Article  CAS  PubMed  Google Scholar 

  274. Haruna, M. et al. The impact of CCR8+ regulatory T cells on cytotoxic T cell function in human lung cancer. Sci. Rep. 12, 5377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Kidani, Y. et al. CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc. Natl Acad. Sci. USA 119, e2114282119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Fattori, S. et al. Therapeutic targeting of tumor-infiltrating regulatory T cells in breast cancer. Cancer Res. 82, 3868–3879 (2022).

    Article  CAS  PubMed  Google Scholar 

  277. Thomas, S. K. et al. Phase I study of an active immunotherapy for asymptomatic phase lymphoplasmacytic lymphoma with DNA vaccines encoding antigen-chemokine fusion: study protocol. BMC Cancer 18, 187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Hillemanns, P. et al. A therapeutic antigen-presenting cell-targeting DNA vaccine VB10.16 in HPV16-positive high-grade cervical intraepithelial neoplasia: results from a phase I/IIa trial. Clin. Cancer Res. 28, 4885–4892 (2022).

    Article  CAS  PubMed  Google Scholar 

  279. Jin, L. et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat. Commun. 10, 4016 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Idorn, M. et al. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model. OncoImmunol 7, e1450715 (2018).

    Article  Google Scholar 

  281. Peng, W. et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res. 16, 5458–5468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Brown, C. E. et al. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J. Immunol. 179, 3332–3341 (2007).

    Article  CAS  PubMed  Google Scholar 

  283. Craddock, J. A. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33, 780–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Lesch, S. et al. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat. Biomed. Eng. 5, 1246–1260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Cadilha, B. L. et al. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Sci. Adv. 7, eabi5781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Worthington, J. J. et al. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42, 903–915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Foeng, J., Comerford, I. & McColl, S. R. Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep. Med. 3, 100543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Märkl, F., Huynh, D., Endres, S. & Kobold, S. Utilizing chemokines in cancer immunotherapy. Trends Cancer https://doi.org/10.1016/j.trecan.2022.04.001 (2022).

  290. Poeta, V. M., Massara, M., Capucetti, A. & Bonecchi, R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front. Immunol. 10, 1–10 (2019).

    Google Scholar 

  291. Ortiz Zacarías, N. V., Bemelmans, M. P., Handel, T. M., De Visser, K. E. & Heitman, L. H. Anticancer opportunities at every stage of chemokine function. Trends Pharmacol. Sci. 42, 912–928 (2021).

    Article  PubMed  Google Scholar 

  292. Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 41, 404–420 (2023).

    Article  CAS  PubMed  Google Scholar 

  293. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  294. Mujal, A. M. & Krummel, M. F. Immunity as a continuum of archetypes. Science 364, 28–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  295. DeVries, M. E. et al. Defining the origins and evolution of the chemokine/chemokine receptor system. J. Immunol. 176, 401–415 (2006). This study is an interesting perspective on the origin of the chemokine system.

    Article  CAS  PubMed  Google Scholar 

  296. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  Google Scholar 

  297. Berger, E. A., Murphy, P. M. & Farber, J. M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  298. Pontejo, S. M. & Murphy, P. M. Chemokines encoded by herpesviruses. J. Leukoc. Biol. 102, 1199–1217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Fang, W. B. et al. CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J. Biol. Chem. 287, 36593–36608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Acevedo, D. S. et al. Regulation of growth, invasion and metabolism of breast ductal carcinoma through CCL2/CCR2 signaling interactions with MET receptor tyrosine kinases. Neoplasia 28, 100791 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Tsuyada, A. et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 72, 2768–2779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Kodama, T. et al. CCL3–CCR5 axis contributes to progression of esophageal squamous cell carcinoma by promoting cell migration and invasion via Akt and ERK pathways. Lab. Invest. 100, 1140–1157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Hosono, M. et al. CXCL8 derived from tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression by promoting migration and invasion of cancer cells. Oncotarget 8, 106071–106088 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Wang, N. et al. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis. 9, 880 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Raman, D., Baugher, P. J., Thu, Y. M. & Richmond, A. Role of chemokines in tumor growth. Cancer Lett. 256, 137–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Fein, M. R. et al. Cancer cell CCR2 orchestrates suppression of the adaptive immune response. J. Exp. Med. 217, e20181551 (2020). This study demonstrates the in vivo importance of cancer cell expression of chemokine receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants P01-CA240239, R01 AI163223 and R01 AI123349 (to T.R.M.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to discussion of the content. L.M.A. and T.R.M. wrote the article. T.R.M. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Thorsten R. Mempel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Frances Balkwill who co-reviewed with Beatrice Malacrida, Raffaella Bonecchi and Sebastian Kobold for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody-dependent cellular cytotoxicity

(ADCC). A mechanism through which Fc receptor-expressing immune effector cells, such as NK cells or macrophages, can recognize and kill antibody-coated target cells.

B follicles

Large, well-organized clusters of B cells attracted by CXCL13-expressing mesenchymal cells called follicular dendritic cells and found in secondary lymphoid tissues and tertiary lymphoid structures.

Citrullination

A post-translational protein modification whereby arginine residues are enzymatically converted to citrulline, which can trigger autoimmune reactions against citrullinated proteins, but has also been suggested to alter the function or activity of some proteins, including chemokines.

Cytokine-induced killer cells

A heterogenous population of cells with NK and T cell features generated by ex vivo activation and treatment of peripheral blood mononuclear cells of a patient with cytokines including IL-2, IL-1 and IFNγ.

Diapedesis

The migration of blood-borne leukocytes through the blood vessel wall via interendothelial junctions (paracellular) or through endothelial cells (transcellular) into the surrounding tissue.

Fibroblastic reticular cells

(FRCs). Specialized populations of fibroblast-like mesenchymal cells that provide structure and dynamically organize functional compartments in lymphoid tissues through their interactions with immune cells.

Germinal centre dark zone

The part of the germinal centre where B cells proliferate and hypermutate their B cell receptor genes before again migrating through the light zone, where they are selected for their antigen affinity.

Granulopoiesis

The part of haematopoiesis that leads to the production of neutrophils, eosinophils and basophils.

Haptotactic gradients

Cell motility directed by gradients of immobilized guidance molecules, such as ECM-bound chemokines or adhesion molecules, unlike chemotaxis, where cells follow guidance molecules in solution.

Isotype switching

A genetic mechanism in B cells that changes the immunoglobulin constant region to alter antibody effector function and class, for example, from IgM to IgG.

Leukotrienes

Inflammatory lipid signal molecules produced by white blood cells through oxidative metabolism of the 20-base polymer/oligonucleotide arachidonic acid in their membranes.

Lymph node anlagen

The incipient structures of lymph node organogenesis during embryonic development.

Lymph node interfollicular areas

The lymph node areas between B follicles through which dendritic cells enter lymph nodes and which are occupied by high densities of innate lymphocytes, γδT cells and NKT cells.

Lymph node subcapsular sinus

The lymphatic endothelium-lined space between lymph node capsule and cortex into which afferent lymph and lymph-borne solutes, particles and cells are collected.

Lymphoid-tissue inducer (LTi) cells

A lymphotoxin-producing innate lymphocyte population that stimulates mesenchymal cells to express chemokines and adhesion molecules to promote the formation and expansion of lymph node anlagen.

Lymphoid-tissue organizer (LTo) cells

The lymphotoxin-induced mesenchymal precursors of lymphoid-tissue FRC in lymph node anlagen and other primitive lymphoid tissues.

Necroptosis

A caspase-independent, pro-inflammatory form of programmed cell death.

Neutrophil extracellular traps

(NETs). Fibril matrices composed of chromatin and granule proteins released by neutrophils to entrap and kill extracellular pathogens.

Peyer’s patches

Secondary lymphoid tissues in the antimesenteric wall of the small intestine composed of organized clusters of subepithelial lymphoid follicles.

Single-chain variable fragment

(scFv). Recombinant fusion protein of the light and heavy chain variable regions of an antibody, connected via a linker but lacking antibody constant regions.

Tertiary lymphoid structures

(TLSs). Organized lymphoid tissues that are not developmentally programmed, but arise at sites of chronic inflammation, including tumour microenvironments.

Trans-endocytosis

A molecular process whereby cells use cell surface receptors to bind and remove surface proteins on cells they interact with for internalization and degradation of those target proteins.

Trans-presentation

The mechanism by which cells expressing IL-15, alternative to releasing it as a soluble factor, can express and use the IL-15Rα chain to present this cytokine to cells expressing the IL-15Rβ/γC signalling receptor chains.

Vitiligo

A depigmenting autoimmune disease mediated by T cells that recognize antigens in the melanin synthesis pathway, and a common side effect of effective anti-melanoma immunity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mempel, T.R., Lill, J.K. & Altenburger, L.M. How chemokines organize the tumour microenvironment. Nat Rev Cancer 24, 28–50 (2024). https://doi.org/10.1038/s41568-023-00635-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00635-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer