Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acetyl-CoA metabolism in cancer

Abstract

Few metabolites can claim a more central and versatile role in cell metabolism than acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is produced during nutrient catabolism to fuel the tricarboxylic acid cycle and is the essential building block for fatty acid and isoprenoid biosynthesis. It also functions as a signalling metabolite as the substrate for lysine acetylation reactions, enabling the modulation of protein functions in response to acetyl-CoA availability. Recent years have seen exciting advances in our understanding of acetyl-CoA metabolism in normal physiology and in cancer, buoyed by new mouse models, in vivo stable-isotope tracing approaches and improved methods for measuring acetyl-CoA, including in specific subcellular compartments. Efforts to target acetyl-CoA metabolic enzymes are also advancing, with one therapeutic agent targeting acetyl-CoA synthesis receiving approval from the US Food and Drug Administration. In this Review, we give an overview of the regulation and cancer relevance of major metabolic pathways in which acetyl-CoA participates. We further discuss recent advances in understanding acetyl-CoA metabolism in normal tissues and tumours and the potential for targeting these pathways therapeutically. We conclude with a commentary on emerging nodes of acetyl-CoA metabolism that may impact cancer biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compartmentalized acetyl-CoA production pathways.
Fig. 2: Regulation of acetyl-CoA metabolic enzymes.
Fig. 3: Acetyl-CoA pathways have roles in ferroptosis protection.
Fig. 4: Metabolic regulation of histone acetylation impacts the phenotypes of both cancer cells and non-malignant cells in tumours.

Similar content being viewed by others

References

  1. Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Sugden, M. C. & Holness, M. J. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 284, E855–E862 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Adina-Zada, A. et al. Allosteric regulation of the biotin-dependent enzyme pyruvate carboxylase by acetyl-CoA. Biochem. Soc. Trans. 40, 567–572 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Martin, W. F. Older than genes: the acetyl CoA pathway and origins. Front. Microbiol. 11, 817 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Batchuluun, B., Pinkosky, S. L. & Steinberg, G. R. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 21, 283–305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Longo, J., van Leeuwen, J. E., Elbaz, M., Branchard, E. & Penn, L. Z. Statins as anticancer agents in the era of precision medicine. Clin. Cancer Res. 26, 5791–5800 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32, 341–352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stacpoole, P. W. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djx071 (2017).

    Article  PubMed  Google Scholar 

  10. Jonas, M. C., Pehar, M. & Puglielli, L. AT-1 is the ER membrane acetyl-CoA transporter and is essential for cell viability. J. Cell Sci. 123, 3378–3388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    Article  PubMed  Google Scholar 

  13. Campbell, S. L. & Wellen, K. E. Metabolic signaling to the nucleus in cancer. Mol. Cell 71, 398–408 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Srere, P. A. & Bhaduri, A. Incorporation of radioactive citrate into fatty acids. Biochim. Biophys. Acta 59, 487–489 (1962).

    Article  CAS  PubMed  Google Scholar 

  15. Bhaduri, A. & Srere, P. A. The incorporation of citrate carbon into fatty acids. Biochim. Biophys. Acta 70, 221–230 (1963).

    Article  CAS  PubMed  Google Scholar 

  16. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar, A. et al. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep. 36, 109701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, X. et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502–513.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vysochan, A., Sengupta, A., Weljie, A. M., Alwine, J. C. & Yu, Y. ACSS2-mediated acetyl-CoA synthesis from acetate is necessary for human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 114, E1528–E1535 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 38, 100941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, S. et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17, 1037–1052 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, S. et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579, 586–591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014). This study demonstrates that AKT-dependent phosphorylation of ACLY at S455 promotes the maintenance of acetyl-CoA production and histone acetylation under glucose limitation and that phosphorylated AKT S473 correlates with histone acetylation levels in human tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Sivanand, S. et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol. Cell 67, 252–265.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bulusu, V. et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, Z. et al. ACSS2 promotes systemic fat storage and utilization through selective regulation of genes involved in lipid metabolism. Proc. Natl Acad. Sci. USA 115, E9499–E9506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X. et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell 66, 684–697.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mendoza, M. et al. Enzymatic transfer of acetate on histones from lysine reservoir sites to lysine activating sites. Sci. Adv. 8, eabj5688 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, C. & Tu, B. P. Sink into the epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol. Metab. 29, 626–637 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, J. et al. Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat. Genet. 50, 219–228 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zervopoulos, S. D. et al. MFN2-driven mitochondria-to-nucleus tethering allows a non-canonical nuclear entry pathway of the mitochondrial pyruvate dehydrogenase complex. Mol. Cell 82, 1066–1077.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Madiraju, P., Pande, S. V., Prentki, M. & Madiraju, S. R. Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics 4, 399–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DeBose-Boyd, R. A. & Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 43, 358–368 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gouw, A. M. et al. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab. 30, 556–572.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015). This work demonstrates that ACSS2 is upregulated under lipid-deprived and oxygen-deprived conditions to promote acetate-dependent DNL and support tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kondo, A. et al. Extracellular acidic pH activates the sterol regulatory element-binding protein 2 to promote tumor progression. Cell Rep. 18, 2228–2242 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Z. et al. Acetyl-CoA synthetase 2: a critical linkage in obesity-induced tumorigenesis in myeloma. Cell Metab. 33, 78–93.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ning, Z. et al. USP22 regulates lipidome accumulation by stabilizing PPARgamma in hepatocellular carcinoma. Nat. Commun. 13, 2187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Odera, J. O. et al. NRF2/ACSS2 axis mediates the metabolic effect of alcohol drinking on esophageal squamous cell carcinoma. Biochem. J. 477, 3075–3089 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014). This study finds that ACSS2 is crucial for acetate capturing for both lipid synthesis and histone acetylation and that mice lacking ACSS2 exhibited reduced liver tumour burden.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014). This tracing study in human glioblastoma reveals acetate oxidation in tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, S., He, J., Jia, Z., Yan, Z. & Yang, J. Acetyl-CoA synthetase 2 enhances tumorigenesis and is indicative of a poor prognosis for patients with renal cell carcinoma. Urol. Oncol. 36, 243.e9–243.e20 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Sun, L. et al. Decreased expression of acetyl-CoA synthase 2 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Cancer Sci. 108, 1338–1346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bae, J. M. et al. Downregulation of acetyl-CoA synthetase 2 is a metabolic hallmark of tumor progression and aggressiveness in colorectal carcinoma. Mod. Pathol. 30, 267–277 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Y. et al. ACLY: A biomarker of recurrence in breast cancer. Pathol. Res. Pract. 216, 153076 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, Y. et al. Identification and integrative analysis of ACLY and related gene panels associated with immune microenvironment reveal prognostic significance in hepatocellular carcinoma. Cancer Cell Int. 21, 409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei, X. et al. Targeting ACLY attenuates tumor growth and acquired cisplatin resistance in ovarian cancer by inhibiting the PI3K-AKT pathway and activating the AMPK-ROS pathway. Front. Oncol. 11, 642229 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang, J. et al. Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia. J. Transl. Med. 17, 149 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. White, P. J. et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 27, 1281–1293.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berwick, D. C., Hers, I., Heesom, K. J., Moule, S. K. & Tavare, J. M. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277, 33895–33900 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Guy, P. S., Cohen, P. & Hardie, D. G. Rat mammary gland ATP-citrate lyase is phosphorylated by cyclic AMP-dependent protein kinase. FEBS Lett. 109, 205–208 (1980).

    Article  CAS  PubMed  Google Scholar 

  62. Potapova, I. A., El-Maghrabi, M. R., Doronin, S. V. & Benjamin, W. B. Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars. Biochemistry 39, 1169–1179 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Guy, P. S., Cohen, P. & Hardie, D. G. Purification and physicochemical properties of ATP citrate (pro-3S) lyase from lactating rat mammary gland and studies of its reversible phosphorylation. Eur. J. Biochem. 114, 399–405 (1981).

    Article  CAS  PubMed  Google Scholar 

  64. Pentyala, S. N. & Benjamin, W. B. Effect of oxaloacetate and phosphorylation on ATP-citrate lyase activity. Biochemistry 34, 10961–10969 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Ranganathan, N. S., Srere, P. A. & Linn, T. C. Comparison of phospho- and dephospho-ATP citrate lyase. Arch. Biochem. Biophys. 204, 52–58 (1980).

    Article  CAS  PubMed  Google Scholar 

  66. Houston, B. & Nimmo, H. G. Effects of phosphorylation on the kinetic properties of rat liver ATP-citrate lyase. Biochim. Biophys. Acta 844, 233–239 (1985).

    Article  CAS  PubMed  Google Scholar 

  67. Carrer, A. et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 9, 416–435 (2019). This study shows that mice lacking ACLY in the pancreas display impaired acinar-to-ductal metaplasia and reduced pancreatic tumour formation in a genetic model of pancreatic cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez Calejman, C. et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat. Commun. 11, 575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Covarrubias, A. J. et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife 5, e11612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Senapati, P. et al. Hyperinsulinemia promotes aberrant histone acetylation in triple-negative breast cancer. Epigenetics Chromatin 12, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Basappa, J. et al. ACLY is the novel signaling target of PIP2/PIP3 and Lyn in acute myeloid leukemia. Heliyon 6, e03910 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. McCubrey, J. A. et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 5, 2881–2911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hughes, K., Ramakrishna, S., Benjamin, W. B. & Woodgett, J. R. Identification of multifunctional ATP-citrate lyase kinase as the alpha-isoform of glycogen synthase kinase-3. Biochem. J. 288, 309–314 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin, R. et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51, 506–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, C. et al. Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression. Genes Dev. 30, 1956–1970 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akella, N. M., Ciraku, L. & Reginato, M. J. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 17, 52 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ciraku, L. et al. O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation. Oncogene 41, 2122–2136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hardie, D. G. & Pan, D. A. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans. 30, 1064–1070 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Pinkosky, S. L. et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK beta1 isoforms. Nat. Metab. 2, 873–881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lally, J. S. V. et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174–182.e5 (2019). This study uses mouse models in which ACC is constitutively active and an ACC inhibitor to reveal that ACC-dependent lipogenesis promotes HCC.

    Article  CAS  PubMed  Google Scholar 

  82. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. German, N. J. et al. PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2. Mol. Cell 63, 1006–1020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. & Lee, W. M. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34, 223–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Longo, J. et al. The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma. Leukemia 35, 796–808 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Moon, S. H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Trefely, S. et al. Subcellular metabolic pathway kinetics are revealed by correcting for artifactual post harvest metabolism. Mol. Metab. 30, 61–71 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Trefely, S. et al. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol. Cell 82, 447–462.e6 (2022). This article reports the development of a rigorous method for the quantification of acyl-CoA esters in subcellular compartments, including mitochondria, the cytosol and the nucleus.

    Article  CAS  PubMed  Google Scholar 

  90. Storz, P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 14, 296–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McGregor, G. H. et al. Targeting the metabolic response to statin-mediated oxidative stress produces a synergistic antitumor response. Cancer Res. 80, 175–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Longo, J. et al. An actionable sterol-regulated feedback loop modulates statin sensitivity in prostate cancer. Mol. Metab. 25, 119–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pandyra, A. et al. Immediate utility of two approved agents to target both the metabolic mevalonate pathway and its restorative feedback loop. Cancer Res. 74, 4772–4782 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Jiang, W., Hu, J. W., He, X. R., Jin, W. L. & He, X. Y. Statins: a repurposed drug to fight cancer. J. Exp. Clin. Cancer Res. 40, 241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C. & Thompson, C. B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005). This study demonstrates that targeting ACLY either using RNA interference or an inhibitor could suppress tumour growth.

    Article  CAS  PubMed  Google Scholar 

  97. Migita, T. et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547–8554 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Miller, K. D. et al. Targeting ACSS2 with a transition-state mimetic inhibits triple-negative breast cancer growth. Cancer Res. 81, 1252–1264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03808558 (2022).

  100. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02223247 (2017).

  101. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02980029 (2022).

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03032484 (2020).

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03179904 (2022).

  104. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05118776 (2022).

  105. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lei, G., Zhuang, L. & Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 22, 381–396 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rysman, E. et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117–8126 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Talebi, A. et al. Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nat. Commun. 9, 2500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu, J. Y. & Wellen, K. E. Advances into understanding metabolites as signaling molecules in cancer progression. Curr. Opin. Cell Biol. 63, 144–153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Izzo, L. T., Affronti, H. C. & Wellen, K. E. The bidirectional relationship between cancer epigenetics and metabolism. Annu. Rev. Cancer Biol. 5, 235–257 (2021).

    Article  PubMed  Google Scholar 

  115. Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gao, X. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 7, 11960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Torrini, C. et al. Lactate is an epigenetic metabolite that drives survival in model systems of glioblastoma. Mol. Cell 82, 3061–3076.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Rios Garcia, M. et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab. 26, 842–855.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Lu, M. et al. ACOT12-dependent alteration of acetyl-CoA drives hepatocellular carcinoma metastasis by epigenetic induction of epithelial-mesenchymal transition. Cell Metab. 29, 886–900.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Lee, J. V. et al. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca2+-NFAT signaling. Genes Dev. 32, 497–511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Geeraerts, X. et al. Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Rep. 37, 110171 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Baardman, J. et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat. Commun. 11, 6296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Noe, J. T. et al. Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci. Adv. 7, eabi8602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. de Goede, K. E. et al. Myeloid-specific Acly deletion alters macrophage phenotype in vitro and in vivo without affecting tumor growth. Cancers 13, 3054 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liu, M. et al. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated ‘don’t-eat-me’ signal. Nat. Immunol. 20, 265–275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chowdhury, S. et al. Intracellular acetyl CoA potentiates the therapeutic efficacy of antitumor CD8+ T cells. Cancer Res. 82, 2640–2655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Qiu, J. et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 27, 2063–2074.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee, J. et al. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol. 192, 3190–3199 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Mayers, J. R. & Vander Heiden, M. G. Nature and nurture: what determines tumor metabolic phenotypes? Cancer Res. 77, 3131–3134 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Shah, P. A., Patil, R. & Harrison, S. A. NAFLD-related hepatocellular carcinoma: the growing challenge. Hepatology https://doi.org/10.1002/hep.32542 (2022).

    Article  PubMed  Google Scholar 

  134. Broadfield, L. A. et al. Fat induces glucose metabolism in nontransformed liver cells and promotes liver tumorigenesis. Cancer Res. 81, 1988–2001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sangineto, M. et al. Lipid metabolism in development and progression of hepatocellular carcinoma. Cancers 12, 1419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Calvisi, D. F. et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140, 1071–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Park, G., Jung, S., Wellen, K. E. & Jang, C. The interaction between the gut microbiota and dietary carbohydrates in nonalcoholic fatty liver disease. Exp. Mol. Med. 53, 809–822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Todoric, J. et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat. Metab. 2, 1034–1045 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab. 3, 1608–1620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yenilmez, B. et al. Paradoxical activation of transcription factor SREBP1c and de novo lipogenesis by hepatocyte-selective ATP-citrate lyase depletion in obese mice. J. Biol. Chem. 298, 102401 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morrow, M. R. et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab. 34, 919–936.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, Q. et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology 49, 1166–1175 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Beigneux, A. P. et al. ATP-citrate lyase deficiency in the mouse. J. Biol. Chem. 279, 9557–9564 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Abu-Elheiga, L. et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl Acad. Sci. USA 102, 12011–12016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Harada, N. et al. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. Mol. Cell Biol. 27, 1881–1888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 576 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Savage, D. B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116, 817–824 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Harriman, G. et al. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc. Natl Acad. Sci. USA 113, E1796–E1805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chow, J. D. et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol. Metab. 3, 419–431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nelson, M. E. et al. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat. Commun. 8, 14689 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Neinast, M., Murashige, D. & Arany, Z. Branched chain amino acids. Annu. Rev. Physiol. 81, 139–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20, 1193–1198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, J. T. et al. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat. Cell Biol. 22, 167–174 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Lengyel, E., Makowski, L., DiGiovanni, J. & Kolonin, M. G. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer 4, 374–384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu, Q. et al. Adipocyte mesenchymal transition contributes to mammary tumor progression. Cell Rep. 40, 111362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Seki, T. et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 608, 421–428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fernandez, S. et al. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep. 27, 2772–2784.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Smith, U. & Kahn, B. B. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 280, 465–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Takehara, M. et al. Cancer-associated adipocytes promote pancreatic cancer progression through SAA1 expression. Cancer Sci. 111, 2883–2894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bochet, L. et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Watson, J. A., Fang, M. & Lowenstein, J. M. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch. Biochem. Biophys. 135, 209–217 (1969).

    Article  CAS  PubMed  Google Scholar 

  165. Onakpoya, I., Hung, S. K., Perry, R., Wider, B. & Ernst, E. The use of garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J. Obes. 2011, 509038 (2011).

    Article  PubMed  Google Scholar 

  166. Jena, B. S., Jayaprakasha, G. K., Singh, R. P. & Sakariah, K. K. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J. Agric. Food Chem. 50, 10–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Heymsfield, S. B. et al. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA 280, 1596–1600 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Marino, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014). This study shows that nutrient deprivation-induced depletion of acetyl-CoA activates autophagy in a p300-regulated manner.

    Article  CAS  PubMed  Google Scholar 

  170. Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lien, E. C. et al. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 599, 302–307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pomatto-Watson, L. C. D. et al. Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition. Nat. Commun. 12, 6201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167–1181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zheng, Y. et al. ATP citrate lyase inhibitor triggers endoplasmic reticulum stress to induce hepatocellular carcinoma cell apoptosis via p-eIF2alpha/ATF4/CHOP axis. J. Cell Mol. Med. 25, 1468–1479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shah, S. et al. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget 7, 43713–43730 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Pearce, N. J. et al. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem. J. 334, 113–119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Burke, A. C. & Huff, M. W. ATP-citrate lyase: genetics, molecular biology and therapeutic target for dyslipidemia. Curr. Opin. Lipidol. 28, 193–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Pinkosky, S. L. et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat. Commun. 7, 13457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gu, L. et al. The IKKbeta-USP30-ACLY axis controls lipogenesis and tumorigenesis. Hepatology 73, 160–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Qiao, C. et al. IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R. Cell Death Dis. 12, 564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pinkosky, S. L. et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J. Lipid Res. 54, 134–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Huang, X. et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 412, 211–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Houde, V. P. et al. AMPK beta1 reduces tumor progression and improves survival in p53 null mice. Mol. Oncol. 11, 1143–1155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dai, X. et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol. Cell 81, 2317–2331.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wei, J. et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568, 566–570 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Wei, X., Schultz, K., Bazilevsky, G. A., Vogt, A. & Marmorstein, R. Molecular basis for acetyl-CoA production by ATP-citrate lyase. Nat. Struct. Mol. Biol. 27, 33–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Verschueren, K. H. G. et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568, 571–575 (2019). Along with Wei et al. (2019) and Wei et al. (2020), this article reports for the first time the structure of the ACLY homotetramer.

    Article  CAS  PubMed  Google Scholar 

  192. Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016). This study demonstrate that ACC inhibition suppresses tumour growth in genetically engineered lung cancer mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Liefwalker, D. F. et al. Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies. Cancer Metab. 9, 31 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Alkhouri, N., Lawitz, E., Noureddin, M., DeFronzo, R. & Shulman, G. I. GS-0976 (firsocostat): an investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH). Expert. Opin. Investig. Drugs 29, 135–141 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Lee, H. et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol. 22, 225–234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866.e26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wellen, K. E. & Snyder, N. W. Should we consider subcellular compartmentalization of metabolites, and if so, how do we measure them? Curr. Opin. Clin. Nutr. Metab. Care 22, 347–354 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Dieterich, I. A. et al. Acetyl-CoA flux regulates the proteome and acetyl-proteome to maintain intracellular metabolic crosstalk. Nat. Commun. 10, 3929 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. He, A. et al. Acetyl-CoA derived from hepatic peroxisomal beta-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol. Cell 79, 30–42.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Huber, K. et al. N-acetylaspartate pathway is nutrient responsive and coordinates lipid and energy metabolism in brown adipocytes. Biochim. Biophys. Acta Mol. Cell Res. 1866, 337–348 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Jung, S. M. et al. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep. 36, 109459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Levy, M. J. et al. A systems chemoproteomic analysis of acyl-CoA/protein interaction networks. Cell Chem. Biol. 27, 322–333.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Montgomery, D. C. et al. Global profiling of acetyltransferase feedback regulation. J. Am. Chem. Soc. 138, 6388–6391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Goncalves, M. D. et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science 363, 1345–1349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.E.W. and D.A.G. are supported by the NIDDK of the NIH (R01DK116005). K.E.W. is also supported by the NCI (R01CA228339, R01CA174761, R01CA248315 and R01CA262055) and the Ludwig Institute. D.A.G. is also supported by the NIDDK of the NIH (R01DK094004 and R01DK127175).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to David A. Guertin or Kathryn E. Wellen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks G. Steinberg, R. Perry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adipokines

Adipocyte-derived factors released into the blood that can function in an autocrine or paracrine manner to regulate metabolism.

Coenzyme Q

(CoQ). Also known as ubiquinone, an enzyme comprising a redox-active quinone head group and an isoprenoid tail synthesized in the mevalonate pathway that functions as an electron carrier as part of the electron transport chain and as an antioxidant.

De novo lipogenesis

(DNL). The process of building fatty acids from the non-lipid precursor acetyl coenzyme A, which can be generated by a variety of pathways but most commonly from carbohydrates.

Mevalonate pathway

Named after its key intermediate, the five-carbon molecule mevalonate, this pathway generates precursors to a large family of isoprenoids, including cholesterol and coenzyme Q.

M1 and M2 macrophage phenotypes

A classification system in which heterogeneous macrophages are grouped as either M1, which defines activated pro-inflammatory macrophages associated with protection against bacteria and viruses, and M2, which are alternatively activated macrophages that express different markers and are associated with wound healing and immune suppression.

Positron emission tomography tracers

Chemicals than contain a positron-emitting radioisotope that are used to image tumours, for example [18F]fluorodeoxyglucose, a non-metabolizable analogue of glucose that can image tumours with high glucose uptake rates.

Reductive carboxylation

A reductive pathway of glutamine metabolism in which isocitrate dehydrogenase 1 (IDH1) and IDH2 operate in reverse to generate isocitrate and citrate from α-ketoglutarate and CO2.

Stable-isotope tracing

A technique used to follow the metabolic fate of a tracer molecule delivered to cells or tissues, such as [13C]glucose or [13C–15N]glutamine, in which one or more of the abundant and naturally occurring elements — usually C, H or N — are replaced with less abundant, non-radioactive isotopes that can be distinguished in mass by a mass spectrometer.

Statins

Cholesterol-lowering drugs that target 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR).

Thioester bond

A chemical bond that can be summarized as R–CO–S–R′, in which a sulfur instead of oxygen connects the carboxylate ester.

Ubiquitylation

The post-translational modification process of attaching a ubiquitin protein to a lysine residue, which can function as a regulator signal or form polyubiquitin chains targeting a protein for degradation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guertin, D.A., Wellen, K.E. Acetyl-CoA metabolism in cancer. Nat Rev Cancer 23, 156–172 (2023). https://doi.org/10.1038/s41568-022-00543-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00543-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer