Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters

Abstract

Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR–Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected substrates transported by ABCB1, ABCG2 and ABCC1.
Fig. 2: Structures of three ATP-binding cassette transporters.
Fig. 3: Substrate-binding pockets of ATP-binding cassette transporters and the drug transport cycle.
Fig. 4: Emerging therapies targeting ATP-binding cassette transporters.

Similar content being viewed by others

References

  1. Housman, G. et al. Drug resistance in cancer: an overview. Cancers 6, 1769–1792 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull. 7, 339–348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Emran, T. B. et al. Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 12, 891652 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Srikant, S. & Gaudet, R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat. Struct. Mol. Biol. 26, 792–801 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robey, R. W. et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 18, 452–464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lusvarghi, S., Robey, R. W., Gottesman, M. M. & Ambudkar, S. V. Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Res https://doi.org/10.12688/f1000research.21295.1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Amiri-Kordestani, L., Basseville, A., Kurdziel, K., Fojo, A. T. & Bates, S. E. Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist. Updat. 15, 50–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biedler, J. L. & Riehm, H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 30, 1174–1184 (1970).

    CAS  PubMed  Google Scholar 

  10. Dano, K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. Acta 323, 466–483 (1973). This report demonstrated for the first time that resistance to daunorubicin is an energy-dependent process.

    Article  CAS  PubMed  Google Scholar 

  11. Juliano, R. L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Gros, P., Croop, J., Roninson, I., Varshavsky, A. & Housman, D. E. Isolation and characterization of DNA sequences amplified in multidrug-resistant hamster cells. Proc. Natl Acad. Sci. USA 83, 337–341 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, C. J. et al. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47, 381–389 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Cole, S. P. et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Doyle, L. A. et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA 95, 15665–15670 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sajid, A., Lusvarghi, S. & Ambudkar, S. V. in Drug Transporters: Molecular Characterization and Role in Drug Disposition 3rd edn (eds You, G. & Morris, M. E.) 199–211 (Wiley, 2022).

  18. Robey, et al. in Drug Transporters: Molecular Characterization and Role in Drug Disposition 3rd edn (eds You, G. & Morris, M. E.) 235–256 (Wiley, 2022).

  19. Nies, A. T. & Klein, F. in Drug Transporters: Molecular Characterization and Role in Drug Disposition 3rd edn (eds You, G. & Morris, M. E.) 213–233 (Wiley, 2022).

  20. Pilotto Heming, C. et al. P-glycoprotein and cancer: what do we currently know? Heliyon 8, e11171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muriithi, W. et al. ABC transporters and the hallmarks of cancer: roles in cancer aggressiveness beyond multidrug resistance. Cancer Biol. Med. 17, 253–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Modi, A. et al. ABC transporters in breast cancer: their roles in multidrug resistance and beyond. J. Drug Target. 30, 927–947 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Juan-Carlos, P. M., Perla-Lidia, P. P., Stephanie-Talia, M. M., Monica-Griselda, A. M. & Luz-Maria, T. E. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol. Biol. Rep. 48, 1883–1901 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Chufan, E. E. et al. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1). PLoS ONE 8, e82463 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Le, C. A., Harvey, D. S. & Aller, S. G. Structural definition of polyspecific compensatory ligand recognition by P-glycoprotein. IUCrJ 7, 663–672 (2020). The structures of several mutants of mouse ABCB1 were solved by XRC to support biochemical studies, showing that a given ligand can bind at different overlapping sites in the drug-binding pocket.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanssen, K. M., Haber, M. & Fletcher, J. I. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: beyond pharmacological inhibition. Drug Resist. Updat. 59, 100795 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Johnson, Z. L. & Chen, J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085.e9 (2017). This study provided the high-resolution structure of bovine ABCC1 bound to the physiological substrate leukotriene C4 to reveal the nature of the drug-binding pocket of the transporter.

    Article  CAS  PubMed  Google Scholar 

  29. Ambudkar, S. V. et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39, 361–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, Y. & Chen, J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359, 915–919 (2018). The first high-resolution cryo-EM structure of a human ABCB1 mutant deficient in ATP hydrolysis. So far, this is the only available structure of human ABCB1 in the ATP-bound inward-closed conformation.

    Article  CAS  PubMed  Google Scholar 

  31. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vetter, I. R. & Wittinghofer, A. Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q. Rev. Biophys. 32, 1–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Matsumata, T. et al. Patterns of intrahepatic recurrence after curative resection of hepatocellular carcinoma. Hepatology 9, 457–460 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Dastvan, R., Mishra, S., Peskova, Y. B., Nakamoto, R. K. & McHaourab, H. S. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors. Science 364, 689–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clouser, A. F. & Atkins, W. M. Long range communication between the drug-binding sites and nucleotide binding domains of the efflux transporter ABCB1. Biochemistry 61, 730–740 (2022). In this study, hydrogen–deuterium exchange mass spectrometry was used to understand the conformational dynamics during pre-ATP and post-ATP hydrolysis states of mouse ABCB1.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor, N. M. I. et al. Structure of the human multidrug transporter ABCG2. Nature 546, 504–509 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Cole, S. P. Multidrug resistance protein 1 (MRP1, ABCC1), a ‘multitasking’ ATP-binding cassette (ABC) transporter. J. Biol. Chem. 289, 30880–30888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dash, R. P., Jayachandra Babu, R. & Srinivas, N. R. Therapeutic potential and utility of elacridar with respect to P-glycoprotein inhibition: an insight from the published in vitro, preclinical and clinical studies. Eur. J. Drug Metab. Pharmacokinet. 42, 915–933 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Srinivas, N. R. Understanding the role of tariquidar, a potent Pgp inhibitor, in combination trials with cytotoxic drugs: what is missing? Cancer Chemother. Pharmacol. 78, 1097–1098 (2016).

    Article  PubMed  Google Scholar 

  40. Loo, T. W. & Clarke, D. M. Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J. Biol. Chem. 277, 44332–44338 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Szewczyk, P. et al. Snapshots of ligand entry, malleable binding and induced helical movement in P-glycoprotein. Acta Crystallogr. D Biol. Crystallogr. 71, 732–741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nosol, K. et al. Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc. Natl Acad. Sci. USA 117, 26245–26253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Urgaonkar, S. et al. Discovery and characterization of potent dual P-glycoprotein and CYP3A4 inhibitors: design, synthesis, cryo-EM analysis, and biological evaluations. J. Med. Chem. 65, 191–216 (2022). In this study, structural biology and medicinal chemistry approaches were used to synthesize derivatives of encequidar as dual inhibitors of CYP3A4 and ABCB1.

    Article  CAS  PubMed  Google Scholar 

  44. Alam, A., Kowal, J., Broude, E., Roninson, I. & Locher, K. P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363, 753–756 (2019). This report, using cryo-EM, described the first structure of human ABCB1 bound to the anticancer drug paclitaxel and purified protein complexed with the fragment (Fab) of UIC2 antibody reconstituted in nanodiscs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alam, A. et al. Structure of a zosuquidar and UIC2-bound human–mouse chimeric ABCB1. Proc. Natl Acad. Sci. USA 115, E1973–E1982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kowal, J. et al. Structural basis of drug recognition by the multidrug transporter ABCG2. J. Mol. Biol. 433, 166980 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Khunweeraphong, N., Szollosi, D., Stockner, T. & Kuchler, K. The ABCG2 multidrug transporter is a pump gated by a valve and an extracellular lid. Nat. Commun. 10, 5433 (2019). This work, using a mutagenesis approach, provided evidence for the presence of two cavities for ligands formed by the TMHs of both monomers of ABCG2.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kannan, P. et al. The ‘specific’ P-glycoprotein inhibitor tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem. Neurosci. 2, 82–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Manolaridis, I. et al. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 426–430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Orlando, B. J. & Liao, M. ABCG2 transports anticancer drugs via a closed-to-open switch. Nat. Commun. 11, 2264 (2020). This study demonstrated that the high-resolution structure of ABCG2 can be obtained in the absence of a Fab of the 5D3 antibody, thus eliminating conformational changes induced by the binding of the antibody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson, Z. L. & Chen, J. ATP binding enables substrate release from multidrug resistance protein 1. Cell 172, 81–89.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Higgins, C. F. & Gottesman, M. M. Is the multidrug transporter a flippase? Trends Biochem. Sci. 17, 18–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giddings, E. L. et al. Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat. Commun. 12, 2804 (2021). This study shows the specific requirement of mitochondrial ATP as the energy source for the function of the ABC transporters ABCB1 and ABCG2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henrique, R. et al. Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer. BMC Genomics 14, 898 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wilson, C. S. et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 108, 685–696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, Y. et al. Targeted therapy and drug resistance in thyroid cancer. Eur. J. Med. Chem. 238, 114500 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Q., Ding, J., Wang, Y., He, L. & Xue, F. Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review). Oncol. Rep. https://doi.org/10.3892/or.2022.8313 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mynott, R. L. & Wallington-Beddoe, C. T. Drug and solute transporters in mediating resistance to novel therapeutics in multiple myeloma. ACS Pharmacol. Transl. Sci. 4, 1050–1065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiao, Q., Zhou, Y. & Lauschke, V. M. Impact of variants in ATP-binding cassette transporters on breast cancer treatment. Pharmacogenomics 21, 1299–1310 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Kulma, I., Boonprasert, K. & Na-Bangchang, K. Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: a systematic review. Cancer Chemother. Pharmacol. 84, 959–975 (2019). This is a detailed systematic review of the polymorphisms of ABCB1 and cytochrome P450 associated with poor prognosis of treatment of cancer.

    Article  PubMed  Google Scholar 

  62. Yee, S. W. et al. Influence of transporter polymorphisms on drug disposition and response: a perspective from the international transporter consortium. Clin. Pharmacol. Ther. 104, 803–817 (2018).

    Article  PubMed  Google Scholar 

  63. Dean, M., Moitra, K. & Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Hum. Mutat. 43, 1162–1182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rastgar-Moghadam, A. et al. Association of a genetic variant in ATP-binding cassette sub-family B member 1 gene with poor prognosis in patients with squamous cell carcinoma of the esophagus. IUBMB Life 71, 1252–1258 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, H., Wei, Z., Shi, K. & Zhang, Y. Association between ABCB1 G2677T/A polymorphism and breast cancer risk: a meta-analysis. Crit. Rev. Eukaryot. Gene Expr. 29, 243–249 (2019).

    Article  PubMed  Google Scholar 

  66. Alves, R. et al. Genetic variants of ABC and SLC transporter genes and chronic myeloid leukaemia: impact on susceptibility and prognosis. Int. J. Mol. Sci. 23, 9815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yin, B. et al. The ABCB1 3435C > T polymorphism influences docetaxel transportation in ovarian cancer. J. Int. Med. Res. 47, 5256–5269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maeda, A. et al. Effects of ABCB1 and ABCG2 polymorphisms on the pharmacokinetics of abemaciclib. Eur. J. Clin. Pharmacol. 78, 1239–1247 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Kobayashi, T. et al. Influence of ABCB1 polymorphisms on the pharmacokinetics and toxicity of lenalidomide in patients with multiple myeloma. Med. Oncol. 36, 55 (2019).

    Article  PubMed  Google Scholar 

  70. Yan, M. et al. Association between gene polymorphism and adverse effects in cancer patients receiving docetaxel treatment: a meta-analysis. Cancer Chemother. Pharmacol. 89, 173–181 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Sakamoto, S. et al. ABCG2 C421A polymorphisms affect exposure of the epidermal growth factor receptor inhibitor gefitinib. Invest. New Drugs 38, 1687–1695 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Cui, L. et al. Association between the genetic polymorphisms of the pharmacokinetics of anthracycline drug and myelosuppression in a patient with breast cancer with anthracycline-based chemotherapy. Life Sci. 276, 119392 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Kunadt, D. et al. Multidrug-related protein 1 (MRP1) polymorphisms rs129081, rs212090, and rs212091 predict survival in normal karyotype acute myeloid leukemia. Ann. Hematol. 99, 2173–2180 (2020). This study described three ABCC1 polymorphisms directly associated with the prognosis of acute myeloid leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C. & Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Kelly, R. J. et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin. Cancer Res. 17, 569–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bugde, P. et al. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. Expert Opin. Ther. Targets 21, 511–530 (2017).

    Article  PubMed  Google Scholar 

  77. Shukla, S., Ohnuma, S. & Ambudkar, S. V. Improving cancer chemotherapy with modulators of ABC drug transporters. Curr. Drug Targets 12, 621–630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shukla, S., Wu, C. P. & Ambudkar, S. V. Development of inhibitors of ATP-binding cassette drug transporters: present status and challenges. Expert Opin. Drug Metab. Toxicol. 4, 205–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Jackson, S. M. et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Samalin, E. et al. Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre phase I/II trial. Br. J. Cancer 110, 1148–1154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fletcher, J. I., Haber, M., Henderson, M. J. & Norris, M. D. ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer 10, 147–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Nedeljkovic, M., Tanic, N., Prvanovic, M., Milovanovic, Z. & Tanic, N. Friend or foe: ABCG2, ABCC1 and ABCB1 expression in triple-negative breast cancer. Breast Cancer 28, 727–736 (2021).

    Article  PubMed  Google Scholar 

  83. Omran, O. M. The prognostic value of breast cancer resistance protein (BCRB/ABCG2) expression in breast carcinomas. J. Environ. Pathol. Toxicol. Oncol. 31, 367–376 (2012).

    Article  PubMed  Google Scholar 

  84. Szakacs, G. et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6, 129–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, J. Q. et al. ATP-binding cassette (ABC) transporters in cancer: a review of recent updates. J. Evid. Based Med. 14, 232–256 (2021).

    Article  PubMed  Google Scholar 

  86. Xiang, L. et al. ABCG2 is associated with HER-2 expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma. Diagn. Pathol. 6, 90 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Abolhoda, A. et al. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin. Cancer Res. 5, 3352–3356 (1999).

    CAS  PubMed  Google Scholar 

  88. Mhatre, S. et al. Common genetic variation and risk of gallbladder cancer in India: a case–control genome-wide association study. Lancet Oncol. 18, 535–544 (2017).

    Article  PubMed  Google Scholar 

  89. Robert, B. M. et al. Predicting tumor sensitivity to chemotherapeutic drugs in oral squamous cell carcinoma patients. Sci. Rep. 8, 15545 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Roy, L. O. et al. Expression of ABCB1, ABCC1 and 3 and ABCG2 in glioblastoma and their relevance in relation to clinical survival surrogates. J. Neurooncol. 160, 601–609 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Trujillo-Paolillo, A. et al. Pharmacogenetics of the primary and metastatic osteosarcoma: gene expression profile associated with outcome. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24065607 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sourdeau, E. et al. Clinical and biological impact of ATP-binding cassette transporter activity in adult acute myeloid leukemia. Haematologica 108, 61–68 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Hu, N. et al. P-glycoprotein associated with diabetes mellitus and survival of patients with pancreatic cancer: 8-year follow-up. Braz. J. Med. Biol. Res. 53, e10068 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vrana, D. et al. ABC transporters and their role in the neoadjuvant treatment of esophageal cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19030868 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kim, B. H. et al. Clinical implications of cancer stem cell markers and ABC transporters as a predictor of prognosis in colorectal cancer patients. Anticancer Res. 40, 4481–4489 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Chiney, M. S., Menon, R. M., Bueno, O. F., Tong, B. & Salem, A. H. Clinical evaluation of P-glycoprotein inhibition by venetoclax: a drug interaction study with digoxin. Xenobiotica 48, 904–910 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Milner, E., Ainsworth, M., Gleaton, M. & Bookstaver, D. Assessment of anti-Xa activity in patients receiving concomitant apixaban with strong P-glycoprotein inhibitors and statins. J. Clin. Pharm. Ther. 47, 668–675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05326984 (2022).

  99. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT00954304 (2010).

  100. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04094519 (2022).

  101. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03961698 (2022).

  102. Bauer, M. et al. A proof-of-concept study to inhibit ABCG2- and ABCB1-mediated efflux transport at the human blood–brain barrier. J. Nucl. Med. 60, 486–491 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Dallavalle, S. et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat. 50, 100682 (2020).

    Article  PubMed  Google Scholar 

  104. Zhang, H. et al. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med. Res. Rev. 41, 525–555 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Riganti, C. et al. Design, biological evaluation, and molecular modeling of tetrahydroisoquinoline derivatives: discovery of a potent P-glycoprotein ligand overcoming multidrug resistance in cancer stem cells. J. Med. Chem. 62, 974–986 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Ma, Y. et al. Discovery of potent inhibitors against P-glycoprotein-mediated multidrug resistance aided by late-stage functionalization of a 2-(4-(pyridin-2-yl)phenoxy)pyridine analogue. J. Med. Chem. 63, 5458–5476 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Yin, H. et al. Design, synthesis and biological evaluation of chalcones as reversers of P-glycoprotein-mediated multidrug resistance. Eur. J. Med. Chem. 180, 350–366 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Teodori, E. et al. N-alkanol-N-cyclohexanol amine aryl esters: multidrug resistance (MDR) reversing agents with high potency and efficacy. Eur. J. Med. Chem. 127, 586–598 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, B. et al. Discovery of 5-cyano-6-phenylpyrimidin derivatives containing an acylurea moiety as orally bioavailable reversal agents against P-glycoprotein-mediated multidrug resistance. J. Med. Chem. 61, 5988–6001 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Kita, D. H. et al. Polyoxovanadates as new P-glycoprotein inhibitors: insights into the mechanism of inhibition. FEBS Lett. 596, 381–399 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Laiolo, J. et al. Structure activity relationships and the binding mode of quinolinone–pyrimidine hybrids as reversal agents of multidrug resistance mediated by P-gp. Sci. Rep. 11, 16856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gopisetty, M. K. et al. Androstano-arylpyrimidines: novel small molecule inhibitors of MDR1 for sensitizing multidrug-resistant breast cancer cells. Eur. J. Pharm. Sci. 156, 105587 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Dei, S., Braconi, L., Romanelli, M. N. & Teodori, E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. Cancer Drug Resist. 2, 710–743 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Qiu, Q. et al. Structure-based discovery of pyrimidine aminobenzene derivatives as potent oral reversal agents against P-gp- and BCRP-mediated multidrug resistance. J. Med. Chem. 64, 6179–6197 (2021). Through the use of the scaffolds of inhibitors of ABCB1 and ABCG2, pyrimidine aminobenzene-based derivatives were identified as dual inhibitors of ABCB1 and ABCG2, among which was a compound with high potency and low toxicity.

    Article  CAS  PubMed  Google Scholar 

  115. Silbermann, K., Li, J., Namasivayam, V., Stefan, S. M. & Wiese, M. Rational drug design of 6-substituted 4-anilino-2-phenylpyrimidines for exploration of novel ABCG2 binding site. Eur. J. Med. Chem. 212, 113045 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Ranjbar, S. et al. 5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells. Toxicol. Appl. Pharmacol. 362, 136–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Cai, C. Y. et al. Biological evaluation of non-basic chalcone CYB-2 as a dual ABCG2/ABCB1 inhibitor. Biochem. Pharmacol. 175, 113848 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Nanayakkara, A. K. et al. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 8, 967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chang, X. et al. Novel microtubule inhibitor SQ overcomes multidrug resistance in MCF-7/ADR cells by inhibiting BCRP function and mediating apoptosis. Toxicol. Appl. Pharmacol. 436, 115883 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Gao, Q. et al. IRE1α-targeting downregulates ABC transporters and overcomes drug resistance of colon cancer cells. Cancer Lett. 476, 67–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Roussel, E. et al. Optimization of the chromone scaffold through QSAR and docking studies: identification of potent inhibitors of ABCG2. Eur. J. Med. Chem. 184, 111772 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Kita, D. H. et al. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Sci. Rep. 11, 1788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stefan, S. M. & Wiese, M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: a historic approach and recent advances. Med. Res. Rev. 39, 176–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Kumar, A. & Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem. 176, 268–291 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Dinic, J., Podolski-Renic, A., Jeremic, M. & Pesic, M. Potential of natural-based anticancer compounds for P-glycoprotein inhibition. Curr. Pharm. Des. 24, 4334–4354 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Dantzic, D. et al. The effects of synthetically modified natural compounds on ABC transporters. Pharmaceutics 10, 127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moinul, M., Amin, S. A., Jha, T. & Gayen, S. Updated chemical scaffolds of ABCG2 inhibitors and their structure–inhibition relationships for future development. Eur. J. Med. Chem. 241, 114628 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Shah, D., Ajazuddin & Bhattacharya, S. Role of natural P-gp inhibitor in the effective delivery for chemotherapeutic agents. J. Cancer Res. Clin. Oncol. https://doi.org/10.1007/s00432-022-04387-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sagnou, M. et al. Novel curcumin derivatives as P-glycoprotein inhibitors: molecular modeling, synthesis and sensitization of multidrug resistant cells to doxorubicin. Eur. J. Med. Chem. 198, 112331 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Lopes-Rodrigues, V., Sousa, E. & Vasconcelos, M. H. Curcumin as a modulator of P-glycoprotein in cancer: challenges and perspectives. Pharmaceuticals https://doi.org/10.3390/ph9040071 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Singh, K. et al. Effects of polyphenols on P-glycoprotein (ABCB1) activity. Pharmaceutics https://doi.org/10.3390/pharmaceutics13122062 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dewa, A. A., Elbanna, A. H., Khalil, Z. G. & Capon, R. J. Neochrysosporazines: precursor-directed biosynthesis defines a marine-derived fungal natural product P-glycoprotein inhibitory pharmacophore. J. Med. Chem. 65, 2610–2622 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Abd-Ellatef, G. E. F. et al. Glabratephrin reverses doxorubicin resistance in triple negative breast cancer by inhibiting P-glycoprotein. Pharmacol. Res. 175, 105975 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Cao, Y., Shi, Y., Cai, Y., Hong, Z. & Chai, Y. The effects of traditional Chinese medicine on P-glycoprotein-mediated multidrug resistance and approaches for studying the herb–P-glycoprotein interactions. Drug Metab. Dispos. 48, 972–979 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Chang, Y. T. et al. Wilforine resensitizes multidrug resistant cancer cells via competitive inhibition of P-glycoprotein. Phytomedicine 71, 153239 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Xu, W. et al. Tetrandrine enhances glucocorticoid receptor translocation possibly via inhibition of P-glycoprotein in daunorubicin-resistant human T lymphoblastoid leukemia cells. Eur. J. Pharmacol. 881, 173232 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Sachs, J. et al. Novel 3,4-dihydroisocoumarins inhibit human P-gp and BCRP in multidrug resistant tumors and demonstrate substrate inhibition of yeast Pdr5. Front. Pharmacol. 10, 400 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ganesan, M. et al. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomed. Pharmacother. 139, 111632 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Mosca, L. et al. S-adenosylmethionine increases the sensitivity of human colorectal cancer cells to 5-fluorouracil by inhibiting P-glycoprotein expression and NF-kappaB activation. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179286 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gao, H. L., Xia, Y. Z., Zhang, Y. L., Yang, L. & Kong, L. Y. Vielanin P enhances the cytotoxicity of doxorubicin via the inhibition of PI3K/Nrf2-stimulated MRP1 expression in MCF-7 and K562 DOX-resistant cell lines. Phytomedicine 58, 152885 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Choi, H. S. et al. Decursin in Angelica gigas NAKAI (AGN) enhances doxorubicin chemosensitivity in NCI/ADR-RES ovarian cancer cells via inhibition of P-glycoprotein expression. Phytother. Res. 30, 2020–2026 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04360317 (2020).

  143. Lee, K. et al. State of the art and future implications of SH003: acting as a therapeutic anticancer agent. Cancers https://doi.org/10.3390/cancers14041089 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Stankovic, T. et al. Dual inhibitors as a new challenge for cancer multidrug resistance treatment. Curr. Med. Chem. 26, 6074–6106 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Lai, J. I., Tseng, Y. J., Chen, M. H., Huang, C. F. & Chang, P. M. Clinical perspective of FDA approved drugs with P-glycoprotein inhibition activities for potential cancer therapeutics. Front. Oncol. 10, 561936 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Engle, K. & Kumar, G. Cancer multidrug-resistance reversal by ABCB1 inhibition: a recent update. Eur. J. Med. Chem. 239, 114542 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Seelig, A. P-glycoprotein: one mechanism, many tasks and the consequences for pharmacotherapy of cancers. Front. Oncol. 10, 576559 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Pluchino, K. M., Hall, M. D., Goldsborough, A. S., Callaghan, R. & Gottesman, M. M. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist. Updat. 15, 98–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Efferth, T. et al. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol. Adv. 38, 107342 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Abdelfatah, S. et al. Isopetasin and S-isopetasin as novel P-glycoprotein inhibitors against multidrug-resistant cancer cells. Phytomedicine 86, 153196 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Tan, K. W., Sampson, A., Osa-Andrews, B. & Iram, S. H. Calcitriol and calcipotriol modulate transport activity of ABC transporters and exhibit selective cytotoxicity in MRP1-overexpressing cells. Drug Metab. Dispos. 46, 1856–1866 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gana, C. C. et al. MRP1 modulators synergize with buthionine sulfoximine to exploit collateral sensitivity and selectively kill MRP1-expressing cancer cells. Biochem. Pharmacol. 168, 237–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Cao, J. Y. et al. A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep. 26, 1544–1556.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, X. et al. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J. Cell Physiol. 235, 3425–3437 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. de Souza, I. et al. High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell Death Dis. 13, 591 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang, J. et al. Brain accumulation of tivozanib is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein) in mice. Int. J. Pharm. 581, 119277 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Song, Y. K. et al. Role of the efflux transporters Abcb1 and Abcg2 in the brain distribution of olaparib in mice. Eur. J. Pharm. Sci. 173, 106177 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Martinez-Chavez, A. et al. The role of drug efflux and uptake transporters ABCB1 (P-gp), ABCG2 (BCRP) and OATP1A/1B and of CYP3A4 in the pharmacokinetics of the CDK inhibitor milciclib. Eur. J. Pharm. Sci. 159, 105740 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Radtke, L. et al. CRISPR/Cas9-induced knockout reveals the role of ABCB1 in the response to temozolomide, carmustine and lomustine in glioblastoma multiforme. Pharmacol. Res. 185, 106510 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Sake, J. A. et al. Knockout of ABCC1 in NCI-H441 cells reveals CF to be a suboptimal substrate to study MRP1 activity in organotypic in vitro models. Eur. J. Pharm. Sci. 181, 106364 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. van der Noord, V. E. et al. Systematic screening identifies ABCG2 as critical factor underlying synergy of kinase inhibitors with transcriptional CDK inhibitors. Breast Cancer Res. 25, 51 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yang, Y. et al. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am. J. Transl. Res. 8, 3986–3994 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Huang, L. et al. Application and prospect of CRISPR/Cas9 technology in reversing drug resistance of non-small cell lung cancer. Front. Pharmacol. 13, 900825 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sajid, A. et al. Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein. Proc. Natl Acad. Sci. USA 117, 29609–29617 (2020). This study showed for the first time that the direction of drug transport by ABCB1 can be reversed by mutagenesis of a group of residues in homologous transmembrane helices 6 and 12 of human ABCB1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sajid, A., Lusvarghi, S., Chufan, E. E. & Ambudkar, S. V. Evidence for the critical role of transmembrane helices 1 and 7 in substrate transport by human P-glycoprotein (ABCB1). PLoS ONE 13, e0204693 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Rahman, H. et al. Residues from homologous transmembrane helices 4 and 10 are critical for P-glycoprotein (ABCB1)-mediated drug transport. Cancers 15, 3459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yalcin-Ozkat, G. Molecular modeling strategies of cancer multidrug resistance. Drug Resist. Updat. 59, 100789 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Moosavi, F., Damghani, T., Ghazi, S. & Pirhadi, S. In silico screening of c-Met tyrosine kinase inhibitors targeting nucleotide and drug–substrate binding sites of ABCB1 as potential MDR reversal agents. J. Recept. Signal Transduct. Res. https://doi.org/10.1080/10799893.2022.2086988 (2022).

    Article  PubMed  Google Scholar 

  169. Manoharan, J. P., Nirmala Karunakaran, K., Vidyalakshmi, S. & Dhananjayan, K. Computational binding affinity and molecular dynamic characterization of annonaceous acetogenins at nucleotide binding domain (NBD) of multi-drug resistance ATP-binding cassette sub-family B member 1 (ABCB1). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.2013321 (2021).

    Article  PubMed  Google Scholar 

  170. Hinge, V. K., Roy, D. & Kovalenko, A. Prediction of P-glycoprotein inhibitors with machine learning classification models and 3D-RISM-KH theory based solvation energy descriptors. J. Comput. Aided Mol. Des. 33, 965–971 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Kumar, A., Kalra, S., Jangid, K. & Jaitak, V. Flavonoids as P-glycoprotein inhibitors for multidrug resistance in cancer: an in-silico approach. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2123390 (2022).

    Article  PubMed  Google Scholar 

  172. Ibrahim, M. A. A. et al. Exploring natural product activity and species source candidates for hunting ABCB1 transporter inhibitors: an in silico drug discovery study. Molecules 27, 3107 (2022).

    Article  Google Scholar 

  173. Silbermann, K., Stefan, S. M., Elshawadfy, R., Namasivayam, V. & Wiese, M. Identification of thienopyrimidine scaffold as an inhibitor of the ABC transport protein ABCC1 (MRP1) and related transporters using a combined virtual screening approach. J. Med. Chem. 62, 4383–4400 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Stefan, S. M., Jansson, P. J., Pahnke, J. & Namasivayam, V. A curated binary pattern multitarget dataset of focused ATP-binding cassette transporter inhibitors. Sci. Data 9, 446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Namasivayam, V., Silbermann, K., Wiese, M., Pahnke, J. & Stefan, S. M. C@PA: computer-aided pattern analysis to predict multitarget ABC transporter inhibitors. J. Med. Chem. 64, 3350–3366 (2021). The computational approach calledcomputer-aided pattern analysis (C@PA)’ for identifying multitarget inhibitors of ABCB1, ABCG2 and ABCC1 is described.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yadav, P., Ambudkar, S. V. & Rajendra Prasad, N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J. Nanobiotechnol. 20, 423 (2022).

    Article  CAS  Google Scholar 

  177. Su, Z. et al. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist. Updat. 58, 100777 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Kemp, J. A., Shim, M. S., Heo, C. Y. & Kwon, Y. J. ‘Combo’ nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 98, 3–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Liu, J. P. et al. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers. Acta Pharmacol. Sin. 38, 1–8 (2017).

    Article  PubMed  Google Scholar 

  180. Yin, J., Deng, X., Zhang, J. & Lin, J. Current understanding of interactions between nanoparticles and ABC transporters in cancer cells. Curr. Med. Chem. 25, 5930–5944 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Mohammad, I. S., He, W. & Yin, L. Insight on multidrug resistance and nanomedicine approaches to overcome MDR. Crit. Rev. Ther. Drug Carr. Syst. 37, 473–509 (2020).

    Article  Google Scholar 

  182. Zhang, S. et al. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J. Nanobiotechnol. 17, 109 (2019).

    Article  Google Scholar 

  183. Yao, Y. et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 7, 193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. He, J., Gong, C., Qin, J., Li, M. & Huang, S. Cancer cell membrane decorated silica nanoparticle loaded with miR495 and doxorubicin to overcome drug resistance for effective lung cancer therapy. Nanoscale Res. Lett. 14, 339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Lucky, S. S., Soo, K. C. & Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990–2042 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Liang, B. J., Lusvarghi, S., Ambudkar, S. V. & Huang, H. C. Use of photoimmunoconjugates to characterize ABCB1 in cancer cells. Nanophotonics 10, 3049–3061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liang, B. J., Lusvarghi, S., Ambudkar, S. V. & Huang, H. C. Mechanistic insights into photodynamic regulation of adenosine 5′-triphosphate-binding cassette drug transporters. ACS Pharmacol. Transl. Sci. 4, 1578–1587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mao, C. et al. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J. Control. Rel. 286, 289–300 (2018).

    Article  CAS  Google Scholar 

  189. Suo, X. et al. P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces 10, 33464–33473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Shi, X. L., Li, Y., Zhao, L. M., Su, L. W. & Ding, G. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids Surf. B Biointerfaces 173, 599–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Heidari, R., Khosravian, P., Mirzaei, S. A. & Elahian, F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci. Rep. 11, 20531 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tong, W. Y. et al. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J. Nanobiotechnol. 16, 38 (2018).

    Article  Google Scholar 

  193. Tiash, S. & Chowdhury, E. H. siRNAs targeting multidrug transporter genes sensitise breast tumour to doxorubicin in a syngeneic mouse model. J. Drug Target. 27, 325–337 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Wang, Y. et al. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin. Drug Metab. Toxicol. 17, 291–306 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Pavlikova, L., Seres, M., Breier, A. & Sulova, Z. The roles of microRNAs in cancer multidrug resistance. Cancers 14, 1090 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Espelt, M. V., Bacigalupo, M. L., Carabias, P. & Troncoso, M. F. MicroRNAs contribute to ATP-binding cassette transporter- and autophagy-mediated chemoresistance in hepatocellular carcinoma. World J. Hepatol. 11, 344–358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tang, H. et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression. Clin. Cancer Res. 19, 5602–5612 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Safaei, S. et al. miR-200c increases the sensitivity of breast cancer cells to doxorubicin through downregulating MDR1 gene. Exp. Mol. Pathol. 125, 104753 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Zheng, S. Z. et al. MiR-34a overexpression enhances the inhibitory effect of doxorubicin on HepG2 cells. World J. Gastroenterol. 25, 2752–2762 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wei, S. et al. Dual delivery nanoscale device for miR-451 and adriamycin co-delivery to combat multidrug resistant in bladder cancer. Biomed. Pharmacother. 122, 109473 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Cao, F. & Yin, L. X. miR-122 enhances sensitivity of hepatocellular carcinoma to oxaliplatin via inhibiting MDR1 by targeting Wnt/β-catenin pathway. Exp. Mol. Pathol. 106, 34–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Schamberger, A., Varady, G., Fothi, A. & Orban, T. I. Posttranscriptional regulation of the human ABCG2 multidrug transporter protein by artificial mirtrons. Genes 12, 1068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ashrafizaveh, S. et al. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett. 508, 104–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Mahinfar, P. et al. Long non-coding RNAs in multidrug resistance of glioblastoma. Genes 12, 455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kun-Peng, Z., Xiao-Long, M. & Chun-Lin, Z. LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget 8, 71881–71893 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Chen, Z. et al. The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the Wnt/β-catenin signaling pathway. Mol. Ther. Nucleic Acids 19, 1434–1448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hashemitabar, S. et al. ABCG2 aptamer selectively delivers doxorubicin to drug-resistant breast cancer cells. J. Biosci. 44, 39 (2019). The authors demonstrated the use of an ABCG2 aptamerdoxorubicin complex for selective drug delivery to ABCG2-overexpressing cells.

    Article  PubMed  Google Scholar 

  208. Ma, Y. et al. Rationally screened and designed ABCG2-binding aptamers for targeting cancer stem cells and reversing multidrug resistance. Anal. Chem. 94, 7375–7382 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Zhang, L. et al. Programmable metal/semiconductor nanostructures for mRNA-modulated molecular delivery. Nano Lett. 18, 6222–6228 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Zokaei, E. et al. Therapeutic potential of DNAzyme loaded on chitosan/cyclodextrin nanoparticle to recovery of chemosensitivity in the MCF-7 cell line. Appl. Biochem. Biotechnol. 187, 708–723 (2019). This paper describes the novel concept of DNAzyme, which cleaves ABCB1 mRNA, and its use to overcome multidrug-resistant cancer.

    Article  CAS  PubMed  Google Scholar 

  211. Moore, J. M., Bell, E. L., Hughes, R. O. & Garfield, A. S. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol. Med. 29, 152–172 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Liu, M. et al. DHW-221, a dual PI3K/mTOR inhibitor, overcomes multidrug resistance by targeting P-glycoprotein (P-gp/ABCB1) and Akt-mediated FOXO3a nuclear translocation in non-small cell lung cancer. Front. Oncol. 12, 873649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang, L. et al. Ribociclib inhibits P-gp-mediated multidrug resistance in human epidermoid carcinoma cells. Front. Pharmacol. 13, 867128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Vagiannis, D. et al. Alisertib shows negligible potential for perpetrating pharmacokinetic drug–drug interactions on ABCB1, ABCG2 and cytochromes P450, but acts as dual-activity resistance modulator through the inhibition of ABCC1 transporter. Toxicol. Appl. Pharmacol. 434, 115823 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. De Vera, A. A. et al. Immuno-oncology agent IPI-549 is a modulator of P-glycoprotein (P-gp, MDR1, ABCB1)-mediated multidrug resistance (MDR) in cancer: in vitro and in vivo. Cancer Lett. 442, 91–103 (2019).

    Article  PubMed  Google Scholar 

  216. Wu, C. P. et al. The WD repeat-containing protein 5 (WDR5) antagonist WDR5-0103 restores the efficacy of cytotoxic drugs in multidrug-resistant cancer cells overexpressing ABCB1 or ABCG2. Biomed. Pharmacother. 154, 113663 (2022).

    Article  CAS  PubMed  Google Scholar 

  217. Wu, C. P. et al. The multi-targeted tyrosine kinase inhibitor SKLB610 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biomed. Pharmacother. 149, 112922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tournier, N. et al. Complete inhibition of ABCB1 and ABCG2 at the blood–brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [11C]erlotinib. J. Cereb. Blood Flow Metab. 41, 1634–1646 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Sucha, S. et al. ABCB1 as a potential beneficial target of midostaurin in acute myeloid leukemia. Biomed. Pharmacother. 150, 112962 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Fan, Y. et al. Lazertinib improves the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 overexpression cancer cells in vitro, in vivo, and ex vivo. Mol. Ther. Oncolytics 24, 636–649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, G. et al. Anlotinib reverses multidrug resistance (MDR) in osteosarcoma by inhibiting P-glycoprotein (PGP1) function in vitro and in vivo. Front. Pharmacol. 12, 798837 (2021).

    Article  CAS  PubMed  Google Scholar 

  222. Fallacara, A. L. et al. A new strategy for glioblastoma treatment: in vitro and in vivo preclinical characterization of Si306, a pyrazolo[3,4-d]pyrimidine dual Src/P-glycoprotein inhibitor. Cancers https://doi.org/10.3390/cancers11060848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Coghi, P. et al. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy. Eur. J. Med. Chem. 224, 113676 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Xu, E. et al. OSI-027 alleviates oxaliplatin chemoresistance in gastric cancer cells by suppressing P-gp induction. Curr. Mol. Med. 21, 922–930 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Wu, Z. X. et al. Dual TTK/CLK2 inhibitor, CC-671, selectively antagonizes ABCG2-mediated multidrug resistance in lung cancer cells. Cancer Sci. 111, 2872–2882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Braconi, L. et al. New dual P-glycoprotein (P-gp) and human carbonic anhydrase XII (hCA XII) inhibitors as multidrug resistance (MDR) reversers in cancer cells. J. Med. Chem. 65, 14655–14672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Durrant, D. E., Das, A., Dyer, S. & Kukreja, R. C. A dual PI3 kinase/mTOR inhibitor BEZ235 reverses doxorubicin resistance in ABCB1 overexpressing ovarian and pancreatic cancer cell lines. Biochim. Biophys. Acta Gen. Subj. 1864, 129556 (2020).

    Article  CAS  PubMed  Google Scholar 

  228. Wu, C. P. et al. MY-5445, a phosphodiesterase type 5 inhibitor, resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer drugs. Am. J. Cancer Res. 10, 164–178 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Chen, L. C. et al. CPT11 with P-glycoprotein/CYP 3A4 dual-function inhibitor by self-nanoemulsifying nanoemulsion combined with gastroretentive technology to enhance the oral bioavailability and therapeutic efficacy against pancreatic adenocarcinomas. Drug Deliv. 28, 2205–2217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhang, Y. et al. Adagrasib, a KRAS G12C inhibitor, reverses the multidrug resistance mediated by ABCB1 in vitro and in vivo. Cell Commun. Signal. 20, 142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Krchniakova, M., Skoda, J., Neradil, J., Chlapek, P. & Veselska, R. Repurposing tyrosine kinase inhibitors to overcome multidrug resistance in cancer: a focus on transporters and lysosomal sequestration. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21093157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Morell, A. et al. Isocitrate dehydrogenase 2 inhibitor enasidenib synergizes daunorubicin cytotoxicity by targeting aldo-keto reductase 1C3 and ATP-binding cassette transporters. Arch. Toxicol. 96, 3265–3277 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Wu, Z. X. et al. MET inhibitor tepotinib antagonizes multidrug resistance mediated by ABCG2 transporter: in vitro and in vivo study. Acta Pharm. Sin. B 12, 2609–2618 (2022).

    Article  CAS  PubMed  Google Scholar 

  234. Wang, J. Q. et al. Venetoclax, a BCL-2 inhibitor, enhances the efficacy of chemotherapeutic agents in wild-type ABCG2-overexpression-mediated MDR cancer cells. Cancers https://doi.org/10.3390/cancers12020466 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Prado-Carrillo, O. et al. Ketoconazole reverses imatinib resistance in human chronic myelogenous leukemia K562 cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23147715 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Kurimchak, A. M. et al. The drug efflux pump MDR1 promotes intrinsic and acquired resistance to PROTACs in cancer cells. Sci. Signal. 15, eabn2707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Boichuk, S. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines https://doi.org/10.3390/biomedicines10030601 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Zhang, Y. et al. Sonidegib potentiates the cancer cells’ sensitivity to cytostatic agents by functional inhibition of ABCB1 and ABCG2 in vitro and ex vivo. Biochem. Pharmacol. 199, 115009 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Wu, C. P. et al. Erdafitinib resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer drugs. Cancers 12, 1366 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Meneses-Lorente, G. et al. In vitro and clinical investigations to determine the drug–drug interaction potential of entrectinib, a small molecule inhibitor of neurotrophic tyrosine receptor kinase (NTRK). Invest. New Drugs 40, 68–80 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03330990 (2018).

  242. Wu, C. P. et al. Sitravatinib sensitizes ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Cancers 12, 195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wu, C. P. et al. The selective class IIa histone deacetylase inhibitor TMP195 resensitizes ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer drugs. Int. J. Mol. Sci. 21, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Wen, H. N., He, Q. F., Xiang, X. Q., Jiao, Z. & Yu, J. G. Predicting drug–drug interactions with physiologically based pharmacokinetic/pharmacodynamic modelling and optimal dosing of apixaban and rivaroxaban with dronedarone co-administration. Thromb. Res. 218, 24–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  245. Kim, K. S. et al. Low-dose crizotinib, a tyrosine kinase inhibitor, highly and specifically sensitizes P-glycoprotein-overexpressing chemoresistant cancer cells through induction of late apoptosis in vivo and in vitro. Front. Oncol. 10, 696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wu, C. P. et al. The third-generation EGFR inhibitor almonertinib (HS-10296) resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biochem. Pharmacol. 188, 114516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Fan, Y. F. et al. Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett. 421, 186–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  248. Nakanishi, T. et al. The synergistic role of ATP-dependent drug efflux pump and focal adhesion signaling pathways in vinorelbine resistance in lung cancer. Cancer Med. 7, 408–419 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Chen, M. et al. Effects of proton pump inhibitors on reversing multidrug resistance via downregulating V-ATPases/PI3K/Akt/mTOR/HIF-1α signaling pathway through TSC1/2 complex and Rheb in human gastric adenocarcinoma cells in vitro and in vivo. Onco Targets Ther. 11, 6705–6722 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Al-Malky, H. S. et al. Modulation of doxorubicin-induced expression of the multidrug resistance gene in breast cancer cells by diltiazem and protection against cardiotoxicity in experimental animals. Cancer Cell Int. 19, 191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Muthiah, D. et al. Overcoming P-glycoprotein-mediated drug resistance with noscapine derivatives. Drug Metab. Dispos. 47, 164–172 (2019).

    Article  PubMed  Google Scholar 

  252. Miyata, H. et al. Identification of febuxostat as a new strong ABCG2 inhibitor: potential applications and risks in clinical situations. Front. Pharmacol. 7, 518 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Carvalho, D. M. et al. Repurposing vandetanib plus everolimus for the treatment of ACVR1-mutant diffuse intrinsic pontine glioma. Cancer Discov. 12, 416–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  254. Chang, L. et al. Veliparib overcomes multidrug resistance in liver cancer cells. Biochem. Biophys. Res. Commun. 521, 596–602 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Rask-Andersen, M., Masuram, S., Fredriksson, R. & Schioth, H. B. Solute carriers as drug targets: current use, clinical trials and prospective. Mol. Asp. Med. 34, 702–710 (2013).

    Article  CAS  Google Scholar 

  256. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  257. Shou, M. et al. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 8, 391–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  258. Hrabeta, J. et al. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21124392 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Schindler, M., Grabski, S., Hoff, E. & Simon, S. M. Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry 35, 2811–2817 (1996).

    Article  CAS  PubMed  Google Scholar 

  260. Al-Akra, L. et al. Tumor stressors induce two mechanisms of intracellular P-glycoprotein-mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. J. Biol. Chem. 293, 3562–3587 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kiwerska, K. & Szyfter, K. DNA repair in cancer initiation, progression, and therapy — a double-edged sword. J. Appl. Genet. 60, 329–334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lord, R. V. et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin. Cancer Res. 8, 2286–2291 (2002).

    CAS  PubMed  Google Scholar 

  263. Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  264. Kagohara, L. T. et al. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief. Funct. Genomics 17, 49–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  265. Letai, A. G. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat. Rev. Cancer 8, 121–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  266. Sanchez, L. R. et al. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J. Leukoc. Biol. 106, 259–274 (2019).

    Article  CAS  PubMed  Google Scholar 

  267. Su, F. et al. Ablation of stromal cells with a targeted proapoptotic peptide suppresses cancer chemotherapy resistance and metastasis. Mol. Ther. Oncolyt. 18, 579–586 (2020).

    Article  CAS  Google Scholar 

  268. Qiao, Y. et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37, 873–883 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Leiman for editorial help. This work is funded by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Suresh V. Ambudkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Stephen Aller, who co-reviewed with Christina Le, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gene expression atlas: https://www.ebi.ac.uk/gxa/home

Human Protein Atlas for pathology: https://www.proteinatlas.org/humanproteome/pathology

RCSB Protein Data Bank (PDB): https://www.rcsb.org/

Glossary

ABC transporters

ATP-binding cassette proteins, a superfamily of transporters that transport nutrients, ions, lipids or drugs across the cell membrane using energy derived from ATP hydrolysis.

Blood–brain barrier

A barrier made of endothelial cells that selectively blocks passage of unwanted toxins, including anticancer drugs, and bacteria from the bloodstream to the brain.

Collateral sensitivity

Increased sensitivity of drug-resistant cancer cells owing to the presence of resistance markers including ABC transporters.

DNA-capped quantum dots

DNA-capped quantum dots are prepared by attaching strands of DNA to inorganic nanocrystals, and such quantum dots are used for imaging cellular processes in vitro and in vivo in animal studies.

Drug transport

Transport of drugs across the eukaryotic cell membrane, either by facilitated diffusion (small hydrophobic drugs) or by uptake or efflux pumps, which require ion gradients or ATP as the energy source for active transport.

Half transporter

An ABC transporter having one transmembrane domain containing six to eight helices and one nucleotide-binding domain. The functional unit is either a homodimer or heterodimer.

Molecular dynamics (MD) simulations

MD simulations are a computer-based method for analysing the movement of residues within a protein, interaction of ligands with a protein or conformational changes owing to mutations.

Multidrug-resistant cancer

Cancer cells become unresponsive to not only the anticancer drug administered but also various other drugs.

Pharmacophore

It is the precise arrangement of atoms or functional groups in a small molecule required for specific interactions with its biological target such as a receptor, transporter or an enzyme for its optimal activity.

Polyspecificity

Certain ABC transporters, particularly ABCB1, ABCG2 or ABCC1, can transport various chemically dissimilar amphipathic and hydrophobic compounds, including drugs.

Repurposed drugs

Identification of new uses or targets for approved drugs that are not within the original medical indication.

RNA interference

Use of single-stranded or double-stranded RNA, including siRNA, shRNA or miRNA to block the translation of a target gene of interest by binding its mRNA, causing its degradation.

Small-molecule inhibitors

Low-molecular-weight drugs or chemicals that can inhibit a target protein and are usually easy to synthesize and can readily enter cells.

Structure–activity relationship

(SAR). It is a method used to determine the correlation between chemical structure and biological activity of compounds, including drugs.

Walker motifs

The Walker A and Walker B motifs with highly conserved 3D structures are present in ATP-binding and GTP-binding proteins, including F-type, P-type, V-type ATPases and ABC transporters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, A., Rahman, H. & Ambudkar, S.V. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 23, 762–779 (2023). https://doi.org/10.1038/s41568-023-00612-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00612-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer