Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epithelial and stromal co-evolution and complicity in pancreatic cancer

Abstract

Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epithelial–mesenchymal reciprocity in pancreatic ductal adenocarcinoma.
Fig. 2: Mesenchymal cell lineages and diversity in pancreatic cancer.
Fig. 3: Macrophage lineages in pancreatic cancer.
Fig. 4: Tumour cell–immune cell–cancer-associated fibroblast circuits in pancreatic ductal adenocarcinoma.
Fig. 5: Activation of intracellular mechanisms of force transduction in pancreatic cancer by tensile loading of the collagen network.

Similar content being viewed by others

References

  1. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Article  CAS  Google Scholar 

  2. Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 362, 1605–1617 (2010).

    Article  CAS  Google Scholar 

  3. Kleeff, J. et al. Pancreatic cancer. Nat. Rev. Dis. Prim. 2, 16022 (2016).

    Article  Google Scholar 

  4. Allison, D. C. et al. DNA content and other factors associated with ten-year survival after resection of pancreatic carcinoma. J. Surgical Oncol. 67, 151–159 (1998).

    Article  CAS  Google Scholar 

  5. Hruban, R. H. in Atlas of Tumor Pathology (eds Hruban, R.H., Pitman, M.B. & Klimstra, D.S.) (Armed Forces Institute of Pathology, 2007).

  6. Stromnes, I. M., DelGiorno, K. E., Greenberg, P. D. & Hingorani, S. R. Stromal reengineering to treat pancreas cancer. Carcinogenesis 35, 1451–1460 (2014).

    Article  CAS  Google Scholar 

  7. Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007). This study provides the first evidence that multiple mechanisms of immune suppression become operative beginning at the earliest stages of pre-invasive pancreatic cancer.

    Article  CAS  Google Scholar 

  8. Bijlsma, M. F. & van Laarhoven, H. W. The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal. Cancer Metastasis Rev. 34, 97–114 (2015).

    Article  CAS  Google Scholar 

  9. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  Google Scholar 

  10. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014). Together with Rhim et al. (2014), this study demonstrates that some fibroblast populations in PDA can be tumour constraining.

    Article  CAS  Google Scholar 

  11. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  CAS  Google Scholar 

  12. Encarnacion-Rosado, J. & Kimmelman, A. C. Harnessing metabolic dependencies in pancreatic cancers. Nat. Rev. Gastroenterol. Hepatol. 18, 482–492 (2021).

    Article  Google Scholar 

  13. Helms, E., Onate, M. K. & Sherman, M. H. Fibroblast heterogeneity in the pancreatic tumor microenvironment. Cancer Discov. 10, 648–656 (2020).

    Article  CAS  Google Scholar 

  14. Neesse, A. et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 68, 159–171 (2019).

    Article  CAS  Google Scholar 

  15. Stone, M. L. & Beatty, G. L. Cellular determinants and therapeutic implications of inflammation in pancreatic cancer. Pharmacol. Ther. 201, 202–213 (2019).

    Article  CAS  Google Scholar 

  16. Balachandran, V. P., Beatty, G. L. & Dougan, S. K. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology 156, 2056–2072 (2019).

    Article  CAS  Google Scholar 

  17. Zhang, Y., Crawford, H. C. & Pasca di Magliano, M. Epithelial-stromal interactions in pancreatic cancer. Annu. Rev. Physiol. 81, 211–233 (2019).

    Article  CAS  Google Scholar 

  18. Kemp, S. B., Pasca di Magliano, M. & Crawford, H. C. Myeloid cell mediated immune suppression in pancreatic cancer. Cell Mol. Gastroenterol. Hepatol. 12, 1531–1542 (2021).

    Article  CAS  Google Scholar 

  19. Hruban, R. H., Goggins, M., Parsons, J. & Kern, S. E. Progression model for pancreatic cancer. Clin. Cancer Res. 6, 2969–2972 (2000). This article presents a proposed histological blueprint for progression of precursor ductal lesions from PanIN-1 to PanIN-2 to PanIN-3 (carcinoma in situ) and culminating in invasive PDA.

    CAS  Google Scholar 

  20. Hruban, R. H., Wilentz, R. E. & Kern, S. E. Genetic progression in the pancreatic ducts. Am. J. Pathol. 156, 1821–1825 (2000). This study correlates the stepwise accumulation of key genetic mutations with the histopathological depiction of PanIN progression to create a more comprehensive model.

    Article  CAS  Google Scholar 

  21. Waters, A. M. & Der, C. J. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a031435 (2018).

    Article  Google Scholar 

  22. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003). This article describes the first genetically engineered model to faithfully model human PanIN progression and provides the first definitive proof that oncogenic Kras mutations drive the stochastic formation of these lesions, which progress histologically to give rise to invasive and metastatic PDA.

    Article  CAS  Google Scholar 

  23. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003). This study demonstrates that aberrant expression of SHH, a potent morphogen, alone can induce PanIN-like lesions in the ductal epithelium of the pancreas.

    Article  CAS  Google Scholar 

  24. Miyamoto, Y. et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576 (2003). This study demonstrates the role of Notch (another potent developmental morphogen) signalling in inducing ADM.

    Article  CAS  Google Scholar 

  25. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005). This article describes the first genetically engineered model of widely metastatic PDA, which faithfully models the full spectrum of the human disease, including a high degree of both intratumoural and intertumoural heterogeneity and complex (structural) genomic instability.

    Article  CAS  Google Scholar 

  26. Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003). This article describes the first genetically engineered model of locally aggressive PDA, which demonstrates the less common sarcomatoid or spindle cell-like histology.

    Article  CAS  Google Scholar 

  27. Izeradjene, K. et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11, 229–243 (2007). This article describes the first genetically engineered model of mucinous cystic neoplasms (MCNs), including the faithful recapitulation of an ‘ovarian stroma’, and also provides evidence that the chronological order in which otherwise identical genetic mutations arise can dramatically influence the phenotype and functional behaviours of pancreatic cancers.

    Article  CAS  Google Scholar 

  28. Bardeesy, N. et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20, 3130–3146 (2006).

    Article  CAS  Google Scholar 

  29. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015). This study identifies tumour cell-specific and stromal cell-specific transcriptional subtypes of PDA that do not, however, necessarily correlate with each other.

    Article  CAS  Google Scholar 

  30. Whittle, M. C. & Hingorani, S. R. Fibroblasts in pancreatic ductal adenocarcinoma: biological mechanisms and therapeutic targets. Gastroenterology 156, 2085–2096 (2019).

    Article  CAS  Google Scholar 

  31. Purohit, A. et al. CXCR2 signaling regulates KRAS(G12D)-induced autocrine growth of pancreatic cancer. Oncotarget 7, 7280–7296 (2016).

    Article  Google Scholar 

  32. Velez-Delgado, A. et al. Extrinsic KRAS signaling shapes the pancreatic microenvironment through fibroblast reprogramming. Cell Mol. Gastroenterol. Hepatol. 13, 1673–1699 (2022).

    Article  CAS  Google Scholar 

  33. Tape, C. J. et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165, 910–920 (2016). This study provides the first clear demonstration of reciprocal signalling between the tumour epithelial cells and stromal fibroblasts in PDA, and shows that the latter can expand the available signalling repertoire in the former.

    Article  CAS  Google Scholar 

  34. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  Google Scholar 

  35. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  Google Scholar 

  36. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012). This article describes the possibility of EMT and systemic dissemination of pre-invasive pancreatic ductal cells very early in disease progression through delamination.

    Article  CAS  Google Scholar 

  37. Apte, M. V. et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43, 128–133 (1998).

    Article  CAS  Google Scholar 

  38. Apte, M. V., Wilson, J. S., Lugea, A. & Pandol, S. J. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144, 1210–1219 (2013).

    Article  Google Scholar 

  39. McLean, K. et al. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J. Clin. Invest. 121, 3206–3219 (2011).

    Article  CAS  Google Scholar 

  40. Seeberger, K. L. et al. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab. Invest. 86, 141–153 (2006).

    Article  CAS  Google Scholar 

  41. Waghray, M. et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov. 6, 886–899 (2016).

    Article  CAS  Google Scholar 

  42. Kidd, S. et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE 7, e30563 (2012).

    Article  CAS  Google Scholar 

  43. Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article  CAS  Google Scholar 

  44. Miyazaki, Y., Oda, T., Mori, N. & Kida, Y. S. Adipose-derived mesenchymal stem cells differentiate into pancreatic cancer-associated fibroblasts in vitro. FEBS Open Bio 10, 2268–2281 (2020).

    Article  CAS  Google Scholar 

  45. Miyazaki, Y. et al. Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci. Rep. 11, 4690 (2021).

    Article  CAS  Google Scholar 

  46. Arina, A. et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc. Natl Acad. Sci. USA 113, 7551–7556 (2016).

    Article  CAS  Google Scholar 

  47. Helms, E. J. et al. Mesenchymal lineage heterogeneity underlies non-redundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-0601 (2021). Through genetic deletion and lineage-tracing studies in mouse models, this study demonstrates that only 10–15% of PDA CAFs originate from resident PSCs and that this minor subpopulation figured prominently in the unusual biophysical properties and metastatic drive of the cancers.

    Article  Google Scholar 

  48. Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature https://doi.org/10.1038/s41586-022-05272-1 (2022). This study uses transplantable mouse tumour models to identify dermatopontin-positive pan-tissue ‘universal’ fibroblasts as the source of 85–90% of PDA CAFs and reveals their ability to directly inhibit CD8+ effector T cell function.

    Article  Google Scholar 

  49. Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014). This study describes a hormone-based strategy to cause activated myofibroblasts to revert to a ‘quiescent’ state that also leads to tumour growth inhibition in a GEMM of PDA.

    Article  CAS  Google Scholar 

  50. Mace, T. A. et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 73, 3007–3018 (2013).

    Article  CAS  Google Scholar 

  51. Hosein, A. N. et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight https://doi.org/10.1172/jci.insight.129212 (2019).

    Article  Google Scholar 

  52. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  Google Scholar 

  53. Grunwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592 e5518 (2021).

    Article  CAS  Google Scholar 

  54. Hutton, C. et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 39, 1227–1244 e1220 (2021).

    Article  CAS  Google Scholar 

  55. Zhang, Y. et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 10, 422–439 (2020). This study demonstrates the surprising finding that targeting some presumptively suppressive elements of immunity may paradoxically exacerbate disease aggressiveness through unanticipated crosstalk in the pancreatic cancer neo-organ.

    Article  Google Scholar 

  56. Neuzillet, C. et al. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J. Pathol. 248, 51–65 (2019).

    Article  CAS  Google Scholar 

  57. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009). This study demonstrates that disrupting paracrine Hh signalling from tumour cells depletes stromal fibroblasts and the associated fibrosis and also stimulates angiogenesis to promote therapeutic drug delivery in a GEMM of PDA.

    Article  CAS  Google Scholar 

  58. Ko, A. H. et al. A phase I study of FOLFIRINOX plus IPI-926, a Hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas 45, 370–375 (2016).

    Article  CAS  Google Scholar 

  59. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  Google Scholar 

  60. Kim, E. J. et al. Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin. Cancer Res. 20, 5937–5945 (2014).

    Article  CAS  Google Scholar 

  61. Lee, J. J. et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl Acad. Sci. USA 111, E3091–E3100 (2014).

    Article  CAS  Google Scholar 

  62. Park, J. E. et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 274, 36505–36512 (1999).

    Article  CAS  Google Scholar 

  63. Garin-Chesa, P., Old, L. J. & Rettig, W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 87, 7235–7239 (1990).

    Article  CAS  Google Scholar 

  64. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330, 827–830 (2010). This study provides a clear demonstration of an immunosuppressive axis in PDA mediated by FAPα-expressing CAFs.

    Article  CAS  Google Scholar 

  65. Biasci, D. et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc. Natl Acad. Sci. USA 117, 28960–28970 (2020).

    Article  CAS  Google Scholar 

  66. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  Google Scholar 

  67. Morita, T. et al. CXCR4 in tumor epithelial cells mediates desmoplastic reaction in pancreatic ductal adenocarcinoma. Cancer Res. 80, 4058–4070 (2020).

    Article  CAS  Google Scholar 

  68. Pure, E. & Hingorani, S. R. Mesenchymal cell plasticity and perfidy in epithelial malignancy. Trends Cancer 4, 273–277 (2018).

    Article  CAS  Google Scholar 

  69. Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75, 2800–2810 (2015).

    Article  CAS  Google Scholar 

  70. Avery, D. et al. Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biol. https://doi.org/10.1016/j.matbio.2017.12.003 (2017). This article presents a mechanism for class switching between FAPαhiαSMAlow CAFs and FAPαlowαSMAhi CAFs based on underlying matrix stiffness and stimulation of mechanosignalling.

    Article  Google Scholar 

  71. Froeling, F. E. et al. Retinoic acid–induced pancreatic stellate cell quiescence reduces paracrine Wnt–β-catenin signaling to slow tumor progression. Gastroenterology 141, 1486–1497.e14 (2011).

    Article  CAS  Google Scholar 

  72. Chronopoulos, A. et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat. Commun. 7, 12630 (2016).

    Article  Google Scholar 

  73. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  Google Scholar 

  74. Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

    Article  CAS  Google Scholar 

  75. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017). This study presents a two-state model of inflammatory and contractile CAFs in PDA based on spatial topography and differential sensitivity to gradients of IL-1 and TGFβ.

    Article  CAS  Google Scholar 

  76. Potter, J. D. Morphogens, morphostats, microarchitecture and malignancy. Nat. Rev. Cancer 7, 464–474 (2007).

    Article  CAS  Google Scholar 

  77. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFbeta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  Google Scholar 

  78. Steele, N. G. et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).

    Article  CAS  Google Scholar 

  79. Tuveson, D. A. et al. Endogenous oncogenic K-rasG12D stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004). This study demonstrates that endogenous (physiologic) levels of oncogenic KRAS signalling can serve as an initiating event in tumorigenesis as opposed to inducing senescence as seen with overexpression of the oncogene.

    Article  CAS  Google Scholar 

  80. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  CAS  Google Scholar 

  81. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013). This study reveals the critical role of oncogenic KRAS-induced macropinocytosis as a mechanism to support tumour cell survival in a nutrient-poor microenvironment.

    Article  CAS  Google Scholar 

  82. Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013).

    Article  CAS  Google Scholar 

  83. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011). This study reveals the critical role of autophagy in supporting PDA tumour cell survival in a nutrient-poor microenvironment.

    Article  CAS  Google Scholar 

  84. Banh, R. S. et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell 183, 1202–1218 e1225 (2020).

    Article  CAS  Google Scholar 

  85. Auciello, F. R. et al. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9, 617–627 (2019).

    Article  CAS  Google Scholar 

  86. Dalin, S. et al. Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance. Cancer Res. 79, 5723–5733 (2019).

    Article  CAS  Google Scholar 

  87. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  Google Scholar 

  88. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    Article  CAS  Google Scholar 

  89. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    Article  CAS  Google Scholar 

  90. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012). In this study, a reversibly inducible mouse model of PDA is used to demonstrate that pancreatic cancers are addicted to mutant KRAS through its ability to alter glucose metabolism.

    Article  CAS  Google Scholar 

  91. Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).

    Article  CAS  Google Scholar 

  92. Newman, A. C. & Maddocks, O. D. K. Serine and functional metabolites in cancer. Trends Cell Biol. 27, 645–657 (2017).

    Article  CAS  Google Scholar 

  93. Koulouris, A. I., Banim, P. & Hart, A. R. Pain in patients with pancreatic cancer: prevalence, mechanisms, management and future developments. Dig. Dis. Sci. 62, 861–870 (2017).

    Article  CAS  Google Scholar 

  94. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  Google Scholar 

  95. Roger, E. et al. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFbeta signaling. Cell Death Dis. 10, 886 (2019).

    Article  CAS  Google Scholar 

  96. Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

    Article  CAS  Google Scholar 

  97. Diehl, F. F., Lewis, C. A., Fiske, B. P. & Vander Heiden, M. G. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat. Metab. 1, 861–867 (2019). This article demonstrates a novel mechanism of stromal support by PSCs for PDA tumour epithelial cells in helping them achieve a more oxidized state to promote proliferation.

    Article  CAS  Google Scholar 

  98. Datta, R. et al. Interactions with stromal cells promote a more oxidized cancer cell redox state in pancreatic tumors. Sci. Adv. 8, eabg6383 (2022).

    Article  CAS  Google Scholar 

  99. Kerk, S. A. et al. The pancreatic tumor microenvironment compensates for loss of GOT2. eLife https://doi.org/10.7554/eLife.73245 (2022).

    Article  Google Scholar 

  100. Lowenfels, A. B. et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N. Engl. J. Med. 328, 1433–1437 (1993).

    Article  CAS  Google Scholar 

  101. Meza, R., Jeon, J., Moolgavkar, S. H. & Luebeck, E. G. Age-specific incidence of cancer: phases, transitions, and biological implications. Proc. Natl Acad. Sci. USA 105, 16284–16289 (2008).

    Article  CAS  Google Scholar 

  102. Yabar, C. S. & Winter, J. M. Pancreatic cancer: a review. Gastroenterol. Clin. North Am. 45, 429–445 (2016).

    Article  Google Scholar 

  103. Lowenfels, A. B. et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J. Natl Cancer Inst. 89, 442–446 (1997).

    Article  CAS  Google Scholar 

  104. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007). This study in a GEMM suggests that, in contrast to embryonic activation of oncogenic Kras, somatic activation could only effectively initiate pancreatic cancer in the setting of concomitant inflammatory injury.

    Article  CAS  Google Scholar 

  105. Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012). Through the use of a novel reversibly inducible allele, this study shows that extinguishing oncogenic Kras expression results in widespread regression of pancreatic cancer.

    Article  CAS  Google Scholar 

  106. Morris, J. P. T., Cano, D. A., Sekine, S., Wang, S. C. & Hebrok, M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest. 120, 508–520 (2010).

    Article  CAS  Google Scholar 

  107. Lampel, M. & Kern, H. F. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch. A Pathol. Anat. Histol. 373, 97–117 (1977).

    Article  CAS  Google Scholar 

  108. Niederau, C., Ferrell, L. D. & Grendell, J. H. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88, 1192–1204 (1985).

    Article  CAS  Google Scholar 

  109. Gukovsky, I., Li, N., Todoric, J., Gukovskaya, A. & Karin, M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144, 1199–1209 e1194 (2013).

    Article  CAS  Google Scholar 

  110. Peng, C., Li, Z. & Yu, X. The role of pancreatic infiltrating innate immune cells in acute pancreatitis. Int. J. Med. Sci. 18, 534–545 (2021).

    Article  CAS  Google Scholar 

  111. Lutz, E. R. et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2, 616–631 (2014).

    Article  CAS  Google Scholar 

  112. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  CAS  Google Scholar 

  113. Stromnes, I. M., Hulbert, A., Pierce, R. H., Greenberg, P. D. & Hingorani, S. R. T-cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 5, 978–991 (2017).

    Article  CAS  Google Scholar 

  114. Stromnes, I. M. et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63, 1769–1781 (2014). This study demonstrates that depletion of immunosuppressive neutrophils (G-MDSCs) in the setting of established PDA in a GEMM enables endogenous CD8+ effector T cells to infiltrate and kill tumour epithelial cells.

    Article  CAS  Google Scholar 

  115. Beatty, G. L. et al. Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6Clow F4/80+ extratumoral macrophages. Gastroenterology 149, 201–210 (2015).

    Article  CAS  Google Scholar 

  116. Liudahl, S. M. et al. Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-20-0841 (2021).

    Article  Google Scholar 

  117. Steele, N. G. et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer 1, 1097–1112 (2020).

    Article  CAS  Google Scholar 

  118. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  Google Scholar 

  119. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017). This article establishes the principle that in addition to, or perhaps more importantly than, the number of neoepitopes generated by a PDA, the quality of an epitope in terms of its ability to engage productive immunity can influence long-term survival in patients.

    Article  CAS  Google Scholar 

  120. Ino, Y. et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br. J. Cancer 108, 914–923 (2013).

    Article  CAS  Google Scholar 

  121. Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017).

    Article  Google Scholar 

  122. von Bernstorff, W. et al. Systemic and local immunosuppression in pancreatic cancer patients. Clin. Cancer Res. 7, 925s–932s (2001).

    Google Scholar 

  123. Ene-Obong, A. et al. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 145, 1121–1132 (2013).

    Article  CAS  Google Scholar 

  124. Ajina, R. & Weiner, L. M. T-cell immunity in pancreatic cancer. Pancreas 49, 1014–1023 (2020).

    Article  CAS  Google Scholar 

  125. Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2, 112–120 (2014).

    Article  CAS  Google Scholar 

  126. Le, D. T. et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J. Clin. Oncol. 33, 1325–1333 (2015).

    Article  CAS  Google Scholar 

  127. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  Google Scholar 

  128. Le, D. T. et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 36, 382–389 (2013).

    Article  CAS  Google Scholar 

  129. Freed-Pastor, W. A. et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell 39, 1342–1360 e1314 (2021).

    Article  CAS  Google Scholar 

  130. Zhang, Y. et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66, 124–136 (2017).

    Article  CAS  Google Scholar 

  131. Evans, R. A. et al. Lack of immunoediting in murine pancreatic cancer reversed with neoantigen. JCI Insight https://doi.org/10.1172/jci.insight.88328 (2016).

    Article  Google Scholar 

  132. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    Article  CAS  Google Scholar 

  133. Schalck, A. et al. Single cell sequencing reveals trajectory of tumor-infiltrating lymphocyte states in pancreatic cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-1248 (2022).

    Article  Google Scholar 

  134. Tcyganov, E., Mastio, J., Chen, E. & Gabrilovich, D. I. Plasticity of myeloid-derived suppressor cells in cancer. Curr. Opin. Immunol. 51, 76–82 (2018).

    Article  CAS  Google Scholar 

  135. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  Google Scholar 

  136. Stromnes, I. M., Greenberg, P. D. & Hingorani, S. R. Molecular pathways: myeloid complicity in cancer. Clin. Cancer Res. 20, 5157–5170 (2014).

    Article  CAS  Google Scholar 

  137. Markowitz, J. et al. Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease. Cancer Immunol. Immunother. 64, 149–159 (2015).

    Article  CAS  Google Scholar 

  138. Porembka, M. R. et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol. Immunother. 61, 1373–1385 (2012).

    Article  CAS  Google Scholar 

  139. Ostrand-Rosenberg, S. & Fenselau, C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J. Immunol. 200, 422–431 (2018).

    Article  CAS  Google Scholar 

  140. Kim, B. Y., Gaynor, R. B., Song, K., Dritschilo, A. & Jung, M. Constitutive activation of NF-kappaB in Ki-ras-transformed prostate epithelial cells. Oncogene 21, 4490–4497 (2002).

    Article  CAS  Google Scholar 

  141. Hamarsheh, S., Gross, O., Brummer, T. & Zeiser, R. Immune modulatory effects of oncogenic KRAS in cancer. Nat. Commun. 11, 5439 (2020).

    Article  CAS  Google Scholar 

  142. Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    Article  CAS  Google Scholar 

  143. Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012). Together with Pylayeva-Gupta et al. (2012), this study establishes that GM-CSF-mediated recruitment of suppressive myeloid cells is essential for pancreatic cancer progression in mouse models.

    Article  CAS  Google Scholar 

  144. Mastio, J. et al. Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. J. Exp. Med. 216, 2150–2169 (2019).

    Article  CAS  Google Scholar 

  145. Steele, C. W. et al. CXCR2 Inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016). Extending prior studies on the essential role of suppressive myeloid cells in PDA progression, this study demonstrates that their recruitment via CXCR2-mediated signalling is also required to develop and maintain metastatic disease.

    Article  CAS  Google Scholar 

  146. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  Google Scholar 

  147. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

    Article  CAS  Google Scholar 

  148. Sanford, D. E. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 19, 3404–3415 (2013).

    Article  CAS  Google Scholar 

  149. Weizman, N. et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33, 3812–3819 (2014).

    Article  CAS  Google Scholar 

  150. Halbrook, C. J. et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 29, 1390–1399 e1396 (2019).

    Article  CAS  Google Scholar 

  151. Nywening, T. M. et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67, 1112–1123 (2018). This study supports the notion of a homeostatic set point of immune suppression maintained by a community of immune cell subsets that can compensate for each other when one population is targeted.

    Article  CAS  Google Scholar 

  152. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    Article  CAS  Google Scholar 

  153. Pahler, J. C. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 10, 329–340 (2008).

    Article  CAS  Google Scholar 

  154. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 597 (2017). This study delineates the sources of macrophages in a GEMM of PDA and defines their respective roles in disease pathogenesis.

    Article  CAS  Google Scholar 

  155. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011). This study demonstrates the ability of an immunomodulatory agent to re-educate intratumoural macrophages towards a tumour-suppressive phenotype in both mouse and human PDA.

    Article  CAS  Google Scholar 

  156. Wattenberg, M. M. et al. Systemic inflammation is a determinant of outcomes of CD40 agonist-based therapy in pancreatic cancer patients. JCI Insight https://doi.org/10.1172/jci.insight.145389 (2021).

    Article  Google Scholar 

  157. Stromnes, I. M. et al. Differential effects of depleting versus programming tumor-associated macrophages on engineered T cells in pancreatic ductal adenocarcinoma. Cancer Immunol. Res. 7, 977–989 (2019).

    Article  CAS  Google Scholar 

  158. Wing, J. B., Tanaka, A. & Sakaguchi, S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50, 302–316 (2019).

    Article  CAS  Google Scholar 

  159. Linehan, D. C. & Goedegebuure, P. S. CD25+CD4+ regulatory T-cells in cancer. Immunol. Res. 32, 155–168 (2005).

    Article  CAS  Google Scholar 

  160. Tang, Y. et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS ONE 9, e91551 (2014).

    Article  Google Scholar 

  161. Hiraoka, N., Onozato, K., Kosuge, T. & Hirohashi, S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res. 12, 5423–5434 (2006).

    Article  CAS  Google Scholar 

  162. Tan, M. C. et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol. 182, 1746–1755 (2009).

    Article  CAS  Google Scholar 

  163. Jang, J. E. et al. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep. 20, 558–571 (2017).

    Article  CAS  Google Scholar 

  164. Viehl, C. T. et al. Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann. Surg. Oncol. 13, 1252–1258 (2006).

    Article  Google Scholar 

  165. Plitas, G. & Rudensky, A. Regulatory T cells in cancer. Annu. Rev. Cancer Biol. 4, 457–477 (2020).

    Article  Google Scholar 

  166. Zhang, Y. et al. CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol. Res. 2, 423–435 (2014).

    Article  CAS  Google Scholar 

  167. Mahlbacher, V., Sewing, A., Elsasser, H. P. & Kern, H. F. Hyaluronan is a secretory product of human pancreatic adenocarcinoma cells. Eur. J. Cell Biol. 58, 28–34 (1992).

    CAS  Google Scholar 

  168. Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. Us. 116, 19609–19618 (2019).

    Article  CAS  Google Scholar 

  169. Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).

    Article  CAS  Google Scholar 

  170. Kim, P. K. et al. Hyaluronic acid fuels pancreatic cancer cell growth. Elife https://doi.org/10.7554/eLife.62645 (2021).

    Article  Google Scholar 

  171. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012). This study first identified the presence of exorbitantly elevated interstitial pressures (more than 100 mmHg) in a GEMM of autochthonous PDA and their dependence on HMW HA and then, together with Jacobetz et al. (2013), showed that specifically degrading intratumoural HA reverses vascular collapse and enables effective drug delivery to the tumour bed.

    Article  CAS  Google Scholar 

  172. DuFort, C. C. et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. Biophys. J. 110, 2106–2119 (2016). This article describes the unusual properties of an HA-dependent gel-fluid phase in PDA that generates large swelling pressures that are counterpoised by entanglement with a tethered fibrillar collagen network, and together result in enormous interstitial pressures.

    Article  CAS  Google Scholar 

  173. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).

    Article  CAS  Google Scholar 

  174. Bosveld, F. et al. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts. Development 143, 623–634 (2016).

    CAS  Google Scholar 

  175. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  176. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  Google Scholar 

  177. Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528–539 (2004).

    Article  CAS  Google Scholar 

  178. Katchalsky, A. Polyelectrolytes and their biological interactions. Biophys. J. 4, 9–41 (1964).

    Article  CAS  Google Scholar 

  179. Thompson, C. B. et al. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol. Cancer Ther. 9, 3052–3064 (2010). This study provides a proof of principle that systemically delivered PEGylated hyaluronidase can deplete interstitial HA and lower interstitial pressures in implanted tumour models.

    Article  CAS  Google Scholar 

  180. Hingorani, S. R. et al. A phase Ib study of gemcitabine plus PEGPH20 (pegylated recombinant human hyaluronidase) in patients with stage IV previously untreated pancreatic cancer. J. Clin. Oncol. 31(15 Suppl.), 4010 (2013).

    Article  Google Scholar 

  181. Hingorani, S. R. et al. Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine (PAG) vs AG in patients (Pts) with untreated, metastatic pancreatic ductal adenocarcinoma (mPDA). J. Clin. Oncol. https://doi.org/10.1200/JCO.2017.35.15_suppl.4008 (2017).

    Article  Google Scholar 

  182. Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    Article  Google Scholar 

  183. Ramanathan, R. K. et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J. Clin. Oncol. 37, 1062–1069 (2019).

    Article  CAS  Google Scholar 

  184. Meyer, F. A. Macromolecular basis of globular protein exclusion and of swelling pressure in loose connective tissue (umbilical cord). Biochim. Biophys. Acta 755, 388–399 (1983).

    Article  CAS  Google Scholar 

  185. Meyer, F. A., Laver-Rudich, Z. & Tanenbaum, R. Evidence for a mechanical coupling of glycoprotein microfibrils with collagen fibrils in Wharton’s jelly. Biochim. Biophys. Acta 755, 376–387 (1983).

    Article  CAS  Google Scholar 

  186. Trinkaus, J. P. Cells into Organs: The Forces That Shape the Embryo (Prentice-Hall, 1984).

  187. Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).

    Article  CAS  Google Scholar 

  188. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    Article  CAS  Google Scholar 

  189. Murakami, S. et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene 36, 1232–1244 (2017).

    Article  CAS  Google Scholar 

  190. Jiang, Z. et al. Inhibiting YAP expression suppresses pancreatic cancer progression by disrupting tumor-stromal interactions. J. Exp. Clin. Cancer Res. 37, 69 (2018).

    Article  Google Scholar 

  191. Zhang, W. et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 7, ra42 (2014).

    Article  Google Scholar 

  192. Gruber, R. et al. YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology 151, 526–539 (2016).

    Article  CAS  Google Scholar 

  193. Kapoor, A. et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–197 (2014). This study identifies aberrant YAP activation as an escape mechanism for PDA cells to cause relapse after prior tumour regressions induced by extinguishing oncogenic Kras expression.

    Article  CAS  Google Scholar 

  194. Mello, S. S. et al. A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell 32, 460–473 e466 (2017).

    Article  CAS  Google Scholar 

  195. DeVita, V. T. Jr & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    Article  CAS  Google Scholar 

  196. Rogers, K. W. & Schier, A. F. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011).

    Article  CAS  Google Scholar 

  197. Alvarez, M. A., Freitas, J. P., Mazher Hussain, S. & Glazer, E. S. TGF-beta inhibitors in metastatic pancreatic ductal adenocarcinoma. J. Gastrointest. Cancer 50, 207–213 (2019).

    Article  Google Scholar 

  198. Mpekris, F. et al. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl Acad. Sci. USA 117, 3728–3737 (2020).

    Article  CAS  Google Scholar 

  199. Waterhouse, M. et al. Effect of vitamin D supplementation on selected inflammatory biomarkers in older adults: a secondary analysis of data from a randomised, placebo-controlled trial. Br. J. Nutr. 114, 693–699 (2015).

    Article  CAS  Google Scholar 

  200. Vonderheide, R. H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med. 71, 47–58 (2020).

    Article  CAS  Google Scholar 

  201. Stalnecker, C. A. & Der, C. J. RAS, wanted dead or alive: advances in targeting RAS mutant cancers. Sci. Signal. https://doi.org/10.1126/scisignal.aay6013 (2020).

    Article  Google Scholar 

  202. Tanaka, N. et al. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).

    Article  CAS  Google Scholar 

  203. Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016). This study reveals the role of activated FAK signalling in a GEMM of PDA in supporting an immunosuppressive state.

    Article  CAS  Google Scholar 

  204. Jiang, H. et al. Development of resistance to FAK inhibition in pancreatic cancer is linked to stromal depletion. Gut 69, 122–132 (2020).

    Article  CAS  Google Scholar 

  205. Zhao, Y. et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 116, 2210–2219 (2019).

    Article  CAS  Google Scholar 

  206. Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).

    Article  CAS  Google Scholar 

  207. Bengsch, F., Knoblock, D. M., Liu, A., McAllister, F. & Beatty, G. L. CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol. Immunother. 66, 1609–1617 (2017).

    Article  CAS  Google Scholar 

  208. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 e814 (2018).

    Article  CAS  Google Scholar 

  209. Stromnes, I. M. et al. T Cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma. Cancer Cell 28, 638–652 (2015). This study provides a proof of principle for a strategy of serial infusions of tumour-targeting engineered T cells to overcome interstitial pressures and mechanisms of immune suppression in a GEMM of PDA.

    Article  CAS  Google Scholar 

  210. Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673 e657 (2022). This study identifies mesothelial cells as another source of tumour-promoting PDA CAFs with a unique antigen-presenting-like phenotype that promote the expansion of Treg cells.

    Article  CAS  Google Scholar 

  211. McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014).

    Article  CAS  Google Scholar 

  212. Dey, P. et al. Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment. Cancer Discov. 10, 608–625 (2020).

    Article  CAS  Google Scholar 

  213. Gittes, G. K. Developmental biology of the pancreas: a comprehensive review. Dev. Biol. 326, 4–35 (2009).

    Article  CAS  Google Scholar 

  214. Hebrok, M., Kim, S. K. & Melton, D. A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713 (1998).

    Article  CAS  Google Scholar 

  215. Murtaugh, L. C., Law, A. C., Dor, Y. & Melton, D. A. Beta-catenin is essential for pancreatic acinar but not islet development. Development 132, 4663–4674 (2005).

    Article  CAS  Google Scholar 

  216. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44 (2000).

    Article  CAS  Google Scholar 

  217. Harris, T. J. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. 11, 502–514 (2010).

    Article  CAS  Google Scholar 

  218. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  219. Keller, R. Developmental biology. Physical biology returns to morphogenesis. Science 338, 201–203 (2012).

    Article  CAS  Google Scholar 

  220. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks J. Potter, C. Ghajar and T. Hollingsworth for helpful comments on the manuscript, S. Thorsen for help with preparation of the manuscript, M. Whittle and C. Dufort for help with figure preparation, and a great many colleagues for stimulating discussions. Work in the author’s laboratory is supported in part by NIH/NCI R01 CA161112, R01 CA223483 and U01 CA224193, Cancer Center Support Grant P30 CA015704 and Pancreatic Cancer Action Network Precision Medicine Targeted Grant 17-85-HING.

Author information

Authors and Affiliations

Authors

Contributions

The author handled all aspects of the article.

Corresponding author

Correspondence to Sunil R. Hingorani.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Valerie Weaver, Giulia Biffi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Acinar-to-ductal metaplasia

(ADM). A postulated transdifferentiation of a mature acinar cell into an abnormal ductal-like cell in response to an oncogenic stimulus with or without a superimposed injury that may give rise to the precursors (pancreatic intraepithelial neoplasias) of pancreatic cancer.

Anlage

A classical term in embryology used to define an area or collection of cells that serve as a foundation, or primordium, for a subsequent developmental event.

Contrast enhancement

The differential uptake of systemically introduced radiographic contrast material by an organ over time or in relation to another adjacent organ.

Ductules

The terminal portions of the branching pancreatic ductal system, which gets progressively smaller in calibre as the tree spreads from the centre of the gland to the periphery.

Elastic modulus

Also called ’Young’s modulus’, a measure of stiffness and formally the slope of the stress–strain curve (that is, a plot of the extent to which a material is reversibly (elastically) deformed in response to an applied force).

Evaginations

Extensions of a sheet of cells while maintaining contiguity to form a protrusion or outpouching from the surface layer (as opposed to invagination, or inward migration of a sheet of cells, to form a dimple or tunnel within a cell mass).

Hedgehog (Hh) signalling

A critical embryonic signalling pathway that figures prominently in the development and differentiation of many tissues and organs of the body and that is regulated by three ligands, Indian Hedgehog (IHH), sonic Hedgehog (SHH) and desert Hedgehog (DHH).

Hexosamine biosynthetic pathway

(HBP). This pathway integrates metabolites from glycolysis with those from amino acid, nucleic acid and lipid breakdown to generate uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for use in critical glycosylation reactions.

Hyaluronan

(HA). A highly soluble, negatively charged, linear unbranched sugar polymer comprising repeating disaccharide units of N-acetylglucosamine (NAG) and d-glucuronic acid that avidly binds water and swells, providing turgor to many tissues in the body.

Myelocytes

Precursors to granulocytes (basophils, neutrophils and eosinophils).

Myelopoiesis

The generation of myeloid (as opposed to lymphoid) cells in the bone marrow, including red blood cells, platelets, mast cells, granulocytes and monocytes (macrophages and dendritic cells).

Nerve plexuses

Confluences or bundles of afferent and efferent nerve fibres from several levels of the spine as they emerge from the foramina.

Non-oxidative pentose pathway

The non-oxidative phase of the pentose phosphate pathway; it generates ribose 5-phosphate for nucleotide synthesis, and this is further metabolized to generate glycolytic intermediates. The oxidative phase generates reducing equivalents in the form of NADPH for reductive biosynthetic reactions.

One-carbon metabolism

A series of elemental reactions built upon folate biochemistry that involve one-carbon molecules (methyl groups) to provide the building blocks for the most fundamental reactions in cellular metabolism.

Pancreaticoduodenectomy

Also called ‘Whipple procedure’ (after its pioneer), a complex surgical procedure involving removal of the head of the pancreas, the adjoining portions (first and second parts) of the small bowel, the extrahepatic biliary ducts and the gall bladder, and previously the pylorus and antrum of the stomach as well, in the attempt to achieve cure of a pancreatic cancer.

Reflux injury

Parenchymal damage in the pancreas caused by forced exudation of digestive enzymes across the ductal barrier because of a downstream obstruction.

Tricarboxylic acid (TCA) cycle

Also called the ‘citric acid cycle’ or the ‘Krebs cycle’, oxidizes acetate (linked to coenzyme A) to generate NADH, which is then used by the electron transport chain in the mitochondria to generate ATP.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hingorani, S.R. Epithelial and stromal co-evolution and complicity in pancreatic cancer. Nat Rev Cancer 23, 57–77 (2023). https://doi.org/10.1038/s41568-022-00530-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00530-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer