Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developing dietary interventions as therapy for cancer

Abstract

Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nutrient utilization in cancer.
Fig. 2: Tissue-specific metabolism.
Fig. 3: Development progress for dietary interventions for cancer.

Similar content being viewed by others

References

  1. Song, M. & Giovannucci, E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol. 2, 1154–1161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parkin, D. M., Boyd, L. & Walker, L. C. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br. J. Cancer 105, S77–S81 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blot, W. J. & Tarone, R. E. Doll and Peto’s quantitative estimates of cancer risks: holding generally true for 35 years. JNCI 107, djv044 (2015).

    Article  PubMed  Google Scholar 

  4. Barclay, A. W., Flood, V. M., Brand-Miller, J. C. & Mitchell, P. Validity of carbohydrate, glycaemic index and glycaemic load data obtained using a semi-quantitative food-frequency questionnaire. Public Health Nutr. 11, 573–580 (2008).

    Article  PubMed  Google Scholar 

  5. Satija, A., Yu, E., Willett, W. C. & Hu, F. B. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 6, 5–18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goncalves, M. D., Hopkins, B. D. & Cantley, L. C. Dietary fat and sugar in promoting cancer development and progression. Annu. Rev. Cancer Biol. 3, 255–273 (2019).

    Article  Google Scholar 

  7. Gallagher, E. J. & LeRoith, D. Hyperinsulinaemia in cancer. Nat. Rev. Cancer 20, 629–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Hopkins, B. D., Goncalves, M. D. & Cantley, L. C. Obesity and cancer mechanisms: cancer metabolism. J. Clin. Oncol. 34, 4277–4283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. World Cancer Research/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018. dietandcancerreport.org (2018). This report provides a comprehensive analysis of the global research on lifestyle choices and cancer prevention.

  10. Kanarek, N., Petrova, B. & Sabatini, D. M. Dietary modifications for enhanced cancer therapy. Nature 579, 507–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Tajan, M. & Vousden, K. H. Dietary approaches to cancer therapy. Cancer Cell 37, 767–785 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caffa, I. et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583, 620–624 (2020). This study of hormone receptor-positive mouse models shows that FMD combined with CDK4/6 inhibitor therapy promotes tumour regression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. de Groot, S. et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat. Commun. 11, 3083 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Vernieri, C. et al. Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer. Cancer Discov. 12, 90–107 (2022). This study includes transcriptomics data from the tumour and describes the changes in peripheral blood cell populations before and after a FMD intervention in humans.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Chandel, N. S. Glycolysis. Cold Spring Harb. Perspect. Biol. 13, a040535 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  20. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  21. Chandel, N. S. Metabolism of proliferating cells. Cold Spring Harb. Perspect. Biol. 13, a040618 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rabinowitz, J. D. & Enerbäck, S. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688.e4 (2020). This study uses stable isotope tracing to quantitatively survey the uptake and monitor the fate of infused metabolites in healthy mouse tissues in fasted and fed states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le, M. T. et al. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 61, 641–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Jang, C. et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018). This study uses stable isotope tracing to quantify the uptake and monitor the fate of orally delivered sugar in healthy mice over time and notes that the intestine metabolizes most ingested fructose.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carreño, D. et al. Fructose and prostate cancer: toward an integrated view of cancer cell metabolism. Prostate Cancer Prostatic Dis. 22, 49–58 (2019).

    Article  PubMed  CAS  Google Scholar 

  29. Chen, W.-L. et al. Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell 30, 779–791 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Raivio, K. O., Kekomäki, M. P. & Mäenpää, P. H. Depletion of liver adenine nucleotides induced by d-fructose: dose-dependence and specificity of the fructose effect. Biochem. Pharmacol. 18, 2615–2624 (1969).

    Article  CAS  PubMed  Google Scholar 

  31. Taylor, S. R. et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 597, 263–267 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Bu, P. et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. https://doi.org/10.1016/J.CMET.2018.04.003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Weng, Y. et al. SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization. Cell Death Discov. 4, 38 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen, W.-L. et al. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight 5, e131596 (2020).

    Article  PubMed Central  Google Scholar 

  35. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Mayers, J. R. et al. Tissue-of-origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swinnen, J. V., Brusselmans, K. & Verhoeven, G. Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 9, 358–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132–1144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santos, C. R. & Schulze, A. Lipid metabolism in cancer. FEBS J. 279, 2610–2623 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Sugimoto, M. et al. MMMDB: Mouse Multiple Tissue Metabolome Database. Nucleic Acids Res. 40, D809–D814 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Reznik, E. et al. A landscape of metabolic variation across tumor types. Cell Syst. 6, 301–313.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akbani, R. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun. 5, 3887 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N. D. & Kamangar, F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomark. Prev. 23, 700–713 (2014).

    Article  Google Scholar 

  46. Chow, W.-H., Dong, L. M. & Devesa, S. S. Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 7, 245–257 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Simpson, I. A. et al. The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol. Endocrinol. Metab. 295, E242–E253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding, J. et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 12, 6021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Venneti, S. & Thompson, C. B. Metabolic reprogramming in brain tumors. Annu. Rev. Pathol. Mech. Dis. 12, 515–545 (2017).

    Article  CAS  Google Scholar 

  50. Nehlig, A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot. Essent. Fat. Acids 70, 265–275 (2004).

    Article  CAS  Google Scholar 

  51. Hawkins, R. A. & Biebuyck, J. F. Ketone bodies are selectively used by individual brain regions. Science 205, 325–327 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Nehlig, A., Boyet, S. & Pereira de Vasconcelos, A. Autoradiographic measurement of local cerebral β-hydroxybutyrate uptake in the rat during postnatal development. Neuroscience 40, 871–878 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Schönfeld, P. & Reiser, G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow. Metab. 33, 1493–1499 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Maurer, G. D. et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 11, 315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56, 400–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bi, J. et al. Altered cellular metabolism in gliomas — an emerging landscape of actionable co-dependency targets. Nat. Rev. Cancer 20, 57–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Parker, S. J. & Metallo, C. M. Metabolic consequences of oncogenic IDH mutations. Pharmacol. Ther. 152, 54–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grassian, A. R. et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 74, 3317–3331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Anderson, S. M., Rudolph, M. C., McManaman, J. L. & Neville, M. C. Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Res. 9, 204 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Menzies, K. K., Lefèvre, C., Macmillan, K. L. & Nicholas, K. R. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct. Integr. Genomics 9, 197–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Nommsen-Rivers, L. A. Does insulin explain the relation between maternal obesity and poor lactation outcomes? An overview of the literature. Adv. Nutr. 7, 407–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Menzies, K. K. et al. Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants. Funct. Integr. Genomics 10, 87–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Jung, Y., Kim, T. H., Kim, J. Y., Han, S. & An, Y.-S. The effect of sex hormones on normal breast tissue metabolism. Medicine 98, e16306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 64, 7678–7681 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Goncalves, M. D., Hopkins, B. D. & Cantley, L. C. Phosphatidylinositol 3-kinase, growth disorders, and cancer. N. Engl. J. Med. 379, 2052–2062 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Miller, T. W. et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J. Clin. Invest. 120, 2406–2413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bosch, A. et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci. Transl. Med. 7, 283ra51 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    Article  PubMed  Google Scholar 

  74. Elia, I., Schmieder, R., Christen, S. & Fendt, S.-M. Organ-specific cancer metabolism and its potential for therapy. Handb. Exp. Pharmacol. 233, 321–353 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Deblois, G. & Giguère, V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat. Rev. Cancer 13, 27–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sullivan, M. R. et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29, 1410–1421.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marino, N. et al. Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis. NPJ Breast Cancer 6, 1–13 (2020).

    Article  CAS  Google Scholar 

  80. Monaco, M. E. Fatty acid metabolism in breast cancer subtypes. Oncotarget 8, 29487–29500 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nickel, A. et al. Adipocytes induce distinct gene expression profiles in mammary tumor cells and enhance inflammatory signaling in invasive breast cancer cells. Sci. Rep. 8, 9482 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Balaban, S. et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yager, J. D. & Davidson, N. E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 354, 270–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Frolova, A. et al. Facilitative glucose transporter type 1 is differentially regulated by progesterone and estrogen in murine and human endometrial stromal cells. Endocrinology 150, 1512–1520 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Rutanen, E. M. Insulin-like growth factors in endometrial function. Gynecol. Endocrinol. 12, 399–406 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Memarzadeh, S. et al. Cell-autonomous activation of the PI3-kinase pathway initiates endometrial cancer from adult uterine epithelium. Proc. Natl Acad. Sci. USA 107, 17298–17303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheung, L. W. T. et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 1, 170–185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oyama, N. et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl. Med. Biol. 29, 783–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Farnsworth, W. E. & Brown, R. Androgen on prostate biosynthetic reactions. Endocrinology 68, 978–986 (1961).

    Article  CAS  PubMed  Google Scholar 

  90. Cutruzzolà, F. et al. Glucose metabolism in the progression of prostate cancer. Front. Physiol. 8, 97 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Frenette, G., Thabet, M. & Sullivan, R. Polyol pathway in human epididymis and semen. J. Androl. 27, 233–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Szabó, Z. et al. Sorbitol dehydrogenase expression is regulated by androgens in the human prostate. Oncol. Rep. 23, 1233–1239 (2010).

    PubMed  Google Scholar 

  93. Potter, S. R., Epstein, J. I. & Partin, A. W. Seminal vesicle invasion by prostate cancer: prognostic significance and therapeutic implications. Rev. Urol. 2, 190–195 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Carreño, D. V. et al. Dietary fructose promotes prostate cancer growth. Cancer Res. 81, 2824–2832 (2021).

    Article  PubMed  Google Scholar 

  95. Watt, M. J. et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci. Transl. Med. 11, eaau5758 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 9, 230–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cooper, W. A., Lam, D. C. L., O’Toole, S. A. & Minna, J. D. Molecular biology of lung cancer. J. Thorac. Dis. 5, S479–S490 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brunelli, L., Caiola, E., Marabese, M., Broggini, M. & Pastorelli, R. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget 5, 4722–4731 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Davidson, S. M. et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Faubert, B. & DeBerardinis, R. J. Analyzing tumor metabolism in vivo. Annu. Rev. Cancer Biol. 1, 99–117 (2017).

    Article  Google Scholar 

  106. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Padanad, M. S. et al. Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 16, 1614–1628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, A. M. Y. et al. Endogenous hyperinsulinemia contributes to pancreatic cancer development. Cell Metab. 30, 403–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Khasawneh, J. et al. Inflammation and mitochondrial fatty acid β-oxidation link obesity to early tumor promotion. Proc. Natl Acad. Sci. USA 106, 3354–3359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lien, E. C. et al. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature https://doi.org/10.1038/s41586-021-04049-2 (2021). This study uses mouse models of KRAS-mutant PDAC and finds that decreasing tumour access to unsaturated fats via diet (calorie restriction or a high saturated fat ketogenic diet) synergizes with inhibition of SCD to slow tumour growth.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhao, S. et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579, 586–591 (2020). This study shows that fructose not only serves as a signal acting on the liver directly to induce lipogenesis but also as a substrate via its conversion to acetate in intestinal microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pate, K. T. et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33, 1454–1473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Satoh, K. et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc. Natl Acad. Sci. USA 114, E7697–E7706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brown, R. E., Short, S. P. & Williams, C. S. Colorectal cancer and metabolism. Curr. Colorectal Cancer Rep. 14, 226–241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hao, Y. et al. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat. Commun. 7, 11971 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Taylor, S. R. et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature https://doi.org/10.1038/s41586-021-03827-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Goncalves, M. D. et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science 363, 1345–1349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. USA 106, 21453–21458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).

    Article  PubMed  Google Scholar 

  126. Saran, U., Humar, B., Kolly, P. & Dufour, J.-F. Hepatocellular carcinoma and lifestyles. J. Hepatol. 64, 203–214 (2016).

    Article  PubMed  Google Scholar 

  127. Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 69, 385–395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Healy, M. E. et al. Dietary sugar intake increases liver tumor incidence in female mice. Sci. Rep. 6, 22292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nakagawa, H. et al. Lipid metabolic reprogramming in hepatocellular carcinoma. Cancers 10, 447 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  130. Lally, J. S. V. et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174–182.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Ho, C.-L., Yu, S. C. H. & Yeung, D. W. C. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J. Nucl. Med. 44, 213–221 (2003).

    PubMed  Google Scholar 

  132. Jeon, J. Y. et al. Regulation of acetate utilization by monocarboxylate transporter 1 (MCT1) in hepatocellular carcinoma (HCC). Oncol. Res. 26, 71–81 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tilg, H., Adolph, T. E., Gerner, R. R. & Moschen, A. R. The intestinal microbiota in colorectal cancer. Cancer Cell 33, 954–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165, 1708–1720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Björnson, E. et al. Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 13, 2014–2026 (2015).

    Article  PubMed  CAS  Google Scholar 

  138. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Goncalves, M. D. & Maddocks, O. D. Engineered diets to improve cancer outcomes. Curr. Opin. Biotechnol. 70, 29–35 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Das, S. K. et al. Low or moderate dietary energy restriction for long-term weight loss: what works best? Obesity 17, 2019–2024 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Heilbronn, L. K. et al. Effect of 6-mo. calorie restriction on biomarkers of longevity, metabolic adaptation and oxidative stress in overweight subjects. JAMA 295, 1539–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Weiss, E. P. & Holloszy, J. O. Improvements in body composition, glucose tolerance, and insulin action induced by increasing energy expenditure or decreasing energy intake. J. Nutr. 137, 1087–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Kraus, W. E. et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 7, 673–683 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Look AHEAD Research Group. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Article  CAS  Google Scholar 

  145. Mudaliar, U. et al. Cardiometabolic risk factor changes observed in diabetes prevention programs in US settings: a systematic review and meta-analysis. PLoS Med. 13, e1002095 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Moreira, E. A. M., Most, M., Howard, J. & Ravussin, E. Dietary adherence to long-term controlled feeding in a calorie-restriction study in overweight men and women. Nutr. Clin. Pract. 26, 309–315 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dorling, J. L. et al. Changes in body weight, adherence, and appetite during 2 years of calorie restriction: the CALERIE 2 randomized clinical trial. Eur. J. Clin. Nutr. 74, 1210–1220 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shaikh, H. et al. Body weight management in overweight and obese breast cancer survivors. Cochrane Database Syst. Rev. 12, CD012110 (2020).

    PubMed  Google Scholar 

  149. Rous, P. The influence of diet on transplanted and spontaneous mouse tumors. J. Exp. Med. 20, 433–451 (1914).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lv, M., Zhu, X., Wang, H., Wang, F. & Guan, W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS ONE 9, e115147 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Pomatto-Watson, L. C. D. et al. Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition. Nat. Commun. 12, 6201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Castejón, M. et al. Energy restriction and colorectal cancer: a call for additional research. Nutrients 12, 114 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  153. Kalaany, N. Y. & Sabatini, D. M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pearson, K. J. et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc. Natl Acad. Sci. USA 105, 2325–2330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. de Man, F. M. et al. Effects of protein and calorie restriction on the metabolism and toxicity profile of irinotecan in cancer patients. Clin. Pharmacol. Ther. 109, 1304–1313 (2021).

    Article  PubMed  CAS  Google Scholar 

  156. Orgel, E. et al. Caloric and nutrient restriction to augment chemotherapy efficacy for acute lymphoblastic leukemia: the IDEAL trial. Blood Adv. 5, 1853–1861 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Goodwin, P. J. et al. The LISA randomized trial of a weight loss intervention in postmenopausal breast cancer. NPJ Breast Cancer 6, 6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Goodwin, P. J. et al. Randomized trial of a telephone-based weight loss intervention in postmenopausal women with breast cancer receiving letrozole: the LISA trial. J. Clin. Oncol. 32, 2231–2239 (2014).

    Article  PubMed  Google Scholar 

  159. Ligibel, J. A. et al. Randomized phase III trial evaluating the role of weight loss in adjuvant treatment of overweight and obese women with early breast cancer (Alliance A011401): study design. NPJ Breast Cancer 3, 37 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Acosta-Rodríguez, V. A., de Groot, M. H. M., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 26, 267–277.e2 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Mitchell, S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221–228.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Pak, H. H. et al. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat. Metab. https://doi.org/10.1038/s42255-021-00466-9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bauersfeld, S. P. et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer 18, 476 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Safdie, F. M. et al. Fasting and cancer treatment in humans: a case series report. Aging 1, 988–1007 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Trepanowski, J. F. et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern. Med. 177, 930–938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707–719 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wei, M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 9, eaai8700 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Sadeghian, M., Hosseini, S. A., Zare Javid, A., Ahmadi Angali, K. & Mashkournia, A. Effect of fasting-mimicking diet or continuous energy restriction on weight loss, body composition, and appetite-regulating hormones among metabolically healthy women with obesity: a randomized controlled, parallel trial. Obes. Surg. https://doi.org/10.1007/s11695-020-05202-y (2021).

    Article  PubMed  Google Scholar 

  170. Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 4, 124ra27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Di Tano, M. et al. Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat. Commun. 11, 2332 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Salvadori, G. et al. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab. 33, 2247–2259.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. D’Aronzo, M. et al. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 6, 18545–18557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Valdemarin, F. et al. Safety and feasibility of fasting-mimicking diet and effects on nutritional status and circulating metabolic and inflammatory factors in cancer patients undergoing active treatment. Cancers 13, 4013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vernieri, C. et al. Exploiting FAsting-mimicking Diet and MEtformin to Improve the Efficacy of Platinum-pemetrexed Chemotherapy in Advanced LKB1-inactivated Lung Adenocarcinoma: the FAME trial. Clin. Lung Cancer 20, e413–e417 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Boden, G., Sargrad, K., Homko, C., Mozzoli, M. & Stein, T. P. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med. 142, 403–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Shintani, T. T., Hughes, C. K., Beckham, S. & O’Connor, H. K. Obesity and cardiovascular risk intervention through the ad libitum feeding of traditional Hawaiian diet. Am. J. Clin. Nutr. 53, 1647S–1651S (1991).

    Article  CAS  PubMed  Google Scholar 

  179. Wilder, R. M. The effect of ketonemia on the course of epilepsy. Mayo Clin. Bull. 2, 1 (1921).

    Google Scholar 

  180. Geyelin, H. R. Fasting as a method for treating epilepsy. M. Rec. 99, 2 (1921).

    Google Scholar 

  181. Peterman, M. G. The ketogenic diet in the treatment of epilepsy: a preliminary report. Am. J. Dis. Child. 28, 5 (1924).

    Article  Google Scholar 

  182. Cohen, C. W., Fontaine, K. R., Arend, R. C. & Gower, B. A. A ketogenic diet is acceptable in women with ovarian and endometrial cancer and has no adverse effects on blood lipids: a randomized, controlled trial. Nutr. Cancer 72, 584–594 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Cohen, C. W. et al. A ketogenic diet reduces central obesity and serum insulin in women with ovarian or endometrial cancer. J. Nutr. 148, 1253–1260 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hyde, P. N. et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 4, e128308 (2019).

    Article  PubMed Central  Google Scholar 

  185. Schwartz, R. M., Boyes, S. & Aynsley-Green, A. Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Dev. Med. Child. Neurol. 31, 152–160 (1989).

    Article  CAS  PubMed  Google Scholar 

  186. Paoli, A., Mancin, L., Giacona, M. C., Bianco, A. & Caprio, M. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J. Transl. Med. 18, 104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Choi, Y. J., Jeon, S.-M. & Shin, S. Impact of a ketogenic diet on metabolic parameters in patients with obesity or overweight and with or without ype 2 diabetes: a meta-analysis of randomized controlled trials. Nutrients 12, E2005 (2020).

    Article  PubMed  CAS  Google Scholar 

  188. Athinarayanan, S. J. et al. Long-term effects of a novel continuous remote care intervention including nutritional ketosis for the management of type 2 diabetes: a 2-year non-randomized clinical trial. Front. Endocrinol. 10, 348 (2019).

    Article  Google Scholar 

  189. Roehl, K. & Sewak, S. L. Practice paper of the academy of nutrition and dietetics: classic and modified ketogenic diets for treatment of epilepsy. J. Acad. Nutr. Diet. 117, 1279–1292 (2017).

    Article  PubMed  Google Scholar 

  190. Bostock, E. C. S., Kirkby, K. C., Taylor, B. V. & Hawrelak, J. A. Consumer reports of ‘keto flu’ associated with the ketogenic diet. Front. Nutr. 7, 20 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Włodarek, D. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients 11, E169 (2019).

    Article  PubMed  CAS  Google Scholar 

  192. Klement, R. J., Brehm, N. & Sweeney, R. A. Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med. Oncol. 37, 14 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Cohen, C. W., Fontaine, K. R., Arend, R. C., Soleymani, T. & Gower, B. A. Favorable effects of a ketogenic diet on physical function, perceived energy, and food cravings in women with ovarian or endometrial cancer: a randomized, controlled trial. Nutrients 10, 1187 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  194. Ma, D. C. et al. Ketogenic diet with concurrent chemoradiation in head and neck squamous cell carcinoma: preclinical and phase 1 trial results. Radiat. Res. 196, 213–224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zahra, A. et al. Consuming a ketogenic diet while receiving radiation and chemotherapy for locally advanced lung cancer and pancreatic cancer: the University of Iowa experience of two phase 1 clinical trials. Radiat. Res. 187, 743–754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 4, 17105 (2018).

    Article  PubMed  Google Scholar 

  197. Tan-Shalaby, J. L. et al. Modified Atkins diet in advanced malignancies — final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr. Metab. 13, 52 (2016).

    Article  CAS  Google Scholar 

  198. US National Laboratory of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04631445 (2022).

  199. Khodabakhshi, A. et al. Effects of ketogenic metabolic therapy on patients with breast cancer: a randomized controlled clinical trial. Clin. Nutr. 40, 751–758 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Eisenhauer, E. A. et al. New Response Evaluation Criteria in Solid Tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Thiébaut, A. C. M. et al. Dietary fat and postmenopausal invasive breast cancer in the National Institutes of Health–AARP Diet and Health Study cohort. J. Natl Cancer Inst. 99, 451–462 (2007).

    Article  PubMed  Google Scholar 

  202. Howe, G. R., Friedenreich, C. M., Jain, M. & Miller, A. B. A cohort study of fat intake and risk of breast cancer. J. Natl Cancer Inst. 83, 336–340 (1991).

    Article  CAS  PubMed  Google Scholar 

  203. Chlebowski, R. T. et al. Low-fat dietary pattern and breast cancer mortality in the Women’s Health Initiative randomized controlled trial. J. Clin. Oncol. 35, 2919–2926 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pierce, J. P. et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 298, 289–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chlebowski, R. T. et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women’s Intervention Nutrition Study. J. Natl Cancer Inst. 98, 1767–1776 (2006).

    Article  PubMed  Google Scholar 

  206. Hall, K. D. et al. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nat. Med https://doi.org/10.1038/s41591-020-01209-1 (2021).

    Article  PubMed  Google Scholar 

  207. Lichtenstein, A. H. et al. 2021 dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association. Circulation 144, e472–e487 (2021).

    Article  PubMed  Google Scholar 

  208. Evert, A. B. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 36, 3821–3842 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020-2025. https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf (2020).

  210. Sacks, F. M. et al. Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 113, 1034–1044 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Chlebowski, R. T. et al. Association of low-fat dietary pattern with breast cancer overall survival: a secondary analysis of the Women’s Health Initiative randomized clinical trial. JAMA Oncol. 4, e181212 (2018). This work shows that in a trial of ~50,000 women with no history of breast cancer, those randomized to a LFD who subsequently developed breast cancer had better overall survival than those randomized to a control diet who subsequently developed breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Thomson, C. A. et al. Cancer incidence and mortality during the intervention and postintervention periods of the Women’s Health Initiative Dietary Modification trial. Cancer Epidemiol. Biomark. Prev. 23, 2924–2935 (2014).

    Article  Google Scholar 

  213. Pierce, J. P. Diet and breast cancer prognosis: making sense of the WHEL and WINS trials. Curr. Opin. Obstet. Gynecol. 21, 86–91 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Gold, E. B. et al. Dietary pattern influences breast cancer prognosis in women without hot flashes: the Women’s Healthy Wating and Living trial. J. Clin. Oncol. 27, 352–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Rose, D. P., Connolly, J. M., Chlebowski, R. T., Buzzard, I. M. & Wynder, E. L. The effects of a low-fat dietary intervention and tamoxifen adjuvant therapy on the serum estrogen and sex hormone-binding globulin concentrations of postmenopausal breast cancer patients. Breast Cancer Res. Treat. 27, 253–262 (1993).

    Article  CAS  PubMed  Google Scholar 

  216. Rock, C. L. et al. Effects of a high-fiber, low-fat diet intervention on serum concentrations of reproductive steroid hormones in women with a history of breast cancer. J. Clin. Oncol. 22, 2379–2387 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. US National Laboratory of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04298086 (2021).

  218. Labbé, D. P. et al. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun. 10, 4358 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Link, L. B., Thompson, S. M., Bosland, M. C. & Lumey, L. H. Adherence to a low-fat diet in men with prostate cancer. Urology 64, 970–975 (2004).

    Article  PubMed  Google Scholar 

  220. Aronson, W. J. et al. Phase II prospective randomized trial of a low-fat diet with fish oil supplementation in men undergoing radical prostatectomy. Cancer Prev. Res. 4, 2062–2071 (2011).

    Article  CAS  Google Scholar 

  221. Aronson, W. J. et al. Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. J. Urol. 183, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zadra, G. et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 116, 631–640 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Tajan, M. et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat. Commun. 12, 366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Treasure, M. et al. A pilot study of a low glycemic load diet in patients with stage I–III colorectal cancer. J. Gastrointest. Oncol. 12, 910–920 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Gabel, K., Cares, K., Varady, K., Gadi, V. & Tussing-Humphreys, L. Current evidence and directions for intermittent fasting during cancer chemotherapy. Adv. Nutr. https://doi.org/10.1093/advances/nmab132 (2021).

    Article  PubMed  Google Scholar 

  226. Ni, Y. et al. Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nat. Commun. 10, 2860 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. McCleland, M. L. et al. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin. Cancer Res. 19, 773–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. Venneti, S. et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7, 274ra17 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Gao, X. et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572, 397–401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Safdie, F. et al. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS ONE 7, e44603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Abdelwahab, M. G. et al. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS ONE 7, e36197 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Allen, B. G. et al. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin. Cancer Res. 19, 3905–3913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Voss, M. et al. ERGO2: a prospective, randomized trial of calorie-restricted ketogenic diet and fasting in addition to reirradiation for malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 108, 987–995 (2020).

    Article  PubMed  Google Scholar 

  234. Peeke, P. M., Greenway, F. L., Billes, S. K., Zhang, D. & Fujioka, K. Effect of time restricted eating on body weight and fasting glucose in participants with obesity: results of a randomized, controlled, virtual clinical trial. Nutr. Diabetes 11, 6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. de Oliveira Maranhão Pureza, I. R. et al. Effects of time-restricted feeding on body weight, body composition and vital signs in low-income women with obesity: a 12-month randomized clinical trial. Clin. Nutr. https://doi.org/10.1016/j.clnu.2020.06.036 (2020).

    Article  PubMed  Google Scholar 

  236. Lowe, D. A. et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the treat randomized clinical trial. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2020.4153 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Wilkinson, M. J. et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 31, 92–104.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Chow, L. S. et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: a feasibility study. Obesity 28, 860–869 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Liu, D. et al. Calorie restriction with or without time-restricted eating in weight loss. N. Engl. J. Med. 386, 1495–1504 (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Xie, Z. et al. Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. Nat. Commun. 13, 1003 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Das, M. et al. Time-restricted feeding normalizes hyperinsulinemia to inhibit breast cancer in obese postmenopausal mouse models. Nat. Commun. 12, 565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Yan, L., Sundaram, S., Mehus, A. A. & Picklo, M. J. Time-restricted feeding attenuates high-fat diet-enhanced spontaneous metastasis of lewis lung carcinoma in mice. Anticancer. Res. 39, 1739–1748 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by National Institutes of Health (NIH) K08CA230318 (M.D.G.), 2020 AACR–The Mark Foundation for Cancer Research ‘Science of the Patient’ (SOP) Grant Number 20-60-51-GONC (M.D.G.), NIH R35CA197588 (L.C.C.) and a grant from the Breast Cancer Research Foundation (L.C.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.R.T., J.N.F. and M.D.G. researched data for the article and wrote the article. All authors contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Marcus D. Goncalves.

Ethics declarations

Competing interests

L.C.C. is a founder, shareholder and member of the scientific advisory board of Agios Pharmaceuticals and a founder and former member of the scientific advisory board of Ravenna Pharmaceuticals (previously Petra Pharmaceuticals). These companies are developing novel therapies for cancer. L.C.C. has received research funding from Ravenna Pharmaceuticals outside the covered work. L.C.C. and M.D.G. are co-founders and shareholders of Faeth Therapeutics, which are developing dietary and pharmacologic therapies for cancer. M.D.G. has received speaking and/or consulting fees from Pfizer Inc., Novartis AG, Petra Pharmaceuticals, Scorpion Therapeutics and Faeth Therapeutics. M.D.G.’s laboratory has received financial support from Pfizer Inc. outside the covered work. All other authors report no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Stephan Herzig, Ömer Yilmaz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Electromotive force

The electric potential generated by the position of charged molecules, such as when partitioned across a membrane.

ATP synthase

A mitochondrial enzyme that phosphorylates ADP to make ATP.

Ketone bodies

Metabolites such as β-hydroxybutyrate and acetoacetate, which are produced during hepatic fatty acid oxidation and can be used as energy substrates by some tissues.

Triple-negative breast tumours

Breast tumours with low levels of oestrogen receptor (ER), progesterone receptor and HER2 overexpression and/or amplification. Typically, these tumours carry a worse prognosis than other types.

Proliferative phase of the endometrial cycle

The phase of the endometrial cycle in which the endometrial cells rapidly proliferate in preparation for possible implantation of a fertilized embryo.

Anapleurosis

Typically referring to the ‘refilling’ or ‘fuelling’ of the tricarboxylic acid (TCA) cycle with amino acids to drive biosynthetic reactions.

Ketosis

A metabolic state defined by low levels of insulin, high hepatic fatty acid oxidation and increased levels of circulating ketone bodies.

Metabolic dysfunction

A general term collating multiple abnormalities in glucose and lipid homeostasis such as dyslipidaemia, obesity, insulin resistance, glucose intolerance, diabetes and fatty liver disease.

Response Evaluation Criteria in Solid Tumours

(RECIST). A validated and consistent radiologic methodology to evaluate the activity and efficacy of new cancer therapeutics in solid tumours.

One-carbon metabolism

Referring to both the folate and methionine cycles that allow cells to generate one-carbon units for the biosynthesis of important anabolic precursors and for methylation reactions.

Eastern Cooperative Oncology Group

(ECOG). A standardized clinical scoring algorithm that describes a patient’s level of functioning in terms of their ability to care for themself, daily activity and physical ability (walking, working and so on).

Subjective Global Assessment

(SGA). A clinical scoring algorithm using information from a patient interview and physical examination that healthcare providers use to determine a person’s nutritional status.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, S.R., Falcone, J.N., Cantley, L.C. et al. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 22, 452–466 (2022). https://doi.org/10.1038/s41568-022-00485-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00485-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer