Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-range gene regulation in hormone-dependent cancer

Abstract

The human genome is organized into multiple structural layers, ranging from chromosome territories to progressively smaller substructures, such as topologically associating domains (TADs) and chromatin loops. These substructures, collectively referred to as long-range chromatin interactions (LRIs), have a significant role in regulating gene expression. TADs are regions of the genome that harbour groups of genes and regulatory elements that frequently interact with each other and are insulated from other regions, thereby preventing widespread uncontrolled DNA contacts. Chromatin loops formed within TADs through enhancer and promoter interactions are elastic, allowing transcriptional heterogeneity and stochasticity. Over the past decade, it has become evident that the 3D genome structure, also referred to as the chromatin architecture, is central to many transcriptional cellular decisions. In this Review, we delve into the intricate relationship between steroid receptors and LRIs, discussing how steroid receptors interact with and modulate these chromatin interactions. Genetic alterations in the many processes involved in organizing the nuclear architecture are often associated with the development of hormone-dependent cancers. A better understanding of the interplay between architectural proteins and hormone regulatory networks can ultimately be exploited to develop improved approaches for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome organization in cells.
Fig. 2: Modulation of long-range interactions by steroid receptors.
Fig. 3: Enhancer functions in ER- and AR-related cancers.
Fig. 4: Mechanisms by which steroid receptors induce long-range interactions in cancer.

Similar content being viewed by others

References

  1. Wahl, G. M. & Spike, B. T. Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. NPJ Breast Cancer 3, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 772 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bailey, S. D. et al. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters. Nat. Commun. 2, 6186 (2015).

    Article  PubMed  Google Scholar 

  12. Heidari, N. et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 24, 1905–1917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Achinger-Kawecka, J., Taberlay, P. C. & Clark, S. J. Alterations in three-dimensional organization of the cancer genome and epigenome. Cold Spring Harb. Symp. Quant. Biol. 81, 41–51 (2016).

    Article  PubMed  Google Scholar 

  14. Rhie, S. K. et al. A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nat. Commun. 10, 4154 (2019). Together with Taberlay et al., this paper observes the presence of altered TAD boundaries and 3D disorganization of the prostate cancer genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levine, D. A. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Waldman, T. Emerging themes in cohesin cancer biology. Nat. Rev. Cancer 20, 504–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Dixon, J. R. et al. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet. 50, 1388–1398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yi, E., Chamorro Gonzalez, R., Henssen, A. G. & Verhaak, R. G. W. Extrachromosomal DNA amplifications in cancer. Nat. Rev. Genet. 23, 760–771 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Taberlay, P. C. et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 26, 719–731 (2016). Together with Rhie et al., this paper observes the presence of altered TAD boundaries and 3D disorganization of the prostate cancer genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Ippolito, A. M. et al. Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst. 7, 146–160 e147 (2018).

    Article  PubMed  Google Scholar 

  22. McDowell, I. C. et al. Glucocorticoid receptor recruits to enhancers and drives activation by motif-directed binding. Genome Res. 28, 1272–1284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stavreva, D. A. et al. Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing. Genome Res. 25, 845–857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hakim, O. et al. Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res. 21, 697–706 (2011). This study, together with Stavreva et al. and Kuznetsova et al. provide evidence that treatment with glucocorticoids induces the formation of stable subnuclear compartments, in which chromatin interactions are strengthened in a hormone-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuznetsova, T. et al. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biol. 16, 264 (2015). This study, together with Hakim et al. and Stavreva et al. provide evidence that treatment with glucocorticoids induces the formation of stable subnuclear compartments, in which chromatin interactions are strengthened in a hormone-dependent manner.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stavreva, D. A. & Hager, G. L. Chromatin structure and gene regulation: a dynamic view of enhancer function. Nucleus 6, 442–448 (2015). This study, together with Hakim et al. and Kuznetsova et al. provide evidence that treatment with glucocorticoids induces the formation of stable subnuclear compartments, in which chromatin interactions are strengthened in a hormone-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  27. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515.e1510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, H. et al. Glucocorticoid receptor wields chromatin interactions to tune transcription for cytoskeleton stabilization in podocytes. Commun. Biol. 4, 675 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rinaldi, L. et al. The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation. Sci. Adv. 8, eabj8360 (2022). This pioneering study reveals a novel interaction (direct or indirect) between the GR and the cohesin loader NIPBL, shedding light on their collaborative role in LRI during gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia, D. A. et al. An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors. Mol. Cell 81, 1484–1498 e1486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Papachristou, E. K. et al. A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nat. Commun. 9, 2311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chng, K. R. & Cheung, E. Sequencing the transcriptional network of androgen receptor in prostate cancer. Cancer Lett. 340, 254–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Sung, Y. Y. & Cheung, E. Androgen receptor co-regulatory networks in castration-resistant prostate cancer. Endocr. Relat. Cancer 21, R1–R11 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clegg, N. J. et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 72, 1494–1503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Massie, C. E. et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719–2733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toropainen, S. et al. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets. Sci. Rep. 6, 33510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. DePrimo, S. E. et al. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol. 3, RESEARCH0032 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chng, K. R. et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J. 31, 2810–2823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Z. et al. An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. Genome Res. 29, 223–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elemento, O., Rubin, M. A. & Rickman, D. S. Oncogenic transcription factors as master regulators of chromatin topology: a new role for ERG in prostate cancer. Cell Cycle 11, 3380–3383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, D., Zhang, C., Shen, Y., Nephew, K. P. & Wang, Q. Androgen receptor-driven chromatin looping in prostate cancer. Trends Endocrinol. Metab. 22, 474–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Siersbaek, R., Kumar, S. & Carroll, J. S. Signaling pathways and steroid receptors modulating estrogen receptor alpha function in breast cancer. Genes Dev. 32, 1141–1154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bonéy-Montoya, J., Ziegler, Y. S., Curtis, C. D., Montoya, J. A. & Nardulli, A. M. Long-range transcriptional control of progesterone receptor gene expression. Mol. Endocrinol. 24, 346–358 (2010).

    Article  PubMed  Google Scholar 

  50. Paakinaho, V., Swinstead, E. E., Presman, D. M., Grøntved, L. & Hager, G. L. Meta-analysis of chromatin programming by steroid receptors. Cell Rep. 28, 3523–3534.e3522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodriguez, J. et al. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176, 213–226.e218 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Le Dily, F. et al. Hormone-control regions mediate steroid receptor-dependent genome organization. Genome Res. 29, 29–39 (2019). Together with Le Dily et al. (2014), this paper offers evidence that oestrogen stimulation leads to an increase in the number of intra- and inter-chromosomal interactions highlighting the role of HCRs as modular and dynamic units in SR-dependent genome organization.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fiorito, E. et al. CTCF modulates estrogen receptor function through specific chromatin and nuclear matrix interactions. Nucleic Acids Res. 44, 10588–10602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Le Dily, F. & Beato, M. TADs as modular and dynamic units for gene regulation by hormones. FEBS Lett. 589, 2885–2892 (2015).

    Article  PubMed  Google Scholar 

  56. Le Dily, F. et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28, 2151–2162 (2014). Together with Le Dily et al. (2019), this paper offers evidence that oestrogen stimulation leads to an increase in the number of intra- and inter-chromosomal interactions highlighting the role of HCRs as modular and dynamic units in SR-dependent genome organization.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mourad, R. et al. Estrogen induces global reorganization of chromatin structure in human breast cancer cells. PLoS ONE 9, e113354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hsu, P. Y. et al. Amplification of distant estrogen response elements deregulates target genes associated with tamoxifen resistance in breast cancer. Cancer Cell 24, 197–212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, Y. et al. Temporal dynamic reorganization of 3D chromatin architecture in hormone-induced breast cancer and endocrine resistance. Nat. Commun. 10, 1522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lydon, J. P. et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9, 2266–2278 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Miyamoto, T. et al. Significance of progesterone receptor-A and -B expressions in endometrial adenocarcinoma. J. Steroid Biochem. Mol. Biol. 92, 111–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ishikawa, H. et al. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology 151, 2433–2442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ballare, C. et al. Nucleosome-driven transcription factor binding and gene regulation. Mol. Cell 49, 67–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Yin, P. et al. Genome-wide progesterone receptor binding: cell type-specific and shared mechanisms in T47D breast cancer cells and primary leiomyoma cells. PLoS ONE 7, e29021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dinh, D. T. et al. Tissue-specific progesterone receptor-chromatin binding and the regulation of progesterone-dependent gene expression. Sci. Rep. 9, 11966 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. La Greca, A. et al. Chromatin topology defines estradiol-primed progesterone receptor and PAX2 binding in endometrial cancer cells. eLife 11, e66034 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hsu, P. Y. et al. Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Res. 20, 733–744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Groner, A. C. & Brown, M. Role of steroid receptor and coregulator mutations in hormone-dependent cancers. J. Clin. Invest. 127, 1126–1135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47, 818–821 (2015). This paper reveals that mutations in cohesin and CTCF DNA binding sites occur at a higher frequency in cancer cells.

    Article  CAS  PubMed  Google Scholar 

  70. Leiserson, M. D. et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Kon, A. et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat. Genet. 45, 1232–1237 (2013). This study, together with Tirode et al. and Solomon et al. establish a connection between mutations in genes encoding cohesin subunits and the development of cancer.

    Article  CAS  PubMed  Google Scholar 

  72. Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011). This study, together with Kon et al. and Tirode et al. establish a connection between mutations in genes encoding cohesin subunits and the development of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tirode, F. et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 4, 1342–1353 (2014). This study, together with Kon et al. and Solomon et al. establish a connection between mutations in genes encoding cohesin subunits and the development of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575, 229–233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Affer, M. et al. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28, 1725–1735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valton, A. L. & Dekker, J. TAD disruption as oncogenic driver. Curr. Opin. Genet. Dev. 36, 34–40 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, M. et al. Enhancer RNAs mediate estrogen-induced decommissioning of selective enhancers by recruiting ERα and its cofactor. Cell Rep. 31, 107803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haller, F. et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat. Commun. 10, 368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, W. et al. Condensin I and II complexes license full estrogen receptor alpha-dependent enhancer activation. Mol. Cell 59, 188–202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shin, H. Y. et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48, 904–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoffman, J. A. et al. Multimodal regulatory elements within a hormone-specific super enhancer control a heterogeneous transcriptional response. Mol. Cell 82, 803–815 e805 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  85. Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018). This pioneering work demonstrates that transcriptional coactivators undergo phase separation to form condensates at SEs linking phase separation to gene control.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 e1816 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muscat, G. E. et al. Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol. Endocrinol. 27, 350–365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kohler, B. A. et al. Annual report to the nation on the status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J. Natl Cancer Inst. 107, djv048 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Miano, V. et al. Luminal lncRNAs regulation by ERα-controlled enhancers in a ligand-independent manner in breast cancer cells. Int. J. Mol. Sci. 19, 593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Barbour, J. A. & Wong, J. W. H. in Clinical Epigenetics (eds Hesson, L. B. & Pritchard, A. L.) 173–192 (Springer, 2019).

  93. Sur, I. & Taipale, J. The role of enhancers in cancer. Nat. Rev. Cancer 16, 483–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, J. et al. Recurrent mutations at estrogen receptor binding sites alter chromatin topology and distal gene expression in breast cancer. Genome Biol. 19, 190 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ghoussaini, M. et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J. Natl Cancer Inst. 100, 962–966 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Haiman, C. A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet. 39, 638–644 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Ahmadiyeh, N. et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl Acad. Sci. USA 107, 9742–9746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sotelo, J. et al. Long-range enhancers on 8q24 regulate c-Myc. Proc. Natl Acad. Sci. USA 107, 3001–3005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rae, J. M. et al. GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res. Treat. 92, 141–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Hodgkinson, K. et al. GREB1 is an estrogen receptor-regulated tumour promoter that is frequently expressed in ovarian cancer. Oncogene 37, 5873–5886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rae, J. M. et al. GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate 66, 886–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Deschenes, J., Bourdeau, V., White, J. H. & Mader, S. Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences. J. Biol. Chem. 282, 17335–17339 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Rodriguez, A. C., Blanchard, Z., Maurer, K. A. & Gertz, J. Estrogen signaling in endometrial cancer: a key oncogenic pathway with several open questions. Horm. Cancer 10, 51–63 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hewitt, S. C., Grimm, S. A., Wu, S. P., DeMayo, F. J. & Korach, K. S. Estrogen receptor α (ERα)-binding super-enhancers drive key mediators that control uterine estrogen responses in mice. J. Biol. Chem. 295, 8387–8400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Debaugny, R. E. & Skok, J. A. CTCF and CTCFL in cancer. Curr. Opin. Genet. Dev. 61, 44–52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rubio-Perez, C. et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell 27, 382–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aitken, S. J. et al. CTCF maintains regulatory homeostasis of cancer pathways. Genome Biol. 19, 106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kar, S. P. et al. Genome-wide meta-analyses of breast, ovarian, and prostate cancer association studies identify multiple new susceptibility loci shared by at least two cancer types. Cancer Discov. 6, 1052–1067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Hawley, J. R. et al. Reorganization of the 3D genome pinpoints noncoding drivers of primary prostate tumors. Cancer Res. 81, 5833–5848 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174, 758–769 e759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hsieh, C. L. et al. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc. Natl Acad. Sci. USA 111, 7319–7324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seo, W. Y. et al. CCAR1 promotes chromatin loading of androgen receptor (AR) transcription complex by stabilizing the association between AR and GATA2. Nucleic Acids Res. 41, 8526–8536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ramanand, S. G. et al. The landscape of RNA polymerase II-associated chromatin interactions in prostate cancer. J. Clin. Invest. 130, 3987–4005 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Takeda, D. Y. et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174, 422–432.e413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Viswanathan, S. R. et al. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174, 433–447 e419 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. San Martin, R. et al. Chromosome compartmentalization alterations in prostate cancer cell lines model disease progression. J. Cell Biol. 221, e202104108 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Ulm, M. et al. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr. Connect. 8, R10–R26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Crawford, E. D. et al. Androgen-targeted therapy in men with prostate cancer: evolving practice and future considerations. Prostate Cancer Prostatic Dis. 22, 24–38 (2019).

    Article  PubMed  Google Scholar 

  126. Karan, D., Holzbeierlein, J. M., Van Veldhuizen, P. & Thrasher, J. B. Cancer immunotherapy: a paradigm shift for prostate cancer treatment. Nat. Rev. Urol. 9, 376–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001). Establishes PROTAC as a powerful tool for protein degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05177042 (2023).

  129. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03888612 (2023).

  130. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05067140 (2023).

  131. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05654623 (2023).

  132. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05573555 (2023).

  133. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05548127 (2023).

  134. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05549505 (2023).

  135. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05501769 (2023).

  136. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04072952 (2023).

  137. Xiao, L. et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601, 434–439 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, L., Riley-Gillis, B., Vijay, P. & Shen, Y. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther. 18, 1302–1311 (2019).

    Article  PubMed  Google Scholar 

  139. Ottis, P. et al. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. ACS Chem. Biol. 14, 2215–2223 (2019).

    CAS  PubMed  Google Scholar 

  140. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012). Together with Hao et al., Deng et al. (2014) and Morgan et al., this study demonstrates the use of gene editing techniques, particularly CRISPR–Cas9-based methods, to manipulate nuclear architecture and induce targeted looping of genomic regions, effectively controlling gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014). Together with Deng et al. (2012), Hao et al. and Morgan et al., this study demonstrates the use of gene editing techniques, particularly CRISPR–Cas9-based methods, to manipulate nuclear architecture and induce targeted looping of genomic regions, effectively controlling gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8, 15993 (2017). Together with Deng et al. (2012), Deng et al. (2014) and Hao et al., this study demonstrates the use of gene editing techniques, particularly CRISPR–Cas9-based methods, to manipulate nuclear architecture and induce targeted looping of genomic regions, effectively controlling gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hao, N., Shearwin, K. E. & Dodd, I. B. Programmable DNA looping using engineered bivalent dCas9 complexes. Nat. Commun. 8, 1628 (2017). Together with Deng et al. (2012), Deng et al. (2014) and Morgan et al., this study demonstrates the use of gene editing techniques, particularly CRISPR–Cas9-based methods, to manipulate nuclear architecture and induce targeted looping of genomic regions, effectively controlling gene expression.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Guo, Y. et al. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops. Genome Biol. 19, 160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, e217 (2016).

    Article  Google Scholar 

  146. Sapozhnikov, D. M. & Szyf, M. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression. Nat. Protoc. 17, 2840–2881 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Tarjan, D. R., Flavahan, W. A. & Bernstein, B. E. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun. 10, 4258 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wei, C. et al. CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells. Mol. Med. Rep. 17, 2901–2906 (2018).

    CAS  PubMed  Google Scholar 

  149. Ryu, J. K. et al. Bridging-induced phase separation induced by cohesin SMC protein complexes. Sci. Adv. 7, eabe5905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, R. et al. CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acids Res. 50, 207–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gamliel, A. et al. Long-distance association of topological boundaries through nuclear condensates. Proc. Natl Acad. Sci. USA 119, e2206216119 (2022). This study, together with Ulianov et al., provides compelling evidence for the impact of 1,6-HD on the organization of the 3D genome architecture in living cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ulianov, S. V. et al. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Res. 49, 10524–10541 (2021). This study, together with Gamliel et al., provides compelling evidence for the impact of 1,6-HD on the organization of the 3D genome architecture in living cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, X. et al. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol. 22, 230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Frank, F., Liu, X. & Ortlund, E. A. Glucocorticoid receptor condensates link DNA-dependent receptor dimerization and transcriptional transactivation. Proc. Natl Acad. Sci. USA 118, e2024685118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stortz, M., Pecci, A., Presman, D. M. & Levi, V. Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biol. 18, 59 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stortz, M. et al. SOX2 modulates the nuclear organization and transcriptional activity of the glucocorticoid receptor. J. Mol. Biol. 434, 167869 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Munoz-Gil, G. et al. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells. Proc. Natl Acad. Sci. USA 119, e2200667119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, F. et al. Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression. Nucleic Acids Res. 51, 99–116 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Xie, J. et al. Targeting androgen receptor phase separation to overcome antiandrogen resistance. Nat. Chem. Biol. 18, 1341–1350 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Basu, S. et al. Rational optimization of a transcription factor activation domain inhibitor. Preprint at bioRxiv, https://www.biorxiv.org/content/10.1101/2022.08.18.504385v2 (2022).

  162. Basu, S. et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062–1079.e1030 (2020). This study, together with Mensah et al. and Ahn et al., demonstrates that the presence of disease-associated genetic alterations within IDRs of proteins compromises phase separation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591–595 (2021). This study, together with Basu et al. (2020) and Mensah et al., demonstrates that the presence of disease-associated genetic alterations within IDRs of proteins compromises phase separation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023). This study, together with Basu et al (2020) and Ahn et al., demonstrates that the presence of disease-associated genetic alterations within IDRs of proteins compromises phase separation.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. De Mol, E. et al. EPI-001, a compound active against castration-resistant prostate cancer, targets transactivation unit 5 of the androgen receptor. ACS Chem. Biol. 11, 2499–2505 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04421222 (2022).

  168. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT05075577 (2023).

  169. Zhang, T., Karsh, L. I., Nissenblatt, M. J. & Canfield, S. E. Androgen receptor splice variant, AR-V7, as a biomarker of resistance to androgen axis-targeted therapies in advanced prostate cancer. Clin. Genitourin. Cancer 18, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Kallio, H. M. L. et al. Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. Br. J. Cancer 119, 347–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ban, F. et al. Development of an androgen receptor inhibitor targeting the N-terminal domain of androgen receptor for treatment of castration resistant prostate cancer. Cancers 13, 3488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gravina, G. L. et al. 5-Azacitidine restores and amplifies the bicalutamide response on preclinical models of androgen receptor expressing or deficient prostate tumors. Prostate 70, 1166–1178 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Yoshida, K. et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat. Genet. 45, 1293–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen, Z. et al. Androgen receptor-activated enhancers simultaneously regulate oncogene TMPRSS2 and lncRNA PRCAT38 in prostate cancer. Cells 8, 864 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, Y. et al. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat. Genet. 50, 814–824 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Takayama, K. I., Fujimura, T., Suzuki, Y. & Inoue, S. Identification of long non-coding RNAs in advanced prostate cancer associated with androgen receptor splicing factors. Commun. Biol. 3, 393 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Elbarbary, R. A., Lucas, B. A. & Maquat, L. E. Retrotransposons as regulators of gene expression. Science 351, aac7247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sexton, C. E., Tillett, R. L. & Han, M. V. The essential but enigmatic regulatory role of HERVH in pluripotency. Trends Genet. 38, 12–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Rodic, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Goering, W., Ribarska, T. & Schulz, W. A. Selective changes of retroelement expression in human prostate cancer. Carcinogenesis 32, 1484–1492 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Goering, W. et al. Human endogenous retrovirus HERV-K(HML-2) activity in prostate cancer is dominated by a few loci. Prostate 75, 1958–1971 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Tao, R. H. et al. Testicular zinc finger protein recruits histone deacetylase 2 and suppresses the transactivation function and intranuclear foci formation of agonist-bound androgen receptor competitively with TIF2. Mol. Cell Endocrinol. 247, 150–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Kaufmann, S. et al. Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor. J. Gen. Virol. 91, 1494–1502 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Ruprecht, K., Mayer, J., Sauter, M., Roemer, K. & Mueller-Lantzsch, N. Endogenous retroviruses and cancer. Cell Mol. Life Sci. 65, 3366–3382 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Nguyen, T. D., Davis, J., Eugenio, R. A. & Liu, Y. Female sex hormones activate human endogenous retrovirus type K through the OCT4 transcription factor in T47D breast cancer cells. AIDS Res. Hum. Retroviruses 35, 348–356 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Johanning, G. L. et al. Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype. Sci. Rep. 7, 41960 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhou, F. et al. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 7, 84093–84117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The authors thank C. A. Meehan, NIH, and members of the NIH fellows editorial board for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.T.T. conducted extensive data research for the article, authored the manuscript and played a pivotal part in reviewing and editing the manuscript. T.T.T. also assumes responsibility for all aspects of the article. L.R. made significant contributions to the initial draft of the manuscript. G.L.H. contributed to the manuscript by editing it, incorporating additional content and providing valuable mentoring and supervision throughout the process.

Corresponding author

Correspondence to Gordon L. Hager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Trevor Archer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal: https://www.cbioportal.org/

TCGA: https://www.cancer.gov/tcga

Glossary

1,6-hexanediol

A chemical compound commonly used as a protein denaturant and solvent that disrupts interactions between biomolecules and influences their conformation and function.

Chromatin compartments

Subdivisions of chromosome territories based on their transcriptional activity, histone modification and gene density. Compartment A is mostly transcriptionally active while compartment B is often repressed.

Chromatin landscape

The overall pattern of chromatin modifications, including histone modifications and DNA methylation.

Chromatin loops

Long-range interactions formed when segments of the DNA, such as enhancer or promoter, on the same chromosome are in close physical proximity to each other. Chromatin loops are held in place by architectural proteins such as CCCTC binding factor (CTCF) and the cohesin complex.

CLOuD9

A CRISPR-based system that uses nuclease-deficient Cas9 (dCas9) to achieve reversible, precise control of gene expression through targeted forced juxtaposition of any two genomic loci.

Condensates

Liquid-like droplets or membrane-less organelles formed through the process of liquid–liquid phase separation by the concentration of intrinsically disordered region-bearing transcription factors and nucleic acids.

Confinement state

A condition in which biomolecules are restricted within a defined space, which often results in altered molecular interactions and functional outcomes.

Crowding agent

A substance or condition that mimics the densely packed environment found in cells, influencing the behaviour and properties of biomolecules and cellular processes.

dCas9–Zip

A modified version of the CRISPR-associated protein dCas9 fused with a peptide that allows for targeted recruitment of specific proteins or molecules to a desired genomic location.

Enhancer hijacking

Misplacement of enhancers caused by genomic rearrangements, such as translocations or inversions, leading to the disruption of topologically associating domain structures and resulting in aberrant expression of oncogenes or downregulation of tumour suppressor genes.

Enhancer RNAs

(eRNAs). A class of long non-coding RNAs (lncRNAs) transcribed from the DNA sequence of enhancer regions.

Genomic output

A process by which changes in the 3D genome structure, including alterations in the positioning of chromatin domains and changes in chromatin interactions, can result in changes to gene expression and cellular function.

Global run-on sequencing

(GRO-seq). An assay to map and quantify nascent transcription by sequencing RNA that is actively being synthesized.

Hi-C

A genome-wide sequencing approach that allows detection of chromatin interactions in the nucleus by cross-linking and sequencing proximity ligation products.

Hormone-control regions

(HCRs). A cluster of specific DNA sequences, often enhancers and promoters, that are recognized and bound by hormone receptors to regulate hormone-responsive genes.

Hormone deprivation therapy

Use of surgery or drug administration to lower the levels of a hormone in hormone-dependent cancers.

Intrinsically disordered regions

(IDRs). Protein regions characterized by their lack of stable secondary or tertiary structure, often involved in protein–protein interactions, signalling and regulation.

Long-range chromatin interactions

(LRIs). Physical interactions between proximal and distal genomic elements, either on the same chromosome or between distinct chromosomes, that interact with higher frequency than expected and are important in transcriptional regulation of genes.

Loop extrusions

The process by which DNA loops are formed and regulated by molecular machinery, enabling spatial organization and gene regulation within the chromatin.

Mediator complex

A multisubunit protein complex that regulates RNA polymerase II transcription by assembling at the pre-initiation complex and transducing signals from activators bound to enhancer regions to the transcription machinery.

Micro-C

An enhanced version of Hi-C that addresses the limitations of traditional Hi-C by incorporating a micrococcal nuclease digestion step to investigate the proximity of nucleosome pairs, resulting in improved resolution and signal-to-noise ratio.

Nuclear lamina

A mesh-like network of proteins that lines the inner nuclear membrane, providing structural support to the nucleus and participating in gene regulation and chromatin organization.

Phase separation

A process by which biomolecules form distinct liquid-like droplets through either electrostatic, hydrophobic or bivalent interactions.

Response elements

Specific DNA sequences to which transcription factors bind to either activate or repress transcription of cognate genes.

Super-enhancer loops

Chromatin loops formed when super-enhancers are in close physical proximity to their target gene promoters.

Super-enhancers

Regions of the genome that contain clusters of enhancers that drive high levels of gene expression, typically associated with crucial cellular processes and disease states.

Steroid receptors

Intracellular receptors that bind to steroid hormones such as cortisol, oestrogen, progesterone and testosterone. Upon binding to hormone, the receptor undergoes a conformational change that enables it to translocate to the nucleus where it binds to a response DNA element to regulate gene expression.

Topologically associating domains

(TADs). Discrete regions of the genome often spanning tens or hundreds of kilobases with high frequency of self-associating contact, enclosed by CCCTC binding factor (CTCF) and cohesin-containing boundaries. TADs are insulated from neighbouring discrete genomic regions to prevent widespread uncontrolled DNA contacts.

Transcription activator-like effector nucleases

Enzymes engineered from bacterial proteins that can be used for precise gene editing, targeting specific DNA sequences for modification.

Zinc finger (ZF) gene editing tools

Synthetic proteins or nucleases engineered to bind and modify DNA at specific sequences using ZF motifs, allowing precise genome editing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tettey, T.T., Rinaldi, L. & Hager, G.L. Long-range gene regulation in hormone-dependent cancer. Nat Rev Cancer 23, 657–672 (2023). https://doi.org/10.1038/s41568-023-00603-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00603-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer