Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The neural addiction of cancer

Abstract

The recently uncovered key role of the peripheral and central nervous systems in controlling tumorigenesis and metastasis has opened a new area of research to identify innovative approaches against cancer. Although the 'neural addiction' of cancer is only partially understood, in this Perspective we discuss the current knowledge and perspectives on peripheral and central nerve circuitries and brain areas that can support tumorigenesis and metastasis and the possible reciprocal influence that the brain and peripheral tumours exert on one another. Tumours can build up local autonomic and sensory nerve networks and are able to develop a long-distance relationship with the brain through circulating adipokines, inflammatory cytokines, neurotrophic factors or afferent nerve inputs, to promote cancer initiation, growth and dissemination. In turn, the central nervous system can affect tumour development and metastasis through the activation or dysregulation of specific central neural areas or circuits, as well as neuroendocrine, neuroimmune or neurovascular systems. Studying neural circuitries in the brain and tumours, as well as understanding how the brain communicates with the tumour or how intratumour nerves interplay with the tumour microenvironment, can reveal unrecognized mechanisms that promote cancer development and progression and open up opportunities for the development of novel therapeutic strategies. Targeting the dysregulated peripheral and central nervous systems might represent a novel strategy for next-generation cancer treatment that could, in part, be achieved through the repurposing of neuropsychiatric drugs in oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bidirectional crosstalk between the nervous system and solid tumours.
Fig. 2: Efferent central neuroendocrine pathways controlling tumour development and progression.
Fig. 3: Brain areas and circuits participating in tumour development and progression.
Fig. 4: Afferent tumour-to-brain connections.

Similar content being viewed by others

References

  1. Monje, M. et al. Roadmap for the emerging field of cancer neuroscience. Cell 181, 219–222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boilly, B., Faulkner, S., Jobling, P. & Hondermarck, H. Nerve dependence: from regeneration to cancer. Cancer Cell 31, 342–354 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Hajdu, S. I. Greco-Roman thought about cancer. Cancer 100, 2048–2051 (2004).

    Article  PubMed  Google Scholar 

  4. Faguet, G. B. A brief history of cancer: age-old milestones underlying our current knowledge database. Int. J. Cancer 136, 2022–2036 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  7. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H. & Albo, D. Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Amit, M., Na’ara, S. & Gil, Z. Mechanisms of cancer dissemination along nerves. Nat. Rev. Cancer 16, 399–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, S., Levi-Montalcini, R. & Hamburger, V. A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc. Natl Acad. Sci. USA 40, 1014–1018 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adriaenssens, E. et al. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 68, 346–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Levi-Montalcini, R., Meyer, H. & Hamburger, V. In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 14, 49–57 (1954).

    CAS  PubMed  Google Scholar 

  13. Saul, A. N. et al. Chronic stress and susceptibility to skin cancer. J. Natl Cancer Inst. 97, 1760–1767 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Reiche, E. M., Nunes, S. O. & Morimoto, H. K. Stress, depression, the immune system, and cancer. Lancet Oncol. 5, 617–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Riley, V. Mouse mammary tumors: alteration of incidence as apparent function of stress. Science 189, 465–467 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Visintainer, M. A., Volpicelli, J. R. & Seligman, M. E. Tumor rejection in rats after inescapable or escapable shock. Science 216, 437–439 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Sklar, L. S. & Anisman, H. Stress and coping factors influence tumor growth. Science 205, 513–515 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article  PubMed  Google Scholar 

  19. Zhao, C. M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl Med. 6, 250ra115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Peterson, S. C. et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16, 400–412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stopczynski, R. E. et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res. 74, 1718–1727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl Acad. Sci. USA 113, 3078–3083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Renz, B. W. et al. β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 34, 863–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banh, R. S. et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell 183, 1202–1218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pundavela, J. et al. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol. Oncol. 9, 1626–1635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Gysler, S. M. & Drapkin, R. Tumor innervation: peripheral nerves take control of the tumor microenvironment. J. Clin. Investig. https://doi.org/10.1172/JCI147276 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Silverman, D. A. et al. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res. 81, 1431–1440 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Zahalka, A. H. & Frenette, P. S. Nerves in cancer. Nat. Rev. Cancer 20, 143–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Magnon, C. The adrenergic nerve network in cancer. Adv. Exp. Med. Biol. 1329, 271–294 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. McEwen, B. S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. NY Acad. Sci. 840, 33–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Obradovic, M. M. S. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540–544 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Herman, J. P. et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol. 6, 603–621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gallo-Payet, N., Martinez, A. & Lacroix, A. Editorial: ACTH action in the adrenal cortex: from molecular biology to pathophysiology. Front. Endocrinol. 8, 101 (2017).

    Article  Google Scholar 

  36. Cryer, P. E. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N. Engl. J. Med. 303, 436–444 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. Thaker, P. H. et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 12, 939–944 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Kvetnansky, R. et al. Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system. Ann. NY Acad. Sci. 771, 131–158 (1995).

    CAS  PubMed  Google Scholar 

  39. Ehrhart-Bornstein, M. & Bornstein, S. R. Cross-talk between adrenal medulla and adrenal cortex in stress. Ann. NY Acad. Sci. 1148, 112–117 (2008).

    Article  PubMed  Google Scholar 

  40. Zuckerman-Levin, N., Tiosano, D., Eisenhofer, G., Bornstein, S. & Hochberg, Z. The importance of adrenocortical glucocorticoids for adrenomedullary and physiological response to stress: a study in isolated glucocorticoid deficiency. J. Clin. Endocrinol. Metab. 86, 5920–5924 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cunningham, E. T. Jr & Sawchenko, P. E. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J. Comp. Neurol. 274, 60–76 (1988).

    Article  PubMed  Google Scholar 

  42. Herman, J. P. Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell Mol. Neurobiol. 38, 25–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Peters, L. J. & Kelly, H. The influence of stress and stress hormones on the transplantability of a non-immunogenic syngeneic murine tumor. Cancer 39, 1482–1488 (1977).

    Article  CAS  PubMed  Google Scholar 

  44. Sigurdsson, T. & Duvarci, S. Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Front. Syst. Neurosci. 9, 190 (2015).

    PubMed  Google Scholar 

  45. Schagen, S. B. et al. Monitoring and optimising cognitive function in cancer patients: present knowledge and future directions. EJC Suppl. 12, 29–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ahles, T. A. & Root, J. C. Cognitive effects of cancer and cancer treatments. Annu. Rev. Clin. Psychol. 14, 425–451 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ahles, T. A. et al. Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res. Treat. 110, 143–152 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Vardy, J. L. et al. Cognitive function in patients with colorectal cancer who do and do not receive chemotherapy: a prospective, longitudinal, controlled study. J. Clin. Oncol. 33, 4085–4092 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mandelblatt, J. S. et al. Cognitive impairment in older patients with breast cancer before systemic therapy: is there an interaction between cancer and comorbidity? J. Clin. Oncol. 32, 1909–1918 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lange, M. et al. Baseline cognitive functions among elderly patients with localised breast cancer. Eur. J. Cancer 50, 2181–2189 (2014).

    Article  PubMed  Google Scholar 

  51. Bergouignan, L. et al. Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval. PLoS ONE 6, e25349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morel, N. et al. Emotional specificities of autobiographical memory after breast cancer diagnosis. Conscious. Cogn. 35, 42–52 (2015).

    Article  PubMed  Google Scholar 

  53. Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murmu, M. S. et al. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur. J. Neurosci. 24, 1477–1487 (2006).

    Article  PubMed  Google Scholar 

  56. Magarinos, A. M. & McEwen, B. S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17, 2492–2498 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 102, 9371–9376 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cerqueira, J. J. et al. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J. Neurosci. 25, 7792–7800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liston, C., McEwen, B. S. & Casey, B. J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl Acad. Sci. USA 106, 912–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moghaddam, B. Bringing order to the glutamate chaos in schizophrenia. Neuron 40, 881–884 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Li, C. T., Yang, K. C. & Lin, W. C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front. Psychiatry 9, 767 (2018).

    Article  PubMed  Google Scholar 

  63. Schoonover, K. E., Dienel, S. J. & Lewis, D. A. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: insights for rational biomarker development. Biomark. Neuropsychiatry https://doi.org/10.1016/j.bionps.2020.100015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rzeski, W., Turski, L. & Ikonomidou, C. Glutamate antagonists limit tumor growth. Proc. Natl Acad. Sci. USA 98, 6372–6377 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martirosian, V. et al. Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Rep. 36, 109475 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Klemm, F. et al. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nat. Cancer 2, 1086–1101 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Musazzi, L. et al. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE 5, e8566 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Munson, J. M. et al. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci. Transl Med. 4, 127ra136 (2012).

    Article  Google Scholar 

  74. Rajamanickam, S. et al. Inhibition of FoxM1-mediated DNA repair by imipramine blue suppresses breast cancer growth and metastasis. Clin. Cancer Res. 22, 3524–3536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Buijs, R. M. & Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2, 521–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article  CAS  PubMed  Google Scholar 

  77. Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shafi, A. A. & Knudsen, K. E. Cancer and the circadian clock. Cancer Res. 79, 3806–3814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, Y. et al. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol. 17, e3000228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shilts, J., Chen, G. & Hughey, J. J. Evidence for widespread dysregulation of circadian clock progression in human cancer. PeerJ 6, e4327 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Papagiannakopoulos, T. et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24, 324–331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Dycke, K. C. et al. Chronically alternating light cycles increase breast cancer risk in mice. Curr. Biol. 25, 1932–1937 (2015).

    Article  PubMed  Google Scholar 

  83. Davis, S., Mirick, D. K. & Stevens, R. G. Night shift work, light at night, and risk of breast cancer. J. Natl Cancer Inst. 93, 1557–1562 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Cadenas, C. et al. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle 13, 3282–3291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stevens, R. G. Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology 16, 254–258 (2005).

    Article  PubMed  Google Scholar 

  86. Conlon, M., Lightfoot, N. & Kreiger, N. Rotating shift work and risk of prostate cancer. Epidemiology 18, 182–183 (2007).

    Article  PubMed  Google Scholar 

  87. Wendeu-Foyet, M. G. & Menegaux, F. Circadian disruption and prostate cancer risk: an updated review of epidemiological evidences. Cancer Epidemiol. Biomark. Prev. 26, 985–991 (2017).

    Article  Google Scholar 

  88. Papantoniou, K. et al. Rotating night shift work and colorectal cancer risk in the nurses’ health studies. Int. J. Cancer 143, 2709–2717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O’Neill, J. S., Maywood, E. S., Chesham, J. E., Takahashi, J. S. & Hastings, M. H. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320, 949–953 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ueyama, T. et al. Suprachiasmatic nucleus: a central autonomic clock. Nat. Neurosci. 2, 1051–1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Buijs, R. M., Chun, S. J., Niijima, A., Romijn, H. J. & Nagai, K. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431, 405–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Fu, L., Pelicano, H., Liu, J., Huang, P. & Lee, C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, S., Donehower, L. A., Herron, A. J., Moore, D. D. & Fu, L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS ONE 5, e10995 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Moore, R. Y., Halaris, A. E. & Jones, B. E. Serotonin neurons of the midbrain raphe: ascending projections. J. Comp. Neurol. 180, 417–438 (1978).

    Article  CAS  PubMed  Google Scholar 

  95. Jiang, Z. G., Teshima, K., Yang, Y., Yoshioka, T. & Allen, C. N. Pre- and postsynaptic actions of serotonin on rat suprachiasmatic nucleus neurons. Brain Res. 866, 247–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Edgar, D. M., Miller, J. D., Prosser, R. A., Dean, R. R. & Dement, W. C. Serotonin and the mammalian circadian system: II. Phase-shifting rat behavioral rhythms with serotonergic agonists. J. Biol. Rhythm. 8, 17–31 (1993).

    Article  CAS  Google Scholar 

  97. Rea, M. A., Barrera, J., Glass, J. D. & Gannon, R. L. Serotonergic potentiation of photic phase shifts of the circadian activity rhythm. Neuroreport 6, 1417–1420 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Kalsbeek, A., Cutrera, R. A., Van Heerikhuize, J. J., Van Der Vliet, J. & Buijs, R. M. GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat. Neuroscience 91, 453–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Kalsbeek, A. et al. Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur. J. Neurosci. 12, 3146–3154 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Brennan, R., Jan, J. E. & Lyons, C. J. Light, dark, and melatonin: emerging evidence for the importance of melatonin in ocular physiology. Eye 21, 901–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Teclemariam-Mesbah, R., Ter Horst, G. J., Postema, F., Wortel, J. & Buijs, R. M. Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J. Comp. Neurol. 406, 171–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Carrillo-Vico, A., Lardone, P. J., Alvarez-Sanchez, N., Rodriguez-Rodriguez, A. & Guerrero, J. M. Melatonin: buffering the immune system. Int. J. Mol. Sci. 14, 8638–8683 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Calvo, J. R., González-Yanes, C. & Maldonado, M. D. The role of melatonin in the cells of the innate immunity: a review. J. Pineal Res. 55, 103–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Glickman, G., Levin, R. & Brainard, G. C. Ocular input for human melatonin regulation: relevance to breast cancer. Neuro Endocrinol. Lett. 23, 17–22 (2002).

    CAS  PubMed  Google Scholar 

  105. Lissoni, P. et al. A clinical study of the pineal gland activity in oncologic patients. Cancer 57, 837–842 (1986).

    Article  CAS  PubMed  Google Scholar 

  106. Blask, D. E. et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 65, 11174–11184 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Straif, K. et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 8, 1065–1066 (2007).

    Article  PubMed  Google Scholar 

  108. IARC Monographs Vol 124 Group. Carcinogenicity of night shift work. Lancet Oncol. 20, 1058–1059 (2019).

    Article  Google Scholar 

  109. Blask, D. E., Dauchy, R. T. & Sauer, L. A. Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine 27, 179–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Tarocco, A. et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 10, 317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mao, L. et al. Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J. Pineal Res. 60, 167–177 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Xiang, S. et al. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J. Pineal Res. 59, 60–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Colwell, C. S., Foster, R. G. & Menaker, M. NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Res. 554, 105–110 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Ding, J. M. et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Abe, H., Rusak, B. & Robertson, H. A. NMDA and non-NMDA receptor antagonists inhibit photic induction of Fos protein in the hamster suprachiasmatic nucleus. Brain Res. Bull. 28, 831–835 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Colwell, C. S. & Menaker, M. NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. J. Biol. Rhythm. 7, 125–136 (1992).

    Article  CAS  Google Scholar 

  117. Rea, M. A., Glass, J. D. & Colwell, C. S. Serotonin modulates photic responses in the hamster suprachiasmatic nuclei. J. Neurosci. 14, 3635–3642 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dakir, E.-H. et al. The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer. Oncotarget 9, 34889–34910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chen, J. J. et al. The neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinoma. Oncotarget 8, 17593–17609 (2017).

    Article  PubMed  Google Scholar 

  120. Chen, J. J., Zhang, L. N., Cai, N., Zhang, Z. & Ji, K. Antipsychotic agent pimozide promotes reversible proliferative suppression by inducing cellular quiescence in liver cancer. Oncol. Rep. 42, 1101–1109 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou, W. et al. The antipsychotic drug pimozide inhibits cell growth in prostate cancer through suppression of STAT3 activation. Int. J. Oncol. 48, 322–328 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Mohammed, T. A. et al. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist 16, 835–843 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Caponigro, F. et al. Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial. BMC Cancer 16, 918 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kao, C. H. et al. Relationship of zolpidem and cancer risk: a Taiwanese population-based cohort study. Mayo Clin. Proc. 87, 430–436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bonnavion, P., Jackson, A. C., Carter, M. E. & de Lecea, L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat. Commun. 6, 6266 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Fakhoury, M., Salman, I., Najjar, W., Merhej, G. & Lawand, N. The lateral hypothalamus: an uncharted territory for processing peripheral neurogenic inflammation. Front. Neurosci. 14, 101 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Verkasalo, P. K. et al. Sleep duration and breast cancer: a prospective cohort study. Cancer Res. 65, 9595–9600 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Gallicchio, L. & Kalesan, B. Sleep duration and mortality: a systematic review and meta-analysis. J. Sleep Res. 18, 148–158 (2009).

    Article  PubMed  Google Scholar 

  132. Kakizaki, M. et al. Sleep duration and the risk of breast cancer: the Ohsaki Cohort Study. Br. J. Cancer 99, 1502–1505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thompson, C. L. et al. Short duration of sleep increases risk of colorectal adenoma. Cancer 117, 841–847 (2011).

    Article  PubMed  Google Scholar 

  134. Hakim, F. et al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res. 74, 1329–1337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Borniger, J. C. et al. A Role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab. 28, 118–129.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bennett, T., Bray, D. & Neville, M. W. Suvorexant, a dual orexin receptor antagonist for the management of insomnia. P T 39, 264–266 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Dayot, S. et al. In vitro, in vivo and ex vivo demonstration of the antitumoral role of hypocretin-1/orexin-A and almorexant in pancreatic ductal adenocarcinoma. Oncotarget 9, 6952–6967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Simon, R. H., Lovett, E. J. III, Tomaszek, D. & Lundy, J. Electrical stimulation of the midbrain mediates metastatic tumor growth. Science 209, 1132–1133 (1980).

    Article  CAS  PubMed  Google Scholar 

  139. Lundy, J., Lovett, E. J. III & Conran, P. Pulmonary metastases, a potential biologic consequence of anesthetic-induced immunosuppression by thiopental. Surgery 82, 254–256 (1977).

    CAS  PubMed  Google Scholar 

  140. Peraino, C., Fry, R. J. & Staffeldt, E. Brief communication: enhancement of spontaneous hepatic tumorigenesis in C3H mice by dietary phenobarbital. J. Natl Cancer Inst. 51, 1349–1350 (1973).

    Article  CAS  PubMed  Google Scholar 

  141. Peraino, C., Fry, R. J. & Staffeldt, E. Effects of varying the onset and duration of exposure to phenobarbital on its enhancement of 2-acetylaminofluorene-induced hepatic tumorigenesis. Cancer Res. 37, 3623–3627 (1977).

    CAS  PubMed  Google Scholar 

  142. Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Kahn, R. S. et al. Schizophrenia. Nat. Rev. Dis. Prim. 1, 15067 (2015).

    Article  PubMed  Google Scholar 

  144. Howard, L. M. et al. Cancer diagnosis in people with severe mental illness: practical and ethical issues. Lancet Oncol. 11, 797–804 (2010).

    Article  PubMed  Google Scholar 

  145. Solmi, M. et al. Disparities in cancer screening in people with mental illness across the world versus the general population: prevalence and comparative meta-analysis including 4 717 839 people. Lancet Psychiatry 7, 52–63 (2020).

    Article  PubMed  Google Scholar 

  146. Teunis, M. A. et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J. 16, 1465–1467 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Peters, M. A. et al. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist. Updat. 17, 96–104 (2014).

    Article  PubMed  Google Scholar 

  148. Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat. Commun. 9, 2723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mauffrey, P. et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Carloni, S. et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 374, 439–448 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Lutgendorf, S. K. et al. Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain Behav. Immun. 25, 250–255 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Campbell, J. P. et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 10, e1001363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sloan, E. K. et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042–7052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chang, A. et al. β2-Adrenoceptors on tumor cells play a critical role in stress-enhanced metastasis in a mouse model of breast cancer. Brain Behav. Immun. 57, 106–115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hassan, S. et al. Behavioral stress accelerates prostate cancer development in mice. J. Clin. Investig. 123, 874–886 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Madden, K. S., Szpunar, M. J. & Brown, E. B.β-Adrenergic receptors (β-AR) regulate VEGF and IL-6 production by divergent pathways in high β-AR-expressing breast cancer cell lines. Breast Cancer Res. Treat. 130, 747–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Eng, J. W. et al. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation. Nat. Commun. 6, 6426 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Kim-Fuchs, C. et al. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav. Immun. 40, 40–47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pasquier, E. et al. β-Blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br. J. Cancer 108, 2485–2494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wolter, J. K. et al. Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget 5, 161–172 (2014).

    Article  PubMed  Google Scholar 

  161. Hasegawa, H. & Saiki, I. Psychosocial stress augments tumor development through β-adrenergic activation in mice. Jpn. J. Cancer Res. 93, 729–735 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Goldfarb, Y. et al. Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann. Surg. 253, 798–810 (2011).

    Article  PubMed  Google Scholar 

  163. Vanhecke, E. et al. Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin. Cancer Res. 17, 1741–1752 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Dobrenis, K., Gauthier, L. R., Barroca, V. & Magnon, C. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 136, 982–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Jiang, C. C. et al. Tumor innervation is triggered by endoplasmic reticulum stress. Oncogene https://doi.org/10.1038/s41388-021-02108-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Isaacs, J. T. Cancer. Prostate cancer takes nerve. Science 341, 134–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Allen, J. K. et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 78, 3233–3242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Madeo, M. et al. Cancer exosomes induce tumor innervation. Nat. Commun. 9, 4284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Deborde, S. et al. Schwann cells induce cancer cell dispersion and invasion. J. Clin. Investig. 126, 1538–1554 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Roger, E. et al. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFβ signaling. Cell Death Dis. 10, 886 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ferdoushi, A. et al. Schwann cell stimulation of pancreatic cancer cells: a proteomic analysis. Front. Oncol. 10, 1601 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Anastasaki, C. et al. Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat. Commun. 13, 2785 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Patritti-Cram, J., Coover, R. A., Jankowski, M. P. & Ratner, N. Purinergic signaling in peripheral nervous system glial cells. Glia 69, 1837–1851 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Armaiz-Pena, G. N. et al. Src activation by β-adrenoreceptors is a key switch for tumour metastasis. Nat. Commun. 4, 1403 (2013).

    Article  PubMed  Google Scholar 

  175. Lin, X., Luo, K., Lv, Z. & Huang, J. Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepatogastroenterology 59, 584–588 (2012).

    CAS  PubMed  Google Scholar 

  176. Pon, C. K., Lane, J. R., Sloan, E. K. & Halls, M. L. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J. 30, 1144–1154 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Hara, M. R. et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477, 349–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Liu, J. et al. The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology 52, 130–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Deng, G. H. et al. Exogenous norepinephrine attenuates the efficacy of sunitinib in a mouse cancer model. J. Exp. Clin. Cancer Res. 33, 21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zhang, D., Ma, Q., Shen, S. & Hu, H. Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction. The study of β-adrenoceptor antagonist’s anticancer effect in pancreatic cancer cell. Pancreas 38, 94–100 (2009).

    Article  PubMed  Google Scholar 

  181. Zhou, C. et al. Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway. Oncotarget 7, 68314–68327 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Armaiz-Pena, G. N. et al. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget 6, 4266–4273 (2015).

    Article  PubMed  Google Scholar 

  183. Mohammadpour, H. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Investig. 129, 5537–5552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bucsek, M. J. et al. β-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 77, 5639–5651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jean Wrobel, L. et al. Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget 7, 77825–77837 (2016).

    Article  PubMed  Google Scholar 

  186. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chakroborty, D., Sarkar, C., Basu, B., Dasgupta, P. S. & Basu, S. Catecholamines regulate tumor angiogenesis. Cancer Res. 69, 3727–3730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yang, E. V. et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 66, 10357–10364 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Le, C. P. et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat. Commun. 7, 10634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pasquier, E. et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2, 797–809 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Raju, B., Haug, S. R., Ibrahim, S. O. & Heyeraas, K. J. Sympathectomy decreases size and invasiveness of tongue cancer in rats. Neuroscience 149, 715–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Nagaraja, A. S. et al. Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight https://doi.org/10.1172/jci.insight.93076 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Calvani, M. et al. Norepinephrine promotes tumor microenvironment reactivity through beta3-adrenoreceptors during melanoma progression. Oncotarget 6, 4615–4632 (2015).

    Article  PubMed  Google Scholar 

  194. Gyamfi, J., Eom, M., Koo, J. S. & Choi, J. Multifaceted roles of interleukin-6 in adipocyte-breast cancer cell interaction. Transl. Oncol. 11, 275–285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Cao, L. et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142, 52–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shan, T. et al. Novel regulatory program for norepinephrine-induced epithelial-mesenchymal transition in gastric adenocarcinoma cell lines. Cancer Sci. 105, 847–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lu, Y. J. et al. Isoprenaline induces epithelial-mesenchymal transition in gastric cancer cells. Mol. Cell. Biochem. 408, 1–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Pu, J. et al. Adrenaline promotes epithelial-to-mesenchymal transition via HuR-TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis. Biochem. Biophys. Res. Commun. 493, 1273–1279 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, J. et al. Norepinephrine induced epithelial-mesenchymal transition in HT-29 and A549 cells in vitro. J. Cancer Res. Clin. Oncol. 142, 423–435 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Lemeshow, S. et al. β-Blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol. Biomark. Prev. 20, 2273–2279 (2011).

    Article  CAS  Google Scholar 

  202. De Giorgi, V. et al. Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch. Intern. Med. 171, 779–781 (2011).

    Article  PubMed  Google Scholar 

  203. Kokolus, K. M. et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 7, e1405205 (2018).

    Article  PubMed  Google Scholar 

  204. Udumyan, R. et al. Beta-blocker drug use and survival among patients with pancreatic adenocarcinoma. Cancer Res. 77, 3700–3707 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Grytli, H. H., Fagerland, M. W., Fossa, S. D. & Tasken, K. A. Association between use of β-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur. Urol. https://doi.org/10.1016/j.eururo.2013.01.007 (2013).

    Article  PubMed  Google Scholar 

  206. Grytli, H. H., Fagerland, M. W., Fossa, S. D., Tasken, K. A. & Haheim, L. L. Use of β-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 73, 250–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Melhem-Bertrandt, A. et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J. Clin. Oncol. 29, 2645–2652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Barron, T. I., Connolly, R. M., Sharp, L., Bennett, K. & Visvanathan, K. Beta blockers and breast cancer mortality: a population- based study. J. Clin. Oncol. 29, 2635–2644 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Botteri, E. et al. Therapeutic effect of beta-blockers in triple-negative breast cancer postmenopausal women. Breast Cancer Res. Treat. 140, 567–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Powe, D. G. & Entschladen, F. Targeted therapies: using β-blockers to inhibit breast cancer progression. Nat. Rev. Clin. Oncol. 8, 511–512 (2011).

    Article  PubMed  Google Scholar 

  211. Diaz, E. S., Karlan, B. Y. & Li, A. J. Impact of beta blockers on epithelial ovarian cancer survival. Gynecol. Oncol. 127, 375–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Jansen, L., Hoffmeister, M., Arndt, V., Chang-Claude, J. & Brenner, H. Stage-specific associations between beta blocker use and prognosis after colorectal cancer. Cancer 120, 1178–1186 (2014).

    Article  PubMed  Google Scholar 

  213. Wang, H. M. et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann. Oncol. 24, 1312–1319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shi, D. D. et al. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol. 23, e62–e74 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hiller, J. G. et al. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 26, 1803–1811 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Shaashua, L. et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin. Cancer Res. 23, 4651–4661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. De Giorgi, V. et al. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 4, e172908 (2018).

    Article  PubMed  Google Scholar 

  218. Knight, J. M. et al. Propranolol inhibits molecular risk markers in HCT recipients: a phase 2 randomized controlled biomarker trial. Blood Adv. 4, 467–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Renz, B. W. et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 8, 1458–1473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Koppelmans, V. et al. Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J. Clin. Oncol. 30, 1080–1086 (2012).

    Article  PubMed  Google Scholar 

  221. Qi, Y. et al. Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  223. Myers, M. G. Jr., Munzberg, H., Leinninger, G. M. & Leshan, R. L. The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab. 9, 117–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Myers, M. G. Jr, Leibel, R. L., Seeley, R. J. & Schwartz, M. W. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab. 21, 643–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Garofalo, C. et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin. Cancer Res. 12, 1447–1453 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Schaffler, A., Scholmerich, J. & Buechler, C. Mechanisms of disease: adipokines and breast cancer — endocrine and paracrine mechanisms that connect adiposity and breast cancer. Nat. Clin. Pract. Endocrinol. Metab. 3, 345–354 (2007).

    Article  PubMed  Google Scholar 

  229. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ishikawa, M., Kitayama, J. & Nagawa, H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res. 10, 4325–4331 (2004).

    Article  CAS  PubMed  Google Scholar 

  231. Wang, T. et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27, 1357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Leinninger, G. M. et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab. 10, 89–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Xu, B. & Xie, X. Neurotrophic factor control of satiety and body weight. Nat. Rev. Neurosci. 17, 282–292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wang, P. et al. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature 583, 839–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Shimizu, Y. et al. Increased plasma ghrelin level in lung cancer cachexia. Clin. Cancer Res. 9, 774–778 (2003).

    CAS  PubMed  Google Scholar 

  236. Wei, T., Ye, P., Peng, X., Wu, L. L. & Yu, G. Y. Circulating adiponectin levels in various malignancies: an updated meta-analysis of 107 studies. Oncotarget 7, 48671–48691 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Gahete, M. D. et al. A novel human ghrelin variant (In1-ghrelin) and ghrelin-O-acyltransferase are overexpressed in breast cancer: potential pathophysiological relevance. PLoS ONE 6, e23302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Au, C. C., Furness, J. B. & Brown, K. A. Ghrelin and breast cancer: emerging roles in obesity, estrogen regulation, and cancer. Front. Oncol. 6, 265 (2016).

    PubMed  Google Scholar 

  239. Olin, J. J. Cognitive function after systemic therapy for breast cancer. Oncology 15, 613–618 (2001).

    CAS  PubMed  Google Scholar 

  240. Cheung, Y. T. et al. Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann. Oncol. 26, 1446–1451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Walker, A. K. et al. Low dose aspirin blocks breast cancer-induced cognitive impairment in mice. PLoS ONE 13, e0208593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Sinha, S. et al. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res. 77, 1868–1879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Mantyh, P. W. Cancer pain and its impact on diagnosis, survival and quality of life. Nat. Rev. Neurosci. 7, 797–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  244. Chen, P. et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature 606, 550–556 (2022).

    Article  CAS  PubMed  Google Scholar 

  245. Schmidt, B. L. The neurobiology of cancer pain. Neuroscientist 20, 546–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Schmidt, B. L. What pain tells us about cancer. Pain 156, S32–S34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Bortolin, A., Neto, E. & Lamghari, M. Calcium signalling in breast cancer associated bone pain. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031902 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Campos, C. A. et al. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Palmiter, R. D. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 41, 280–293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Jimenez-Andrade, J. M. et al. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J. Neurosci. 30, 14649–14656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Balood, M. et al. Nociceptor neurons affect cancer immunosurveillance. Nature 611, 405–412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sklar, L. S. & Anisman, H. Social stress influences tumor growth. Psychosom. Med. 42, 347–365 (1980).

    Article  CAS  PubMed  Google Scholar 

  253. Sephton, S. & Spiegel, D. Circadian disruption in cancer: a neuroendocrine-immune pathway from stress to disease. Brain Behav. Immun. 17, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  254. Engler, H., Bailey, M. T., Engler, A. & Sheridan, J. F. Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. J. Neuroimmunol. 148, 106–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Engler, H. et al. Effects of social stress on blood leukocyte distribution: the role of α- and β-adrenergic mechanisms. J. Neuroimmunol. 156, 153–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  256. Soleyman-Jahi, S. et al. Attribution of ghrelin to cancer; attempts to unravel an apparent controversy. Front. Oncol. 9, 1014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science https://doi.org/10.1126/science.aal5081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Lakritz, J. R. et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 6, 9387–9396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  259. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    Article  PubMed  Google Scholar 

  260. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science https://doi.org/10.1126/science.aat5236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. de Kloet, A. D. & Herman, J. P. Fat-brain connections: adipocyte glucocorticoid control of stress and metabolism. Front. Neuroendocrinol. 48, 50–57 (2018).

    Article  PubMed  Google Scholar 

  264. Abu Rmaileh, A. et al. DPYSL2 interacts with JAK1 to mediate breast cancer cell migration. J. Cell Biol. https://doi.org/10.1083/jcb.202106078 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  267. Cao, Y. & Langer, R. A review of Judah Folkman’s remarkable achievements in biomedicine. Proc. Natl Acad. Sci. USA 105, 13203–13205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  269. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Van der Veldt, A. A. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012).

    Article  PubMed  Google Scholar 

  272. Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Van der Gucht, K. et al. Effects of a mindfulness-based intervention on cancer-related cognitive impairment: results of a randomized controlled functional magnetic resonance imaging pilot study. Cancer 126, 4246–4255 (2020).

    Article  PubMed  Google Scholar 

  274. Bower, J. E. et al. Mindfulness meditation for younger breast cancer survivors: a randomized controlled trial. Cancer 121, 1231–1240 (2015).

    Article  PubMed  Google Scholar 

  275. Wurtzen, H. et al. Mindfulness significantly reduces self-reported levels of anxiety and depression: results of a randomised controlled trial among 336 Danish women treated for stage I-III breast cancer. Eur. J. Cancer 49, 1365–1373 (2013).

    Article  PubMed  Google Scholar 

  276. Antoni, M. H. et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat. Rev. Cancer 6, 240–248 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Bower, J. E. et al. Prometastatic molecular profiles in breast tumors from socially isolated women. JNCI Cancer Spectr. 2, pky029 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Cole, S. W. New challenges in psycho-oncology: neural regulation of the cancer genome. Psychooncology 27, 2305–2309 (2018).

    Article  PubMed  Google Scholar 

  279. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02944201 (2019).

  280. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03861598 (2019).

  281. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03384836 (2017).

  282. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03838029 (2019).

  283. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03919461 (2019).

  284. Hiller, J. G. et al. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 15, 1803–1811 (2020).

    Article  Google Scholar 

  285. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03122444 (2017).

  286. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00667121 (2008).

  287. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03919292 (2019).

  288. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04310176 (2020).

  289. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01530373 (2012).

  290. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02609828 (2015).

  291. Somatilaka, B. N., Sadek, A., McKay, R. M. & Le, L. Q. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 41, 2405–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Patritti Cram, J. et al. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. eLife https://doi.org/10.7554/eLife.73511 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Rao, V. et al. Chemobrain: a review on mechanistic insight, targets and treatments. Adv. Cancer Res. 155, 29–76 (2022).

    Article  PubMed  Google Scholar 

  294. Gibson, E. M. & Monje, M. Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment. Curr. Opin. Oncol. 31, 531–539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Geraghty, A. C. et al. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103, 250–265 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Gibson, E. M. et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176, 43–55 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Jobling, University of Newcastle, Australia, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.M. conceived and researched data for the article and wrote, reviewed and edited the manuscript before submission. H.H. wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Claire Magnon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Financial support

C.M. National Institute of Health and Medical Research (INSERM), National Institute of Cancer (INCA- PLBIO), Cancéropôle Ile-de-France, Foundation for cancer Research (ARC), University of Paris-Cité, University of Paris-Saclay, Atomic Energy Commission (CEA), Sanofi iAward Europe, France. H.H. National Health and Medical Research Council (NHMRC) and the Mark Hughes Foundation, Australia.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

β-Adrenergic pathway

Intracellular signalling activated by the stimulation of G protein-coupled, β-adrenergic receptors by epinephrine or norepinephrine.

Adipokines

Cytokines secreted by adipose tissue that can function in a paracrine and endocrine manner.

Adrenergic nerves

Nerves for which the neurotransmitter is either epinephrine, norepinephrine, or dopamine.

Adrenergic splanchnic division

Paired autonomic nerves that carry both visceral sympathetic and sensory fibres.

Afferent signals

Neuronal signals carried from the peripheral nervous system to the central nervous system.

Amygdala

Brain area considered as the integrative centre for emotions, emotional behaviour and motivation.

Angiogenesis inhibitors

Compounds that inhibit the growth of new blood vessels.

Astrocytes

Star-shaped and supportive glial cells of the central nervous system.

Autonomic nervous system

Part of the nervous system responsible for the control of bodily functions that are not consciously directed, such as breathing, heartbeat and digestion.

Axonogenesis

Process by which neural extensions, known as axons, are generated. In cancer, tumours build up their own autonomic nerve network through a dynamic axonal outgrowth of pre-existing autonomic nerve fibres in the organ where the tumour initiates.

Calcitonin gene-related peptide

CGRP. Peptide produced by sensory neurons in both the central and peripheral nervous systems that induces dilatation of blood vessels.

Catecholamines

Neurotransmitters produced in the adrenal medulla and the postganglionic fibres of the sympathetic nervous system; the main catecholamines are epinephrine (also known as adrenaline), norepinephrine (also known as noradrenaline) and dopamine.

Cholinergic nerve fibres

Nerve fibres that mainly use acetylcholine as a neurotransmitter.

Efferent neural signals

Neuronal signals carried from the central nervous system to the peripheral nervous system.

Episodic autobiographical memory retrieval

Remembering or re-experiencing a specific personal event from the past.

Field potentials

Transient electrical signals generated in the nervous system.

Glutamatergic neurotransmission

Transmission of information between neurons using glutamate as a neurotransmitter.

Hippocampus

Central brain area that is essential for learning, emotions and memory.

Hypothalamic–pituitary–adrenal (HPA) axis

A neuroendocrine system that mediates glucocorticoid release through molecular interactions among the hypothalamus (a region of the brain located below the thalamus), the pituitary gland (a pea-shaped structure located below the hypothalamus) and the adrenal glands (small conical organs on top of the kidneys).

Immune-checkpoint inhibitors

Drugs used in immunotherapy of cancer to restore the function of the immune system.

Immunotherapies

The treatment of disease by activating or suppressing the immune system.

Lateral hypothalamus

LH. Brain area mainly involved in the regulation of feeding behaviour.

Leptomeningeal microenvironment

Refers to leptomeninges, the two innermost layers of tissue that cover the brain and spinal cord.

Locus coeruleus–noradrenergic system

Cluster of cells in the brainstem that is the main source of the neurotransmitter norepinephrine in the brain.

Mesencephalic periaqueductal grey region

Interface between the forebrain and the lower brainstem that has a role in integrated behavioural responses to internal or external stressors such as pain or threat.

Microglia

A specialized population of phagocytic cells, located in the central nervous system.

Mindfulness-based therapy

A psychotherapeutic approach that uses meditative practices based on awareness of internal thoughts, feelings and emotions.

Muscarinic cholinergic receptors

Membrane protein receptors involved in the transmission of nervous signals in the parasympathetic cholinergic nervous system.

Myelination

Formation of a myelin sheath, which is made of proteins and lipids, around certain nerves, and allows nerve impulses to travel faster.

Nerve fibres

Individual neural extensions also known as axons.

Nerve sheath tumours

Tumours from the cells that form the sheath covering certain peripheral nerves.

Neural cells

Differentiated cells of the nervous system, also called neurons.

Neural projections

Processes extending from a neural cell, such as axons or dendrites, that are collectively called neurites.

Neuroendocrine neurons

Neurons that can release neurohormones following neuronal stimulation.

Neurogenic area

An area in the brain where neurogenesis, the process by which new neurons are formed, occurs.

Neurotrophic growth factors

Peptides primarily involved in the regulation of survival, growth and differentiation of neurons.

Neurotropism

Ability to invade or attract neural tissues.

Nociception

Perception or sensation of pain.

Noradrenergic neurons

Neurons that use norepinephrine (also known as noradrenaline) as a neurotransmitter.

Nucleus of the solitary tract

Group of sensory neurons that are located in the dorsomedial medulla of the brain.

Oligodendrocytes

Category of glial cells producing the myelin in the central nervous system.

Orexinergic neurons

Neurons that release orexin, a peptide that regulates arousal, wakefulness and appetite.

Parabrachial nucleus

Area located in the dorsolateral pons of the brain and working as a sensory relay that receives visceral, nociceptive and thermoreceptive inputs from the periphery and transfers the information to the hypothalamus and amygdala.

Parasympathetic nerve fibres

Nerve fibres from the parasympathetic division of the autonomic nervous system, which is responsible for the rest and digestion response of the body.

Peptidergic

Describing neurons that secrete peptides as their neurotransmitters.

Phase shifts

Deregulation of circadian rhythms that originate in the suprachiasmatic nucleus of the brain, leading to a shift in the sleep or awake time.

Prefrontal cortex

PFC. Region of the brain that makes up the frontal area of the frontal lobe and is mainly involved in mediating complex cognitive processes.

Purinergic signalling

Extracellular signalling mediated by purine nucleotides and nucleosides such as adenosine or adenosine triphosphate (ATP).

Retinohypothalamic tract

Light-initiated signalling pathway that signals from the retina to the suprachiasmatic nuclei of the hypothalamus in the brain.

Schwann cells

Glial cells of the peripheral nervous system that help separate and insulate nerve cells.

Seed and soil theory

A hypothesis that states that metastatic tumour cells can only grow at a site with a favourable local tissue microenvironment, just like a seed will only grow if it lands on fertile soil.

Stereotactic activation

Electronically guided activation.

Substantia nigra

Brain region that is part of the basal ganglia and is involved in the production of the neurotransmitter dopamine.

Suprachiasmatic nucleus

SCN. Bilateral brain area located in the anterior part of the hypothalamus that is involved in the control of circadian rhythms.

Sympathectomy

Surgical procedure during which at least one sympathetic nerve or sympathetic ganglion is removed.

Sympathetic nervous system

Part of the autonomic nervous system that is best known for its role in responding to dangerous or stressful situations.

Sympatho–adrenal system

SAS. Physiological connection between the sympathetic nervous system and the adrenal medulla that regulates the release of catecholamines in response to environmental stimuli.

Thymic involution

Shrinking of the thymus that can occur naturally with age or acutely, as a consequence of stress, chemotherapy or other factors.

Tumour neo-angiogenesis

Formation of new blood vessels in the tumour microenvironment.

Viscero-sensory relays

Direct and indirect connections between sensory nerves of the autonomic nervous system and an organ.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnon, C., Hondermarck, H. The neural addiction of cancer. Nat Rev Cancer 23, 317–334 (2023). https://doi.org/10.1038/s41568-023-00556-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00556-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer