Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics and specificities of T cells in cancer immunotherapy

Abstract

Recent advances in cancer immunotherapy — ranging from immune-checkpoint blockade therapy to adoptive cellular therapy and vaccines — have revolutionized cancer treatment paradigms, yet the variability in clinical responses to these agents has motivated intense interest in understanding how the T cell landscape evolves with respect to response to immune intervention. Over the past decade, the advent of multidimensional single-cell technologies has provided the unprecedented ability to dissect the constellation of cell states of lymphocytes within a tumour microenvironment. In particular, the rapidly expanding capacity to definitively link intratumoural phenotypes with the antigen specificity of T cells provided by T cell receptors (TCRs) has now made it possible to focus on investigating the properties of T cells with tumour-specific reactivity. Moreover, the assessment of TCR clonality has enabled a molecular approach to track the trajectories, clonal dynamics and phenotypic changes of antitumour T cells over the course of immunotherapeutic intervention. Here, we review the current knowledge on the cellular states and antigen specificities of antitumour T cells and examine how fine characterization of T cell dynamics in patients has provided meaningful insights into the mechanisms underlying effective cancer immunotherapy. We highlight those T cell subsets associated with productive T cell responses and discuss how diverse immunotherapies might leverage the pre-existing tumour-reactive T cell pool or instruct de novo generation of antitumour specificities. Future studies aimed at elucidating the factors associated with the elicitation of productive antitumour T cell immunity are anticipated to instruct the design of more efficacious treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotypes of CD8+ T cells within the native tumour microenvironment.
Fig. 2: Effect of immunotherapies on the T cell repertoire of patients.
Fig. 3: Mechanisms of response to ICB and the T cell subsets involved.
Fig. 4: The phenotypic composition of transferred T cells affects the outcome of adoptive T cell therapy.

Similar content being viewed by others

References

  1. Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alcover, A., Alarcón, B. & Di Bartolo, V. Cell biology of T cell receptor expression and regulation. Annu. Rev. Immunol. 36, 103–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boon, T., Coulie, P. G., Van den Eynde, B. J. & van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol. 24, 175–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Gerard, C. L. et al. Turning tumors from cold to inflamed to improve immunotherapy response. Cancer Treat. Rev. 101, 102227 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Pai, S. I., Cesano, A. & Marincola, F. M. The paradox of cancer immune exclusion: immune oncology next frontier. Cancer Treat. Res. 180, 173–195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 176, 404 (2019). Single-cell transcriptome analysis in human melanoma identifies TCF1-expressing TILs associated with response to ICB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019). Single-cell transcriptome and TCR analysis of TILs in human melanomas, which describes the presence of dysfunctional and exhausted T cells with cytotoxic and proliferative potential.

    Article  CAS  PubMed  Google Scholar 

  14. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36, 265–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ottaviano, M., De Placido, S. & Ascierto, P. A. Recent success and limitations of immune checkpoint inhibitors for cancer: a lesson from melanoma. Virchows Arch. 474, 421–432 (2019).

    Article  PubMed  Google Scholar 

  19. Keenan, T. E., Burke, K. P. & Van Allen, E. M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25, 389–402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bagchi, S., Yuan, R. & Engleman, E. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021). Single-cell transcriptome atlas of TILs across different cancer types, highlighting the preferential exhaustion fate acquired by T cells within the TME. This paper also provides a re-analysis of data included in Sade-Feldman et al. (2019), identifying TPE cells in melanoma samples and documenting that their level within the basal TME is associated with positive outcome after immunotherapy.

    Article  PubMed  Google Scholar 

  22. Schrama, D., Ritter, C. & Becker, J. C. T cell receptor repertoire usage in cancer as a surrogate marker for immune responses. Semin. Immunopathol. 39, 255–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Hudson, W. H. & Wieland, A. Technology meets TILs: deciphering T cell function in the -omics era. Cancer Cell 41, 41–57 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Newman, A. M. & Alizadeh, A. A. High-throughput genomic profiling of tumor-infiltrating leukocytes. Curr. Opin. Immunol. 41, 77–84 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pauken, K. E. et al. TCR-sequencing in cancer and autoimmunity: barcodes and beyond. Trends Immunol. 43, 180–194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Penter, L., Gohil, S. H. & Wu, C. J. Natural barcodes for longitudinal single cell tracking of leukemic and immune cell dynamics. Front. Immunol. 12, 788891 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu, Z. et al. A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood 132, 1911–1921 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Maibach, F., Sadozai, H., Seyed Jafari, S. M., Hunger, R. E. & Schenk, M. Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front. Immunol. 11, 2105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kather, J. N. et al. Topography of cancer-associated immune cells in human solid tumors. eLife 7, e36967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paijens, S. T., Vledder, A., de Bruyn, M. & Nijman, H. W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol. Immunol. 18, 842–859 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B. & Livak, K. J. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 244–256 (2021).

    Article  PubMed  Google Scholar 

  36. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Clarke, J. et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J. Exp. Med. 216, 2128–2149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cui, W. & Kaech, S. M. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol. Rev. 236, 151–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hand, T. W. & Kaech, S. M. Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Immunol. Res. 45, 46–61 (2009).

    Article  PubMed  Google Scholar 

  51. Reiner, S. L., Sallusto, F. & Lanzavecchia, A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317, 622–625 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021). This work coupled single-cell profiling of CD8+ TILs with reconstruction and specificity screening of intratumoural TCRs and demonstrates that tumour-reactive TCRs able to recognize autologous melanomas are highly enriched among exhausted TILs, while viral specificities are prevalent among memory cells. A gene signature of tumour-specific TILs is also provided.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020). By performing single-cell sequencing of transcriptomes and TCRs in patients with different types of cancer, the authors present evidence of clonal expansion of T cells in tumours, normal tissue and peripheral blood upon ICB. Analysis of lesions collected 2–3 months after immunotherapy documents that response is associated with the replenishment of intratumoural T cells from extratumoural sites.

    Article  CAS  PubMed  Google Scholar 

  60. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Okła, K., Farber, D. L. & Zou, W. Tissue-resident memory T cells in tumor immunity and immunotherapy. J. Exp. Med. 218, e20201605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018). Analysis of tumour reactivity of TILs against autologous tumours, which identifies CD103+ and CD39+ TILs as a reservoir of antitumour T cells in melanoma and HNSCC.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Parga-Vidal, L. et al. Hobit identifies tissue-resident memory T cell precursors that are regulated by Eomes. Sci. Immunol. 6, eabg3533 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Park, S. L., Gebhardt, T. & Mackay, L. K. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol. 40, 735–747 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12, 136–148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sallusto, F. & Lanzavecchia, A. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 39, 2076–2082 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Oh, D. Y. & Fong, L. Cytotoxic CD4+ T cells in cancer: expanding the immune effector toolbox. Immunity 54, 2701–2711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, H.-J. & Cantor, H. CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol. Res. 2, 91–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Ahrends, T. & Borst, J. The opposing roles of CD4+ T cells in anti-tumour immunity. Immunology 154, 582–592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qin, L. et al. Insights into the molecular mechanisms of T follicular helper-mediated immunity and pathology. Front. Immunol. 9, 1884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022). Using single-cell transcriptomics and TCR clonality, this work analyses the dynamics of T cell clones infiltrating lung cancer before and after immunotherapy. After ICB, the authors detect less exhausted TILs, derived from local expansion of pre-existing TILs and recruitment of their peripheral precursors, a phenomenon called ‘clonal revival’.

    Article  CAS  PubMed  Google Scholar 

  80. Oh, D. Y. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pai, J. A. & Satpathy, A. T. High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881–892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014). By co-culturing in vitro PD1+ or PD1 TILs with autologous melanoma, this work is one of the first to demonstrate that PD1+ TILs retain detectable antitumour potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oliveira, G. et al. Landscape of helper and regulatory antitumour CD4+ T cells in melanoma. Nature 605, 532–538 (2022). The reactivity screening of TCRs sequenced among CD4+ T cells infiltrating melanoma tumours demonstrates the presence of tumour-reactive helper T cells and Treg cells specific for TAAs and private neoantigens. This study documents that neoantigen-reactive Treg cells are abundant in highly mutated melanomas, where constitutive HLA-class II expression enables the engagement of potentially immunosuppressive neoantigen-specific Treg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019). Single-cell analysis of T cell clonal dynamics in basal and squamous cell carcinoma biopsies collected before and after anti-PD1 therapy shows that the expanding and responding T cell clones derive preferentially from novel clones that were not detected in pre-treatment specimens. This work documents the phenomenon of clonal replacement in samples collected >2 months after ICB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021). TCRs specific for neoantigens isolated from blood are traced using scRNA-seq within lung cancers collected after neoadjuvant immunotherapy. The authors document that neoantigen-specific TILs are defined by a transcriptional programme characterized by expression of markers of exhausted and tissue-resident TILs and by an incompletely activated cytolytic programme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hanada, K.-I. et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell 40, 479–493.e6 (2022). Analysis of neoantigen-specific TILs in lung cancers, which identifies CD39 and CXCL13 as important molecular markers for the isolation of antitumour specificities. The tracing of CD39+ T cell clones in peripheral blood demonstrates that dysfunctional antitumour specificities are not characterized by high persistence and systemic distribution.

    Article  CAS  PubMed  Google Scholar 

  91. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018). Through the detection of peptide–HLA binding on T cells using cytometry by time of flight, the authors analyse the frequency and phenotype of TILs specific for viral antigens or tumour antigens in human lung cancer and CRC. They demonstrate that the TME is populated by abundant bystander TILs with specificity for viral antigens and lack expression of CD39, which can be used to distinguish bystander from neoantigen-reactive TILs.

    Article  CAS  PubMed  Google Scholar 

  92. Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goodspeed, A., Heiser, L. M., Gray, J. W. & Costello, J. C. Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol. Cancer Res. 14, 3–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Newell, E. W., Klein, L. O., Yu, W. & Davis, M. M. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods 6, 497–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harjunpää, H., Llort Asens, M., Guenther, C. & Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy. Nat. Cancer 3, 143–155 (2022).

    Article  PubMed  Google Scholar 

  97. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019). Reconstruction of TCRs from TILs and screening against autologous tumours demonstrates that, in human cancers, many specificities are not tumour-reactive, exhibit variable recognition of tumour antigens or can be stimulated by viral antigens.

    Article  CAS  PubMed  Google Scholar 

  98. Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022). By mapping neoantigen-specific TCR clonotypes into T cell states identified through scRNA-seq of TILs in metastatic cancers, the authors identify a gene signature of CD8+ or CD4+ neoantigen-reactive TILs that is highly enriched in exhaustion genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zheng, C. et al. Transcriptomic profiles of neoantigen-reactive T cells in human gastrointestinal cancers. Cancer Cell 40, 410–423.e7 (2022).

    Article  PubMed  Google Scholar 

  100. Eberhardt, C. S. et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022). This study analyses the dynamics of T cells early after neoadjuvant ICB administration in patients with HNSCCs and demonstrates that TILs undergoing expansion and reinvigoration are those exhibiting a tissue-resident memory-like phenotype and expressing exhaustion and cytotoxicity markers.

    Article  CAS  PubMed  Google Scholar 

  102. van de Pavert, S. A. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10, 1193–1199 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Workel, H. H. et al. A transcriptionally distinct CXCL13+ CD103+ CD8+ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer. Cancer Immunol. Res. 7, 784–796 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Friedman, K. M. et al. Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes. J. Immunother. 35, 400–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cachot, A. et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci. Adv. 7, eabe3348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ahmadzadeh, M. et al. Tumor-infiltrating human CD4+ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci. Immunol. 4, eaao4310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Veatch, J. R. et al. Neoantigen-specific CD4+ T cells in human melanoma have diverse differentiation states and correlate with CD8+ T cell, macrophage, and B cell function. Cancer Cell 40, 393–409.e9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl Med. 10, eaar3342 (2018).

    Article  PubMed  Google Scholar 

  112. Shao, X. M. et al. HLA class II immunogenic mutation burden predicts response to immune checkpoint blockade. Ann. Oncol. 33, 728–738 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 12, 738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. No authors listed. FDA approves anti-LAG3 checkpoint. Nat. Biotechnol. 40, 625 (2022).

    Article  Google Scholar 

  116. Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Miguel, M. & Calvo, E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 38, 326–333 (2020).

    Article  PubMed  Google Scholar 

  119. Lee, Y. J. et al. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Sci. Immunol. 7, eabn8390 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021). This study analyses the dynamics of T cells after pre-surgical administration of ICB in patients with breast cancer and demonstrates that early expansion of TILs in responding patients mainly involves CD8+ T cells with pronounced expression of cytotoxic activity, immune-cell homing and exhaustion markers.

    Article  CAS  PubMed  Google Scholar 

  121. Afeyan, A. et al. Cytotoxic revival is implicated in response to neoadjuvant PD-1 blockade for head and neck squamous cell carcinoma. J. Immunother. Cancer 10, 503 (2022).

    Google Scholar 

  122. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Valpione, S. et al. Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fairfax, B. P. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 26, 193–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kamphorst, A. O. et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, J. et al. Compartmental analysis of T-cell clonal dynamics as a function of pathologic response to neoadjuvant PD-1 blockade in resectable non-small cell lung cancer. Clin. Cancer Res. 26, 1327–1337 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Inamori, K. et al. Importance of lymph node immune responses in MSI-H/dMMR colorectal cancer. JCI Insight 6, 137365 (2021).

    Article  PubMed  Google Scholar 

  131. Nagasaki, J. et al. PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes. Cell Rep. 38, 110331 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Anadon, C. M. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 40, 545–557.e13 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Hu, Z., Ott, P. A. & Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Sellars, M. C., Wu, C. J. & Fritsch, E. F. Cancer vaccines: building a bridge over troubled waters. Cell 185, 2770–2788 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ott, P. A. et al. A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 183, 347–362.e24 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Awad, M. M. et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell 40, 1010–1026.e11 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Poran, A. et al. Combined TCR repertoire profiles and blood cell phenotypes predict melanoma patient response to personalized neoantigen therapy plus anti-PD-1. Cell Rep. Med. 1, 100141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592, 463–468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rosenberg, S. A., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    Article  CAS  PubMed  Google Scholar 

  145. Rosenberg, S. A. et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl Cancer Inst. 86, 1159–1166 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    Article  CAS  PubMed  Google Scholar 

  147. Dudley, M. E., Wunderlich, J. R., Shelton, T. E., Even, J. & Rosenberg, S. A. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26, 332–342 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stevanović, S. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356, 200–205 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tran, E., Robbins, P. F. & Rosenberg, S. A. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat. Immunol. 18, 255–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Parkhurst, M. R. et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9, 1022–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dudley, M. E. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233–5239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Huang, J. et al. Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J. Immunother. 28, 258–267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl Acad. Sci. USA 99, 16168–16173 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hinrichs, C. S. et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl Acad. Sci. USA 106, 17469–17474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Busch, D. H., Fräßle, S. P., Sommermeyer, D., Buchholz, V. R. & Riddell, S. R. Role of memory T cell subsets for adoptive immunotherapy. Semin. Immunol. 28, 28–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chan, J. D. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 21, 769–784 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020). Using single-cell profiling and specificity screening of T cell products expanded from TILs for ACT, this study shows that neoantigen-specific clones with a stem-like memory phenotype are characterized by improved persistence upon infusion into patients with melanoma who responded to treatment. Conversely, neoantigen-specific T cells infused into non-responder patients displayed a signature of terminal exhaustion that correlates with poor in vivo fitness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kishton, R. J., Vodnala, S. K., Vizcardo, R. & Restifo, N. P. Next generation immunotherapy: enhancing stemness of polyclonal T cells to improve anti-tumor activity. Curr. Opin. Immunol. 74, 39–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Labanieh, L., Majzner, R. G. & Mackall, C. L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2, 377–391 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Leon, E., Ranganathan, R. & Savoldo, B. Adoptive T cell therapy: boosting the immune system to fight cancer. Semin. Immunol. 49, 101437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Stadtmauer, E. A. et al. Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma. Blood Adv. 3, 2022–2034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kim, S. P. et al. Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol. Res. 10, 932–946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chandran, S. S. et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat. Med. 28, 946–957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Haslauer, T., Greil, R., Zaborsky, N. & Geisberger, R. CAR T-cell therapy in hematological malignancies. Int. J. Mol. Sci. 22, 8996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018). In this study, the authors perform a comprehensive assessment of phenotypic and functional features of CD19 CAR T cells circulating in treated patients with chronic lymphocytic leukaemia. It shows that the presence of gene-modified cells with memory-like properties is associated with sustained remission, while in non-responder patients, the gene-modified cells differentiated towards an exhaustion programme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020). Single-cell transcriptional profiling of CD19 CAR T cell infusion products is performed in this study to reveal the T cell features associated with response to ACT. Patients who experienced expansion of gene-modified T cells and achieved complete responses benefited from infusion of T cell products enriched in memory-like cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun. 11, 219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wilson, T. L. et al. Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages. Cancer Discov. 12, 2098–2119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Joglekar, A. V. & Li, G. T cell antigen discovery. Nat. Methods 18, 873–880 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Franco, F., Jaccard, A., Romero, P., Yu, Y.-R. & Ho, P.-C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2, 1001–1012 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  PubMed  Google Scholar 

  191. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu, S. et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity 55, 1940–1952.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Hudson, W. H. & Sudmeier, L. J. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. STAR Protoc. 3, 101391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Ag, C. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    Article  Google Scholar 

  198. Hadrup, S. R. et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6, 520–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Zhang, S.-Q. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. 36, 1156–1159 (2018).

    Article  CAS  Google Scholar 

  202. Peng, S. et al. Sensitive detection and analysis of neoantigen-specific T cell populations from tumors and blood. Cell Rep. 28, 2728–2738.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ng, A. H. C. et al. MATE-Seq: microfluidic antigen-TCR engagement sequencing. Lab Chip 19, 3011–3021 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Wang, Y. et al. Using a baculovirus display library to identify MHC class I mimotopes. Proc. Natl Acad. Sci. USA 102, 2476–2481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Crawford, F. et al. Use of baculovirus MHC/peptide display libraries to characterize T-cell receptor ligands. Immunol. Rev. 210, 156–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gee, M. H. et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172, 549–563.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Huisman, B. D., Dai, Z., Gifford, D. K. & Birnbaum, M. E. A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding. eLife 11, e78589 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dobson, C. S. et al. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat. Methods 19, 449–460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Joglekar, A. V. et al. T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nat. Methods 16, 191–198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kisielow, J., Obermair, F.-J. & Kopf, M. Deciphering CD4+ T cell specificity using novel MHC-TCR chimeric receptors. Nat. Immunol. 20, 652–662 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Li, G. et al. T cell antigen discovery via trogocytosis. Nat. Methods 16, 183–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kula, T. et al. T-Scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sharma, G., Rive, C. M. & Holt, R. A. Rapid selection and identification of functional CD8+ T cell epitopes from large peptide-coding libraries. Nat. Commun. 10, 4553 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Banchereau, R. et al. Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. J. Immunother. Cancer 9, e002231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Bentzen, A. K. & Hadrup, S. R. Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol. Immunother. 66, 657–666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Roudko, V., Greenbaum, B. & Bhardwaj, N. Computational prediction and validation of tumor-associated neoantigens. Front. Immunol. 11, 27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Salmaninejad, A. et al. Cancer/testis antigens: expression, regulation, tumor invasion, and use in immunotherapy of cancers. Immunol. Invest. 45, 619–640 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Kawakami, Y. et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc. Natl Acad. Sci. USA 91, 6458–6462 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fisk, B., Blevins, T. L., Wharton, J. T. & Ioannides, C. G. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J. Exp. Med. 181, 2109–2117 (1995).

    Article  CAS  PubMed  Google Scholar 

  225. Parkhurst, M. R. et al. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin. Cancer Res. 15, 169–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Attermann, A. S., Bjerregaard, A.-M., Saini, S. K., Grønbæk, K. & Hadrup, S. R. Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann. Oncol. 29, 2183–2191 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Gattoni-Celli, S. & Cole, D. J. Melanoma-associated tumor antigens and their clinical relevance to immunotherapy. Semin. Oncol. 23, 754–758 (1996).

    CAS  PubMed  Google Scholar 

  229. Davis, M. M. Not-so-negative selection. Immunity 43, 833–835 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Lang, F., Schrörs, B., Löwer, M., Türeci, Ö. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Schumacher, T. N., Scheper, W. & Kvistborg, P. Cancer neoantigens. Annu. Rev. Immunol. 37, 173–200 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Draper, L. M. et al. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6. Clin. Cancer Res. 21, 4431–4439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Iyer, J. G. et al. Merkel cell polyomavirus-specific CD8+ and CD4+ T-cell responses identified in Merkel cell carcinomas and blood. Clin. Cancer Res. 17, 6671–6680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.O. acknowledges N. Cieri for scientific discussions. G.O. was supported by DF/HCC Kidney Cancer SPORE P50 CA101942. C.J.W. acknowledges support from NIH NCI R01CA155010.

Author information

Authors and Affiliations

Authors

Contributions

G.O. researched data for the article. Both authors contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Giacomo Oliveira or Catherine J. Wu.

Ethics declarations

Competing interests

C.J.W. is an equity holder of BioNTech. G.O. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Paul Robbins, who co-reviewed with Sri Krishna; Kellie N. Smith; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antigenic mimicry

Similarity between different antigens that results in their immune recognition by the same T cells.

Central tolerance

The clonal deletion of autoreactive T cells in the thymus during ontogenesis to create a state in which immune cells are unresponsive to autoantigens.

Cytometry by time of flight

Technique that measures the abundance of metal isotope labels on antibodies and other tags (such as peptide–major histocompatibility complex (MHC) tetramers) on single cells using mass spectroscopy.

Epitope spreading

Also known as antigen spread. The broadening of the immune response from the initially targeted epitope to other epitopes on the same antigen or different antigens.

HLA restrictions

Requirement that T cells recognize antigens only when presented by germline-encoded HLA molecules that are polymorphic and specific for each subject.

Major histocompatibility complex (MHC) multimer

Oligomers of MHC molecules that are loaded with antigenic peptides, tagged with probes and assembled together so that they can provide a measurable signal on T cells once the complex binds to the antigen-specific T cell receptors (TCRs).

Secondary lymphoid organs

Specialized tissues, such as the spleen and lymph nodes, where antigen-presenting cells instruct the activation of mature lymphocytes.

Tandem minigenes

Artificial gene constructs composed of consecutive gene fragments of T cell targets, which can be transfected into antigen-presenting cells to achieve the presentation of encoded epitopes.

Tertiary lymphoid structures

(TLS). Organized aggregates of immune cells that form postnatally in non-lymphoid tissues.

Tumour-associated neoantigens

(TAAs). Antigens encoded by unmutated genes in both normal and cancer cells but that exhibit a preferentially high expression in tumour cells.

Tumour private neoantigens

Antigens arising from mutation of the patient-specific tumour genome that causes tumour cells to express specific proteins that are not expressed on normal cells.

V(D)J recombination

Somatic rearrangement of pre-existing variable, diversity and joining gene segments of the TCR α-chain or β-chain genes, which results in the generation and expression of diverse TCRs in T cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, G., Wu, C.J. Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer 23, 295–316 (2023). https://doi.org/10.1038/s41568-023-00560-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00560-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer