Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prostate carcinogenesis: inflammatory storms

Abstract

Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further ‘inflammatory storms’, with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the vicious cycle of ‘inflammatory storms’ driving prostate carcinogenesis.
Fig. 2: Prostate inflammation: external cues.
Fig. 3: Androgen receptor signalling, inflammation and defective DNA repair create the perfect storm for prostate carcinogenesis.
Fig. 4: Potential therapeutic targets in lethal prostate cancer.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Bandini, M. et al. Improved cancer-specific free survival and overall free survival in contemporary metastatic prostate cancer patients: a population-based study. Int. Urol. Nephrol. 50, 71–78 (2018).

    Article  PubMed  Google Scholar 

  3. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2018).

    Article  PubMed  Google Scholar 

  4. Sfanos, K. S. et al. Bacterial prostatitis enhances 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced cancer at multiple sites. Cancer Prev. Res. 8, 683–692 (2015).

    Article  CAS  Google Scholar 

  5. Shinohara, D. B. et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 73, 1007–1015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dickerman, B. A. et al. Body fat distribution on computed tomography imaging and prostate cancer risk and mortality in the AGES–Reykjavik study. Cancer 125, 2877–2885 (2019).

    PubMed  Google Scholar 

  7. Le Marchand, L., Kolonel, L. N., Wilkens, L. R., Myers, B. C. & Hirohata, T. Animal fat consumption and prostate cancer: a prospective study in Hawaii. Epidemiology 5, 276–282 (1994).

    Article  PubMed  Google Scholar 

  8. Nakai, Y., Nelson, W. G. & De Marzo, A. M. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 67, 1378–1384 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Simons, B. W. et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J. Pathol. 235, 478–489 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kakegawa, T. et al. Frequency of propionibacterium acnes infection in prostate glands with negative biopsy results is an independent risk factor for prostate cancer in patients with increased serum PSA titers. PLoS ONE 12, e0169984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sfanos, K. S. & De Marzo, A. M. Prostate cancer and inflammation: the evidence. Histopathology 60, 199–215 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gurel, B. et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomarkers Prev. 23, 847–856 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mani, R. S. et al. Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17, 2620–2631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwon, O. J., Zhang, L., Ittmann, M. M. & Xin, L. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc. Natl Acad. Sci. USA 111, E592–E600 (2014).

    CAS  PubMed  Google Scholar 

  16. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559, 363–369 (2018). This study is the first to demonstrate the IL-23-mediated paracrine effect of tumour-infiltrating MDSCs in driving castration-insensitive prostate cancer growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smelov, V. et al. Detection of DNA viruses in prostate cancer. Sci. Rep. 6, 25235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kirby, R. S., Lowe, D., Bultitude, M. I. & Shuttleworth, K. E. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br. J. Urol. 54, 729–731 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Lavalette, C. et al. Abdominal obesity and prostate cancer risk: epidemiological evidence from the EPICAP study. Oncotarget 9, 34485–34494 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. DuPre, N. C. et al. Corpora amylacea in prostatectomy tissue and associations with molecular, histological, and lifestyle factors. Prostate 78, 1172–1180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, X. et al. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep. 17, 2596–2606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Leenders, G. J. et al. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am. J. Pathol. 162, 1529–1537 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Garcia, A. J. et al. Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol. Cell Biol. 34, 2017–2028 (2014). This study shows that the loss of Pten in prostatic epithelium is associated with the upregulation of pro-inflammatory cytokines that induce the intra-prostatic expansion of immunosuppressive MDSCs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Escamilla, J. et al. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res. 75, 950–962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010). This study shows that B cells can infiltrate prostate tumours and release cytokines that sustain castration-independent tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopez-Bujanda, Z. A. et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Preprint at bioRxiv https://dx.doi.org/10.1101/651083 (2019).

  27. Lorente, D. et al. Baseline neutrophil-lymphocyte ratio (NLR) is associated with survival and response to treatment with second-line chemotherapy for advanced prostate cancer independent of baseline steroid use. Ann. Oncol. 26, 750–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Leibowitz-Amit, R. et al. Clinical variables associated with PSA response to abiraterone acetate in patients with metastatic castration-resistant prostate cancer. Ann. Oncol. 25, 657–662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiseman, H. & Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eiserich, J. P. et al. Formation of nitric oxide derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391, 393–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Xia, Y. & Zweier, J. L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl Acad. Sci. USA 94, 6954–6958 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, B. et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat. Commun. 9, 1723 (2018). This study shows that DNA-damaging treatment can induce the SASP by activating the ATM–TRAF6–TAK1 axis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, X. Y. et al. Two mutations identified in the androgen receptor of the new human prostate cancer cell line MDA PCa 2a. J. Urol. 162, 2192–2199 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Sharp, A. et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129, 192–208 (2019).

    Article  PubMed  Google Scholar 

  37. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liss, M. A. et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur. Urol. 74, 575–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shrestha, E. et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 199, 161–171 (2018). This study supports the hypothesis that the host urinary microbiome may contribute to prostatic inflammation.

    Article  PubMed  Google Scholar 

  40. Sfanos, K. S. et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 21, 539–548 (2018). This study shows significant compositional differences in the gastrointestinal microbiota of men receiving ADT, including an abundance of bacterial species linked to anti-PD-1 response and the enrichment of gene pathways involved in both steroid and steroid hormone biosynthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008). This study highlights regional heterogeneity in and the lack of a generalized prostatic flora.

    Article  CAS  PubMed  Google Scholar 

  42. Banerjee, S. et al. Microbiome signatures in prostate cancer. Carcinogenesis 40, 749–764 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Elkahwaji, J. E., Hauke, R. J. & Brawner, C. M. Chronic bacterial inflammation induces prostatic intraepithelial neoplasia in mouse prostate. Br. J. Cancer 101, 1740–1748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khalili, M. et al. Loss of Nkx3.1 expression in bacterial prostatitis: a potential link between inflammation and neoplasia. Am. J. Pathol. 176, 2259–2268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bowen, C. & Gelmann, E. P. NKX3.1 activates cellular response to DNA damage. Cancer Res. 70, 3089–3097 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Markowski, M. C., Bowen, C. & Gelmann, E. P. Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1. Cancer Res. 68, 6896–6901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ouyang, X., DeWeese, T. L., Nelson, W. G. & Abate-Shen, C. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 65, 6773–6779 (2005). This study shows that Nkx3.1 provides protection against oxidative damage and that the loss of its function is associated with the formation of prostatic intraepithelial neoplasia, with associated oxidative DNA damage.

    Article  CAS  PubMed  Google Scholar 

  49. Ashok, A. et al. Consequences of interleukin 1beta-triggered chronic inflammation in the mouse prostate gland: Altered architecture associated with prolonged CD4+ infiltration mimics human proliferative inflammatory atrophy. Prostate 79, 732–745 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Ridlon, J. M. et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J. Lipid Res. 54, 2437–2449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Golombos, D. M. et al. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective, pilot study. Urology 111, 122–128 (2018). This study shows biologically significant differences between the gut microbial compositions of men with prostate cancer and of benign controls.

    Article  PubMed  Google Scholar 

  52. Poutahidis, T. et al. Pathogenic intestinal bacteria enhance prostate cancer development via systemic activation of immune cells in mice. PLoS ONE 8, e73933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Francis, J. C., Thomsen, M. K., Taketo, M. M. & Swain, A. β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 9, e1003180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giovannucci, E. et al. A prospective study of dietary fat and risk of prostate cancer. J. Natl Cancer Inst. 85, 1571–1579 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Freedland, S. J. & Aronson, W. J. Examining the relationship between obesity and prostate cancer. Rev. Urol. 6, 73–81 (2004).

    PubMed  PubMed Central  Google Scholar 

  56. Mangiola, S. et al. Androgen deprivation therapy promotes an obesity-like microenvironment in periprostatic fat. Endocr. Connect. 8, 547–558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, C. et al. Fat intake is not linked to prostate cancer: a systematic review and dose-response meta-analysis. PLoS ONE 10, e0131747 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Van Blarigan, E. L. et al. Fat intake after prostate cancer diagnosis and mortality in the Physicians’ Health Study. Cancer Causes Control. 26, 1117–1126 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Strom, S. S. et al. Saturated fat intake predicts biochemical failure after prostatectomy. Int. J. Cancer 122, 2581–2585 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Labbe, D. P. et al. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun. 10, 4358 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fradet, Y., Meyer, F., Bairati, I., Shadmani, R. & Moore, L. Dietary fat and prostate cancer progression and survival. Eur. Urol. 35, 388–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cornejo-Pareja, I., Munoz-Garach, A., Clemente-Postigo, M. & Tinahones, F. J. Importance of gut microbiota in obesity. Eur. J. Clin. Nutr. 72, 26–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Joshu, C. E. et al. Weight gain is associated with an increased risk of prostate cancer recurrence after prostatectomy in the PSA era. Cancer Prev. Res. 4, 544–551 (2011).

    Article  Google Scholar 

  65. Smith, M. R. et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J. Clin. Endocrinol. Metab. 87, 599–603 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Hamilton, E. J. et al. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin. Endocrinol. 74, 377–383 (2011).

    Article  CAS  Google Scholar 

  67. Cho, H. J. et al. A high-fat diet containing lard accelerates prostate cancer progression and reduces survival rate in mice: possible contribution of adipose tissue-derived cytokines. Nutrients 7, 2539–2561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, M. et al. A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Prostate 72, 1779–1788 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, S. et al. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor. Oncotarget 7, 13651–13666 (2016). This study provides mechanistic evidence of how obesity, insulin and insulin-like growth factor 1 signalling crosstalk with the IL-17 pathway to contribute to IL-17-mediated signalling that is increased in proliferative prostate cancer cells.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hayashi, T. et al. High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. Clin. Cancer Res. 24, 4309–4318 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, M. et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet. 50, 206–218 (2018). This study provides preclinical evidence showing that key oncogenic aberrations in prostate cancer and the effects of a high-fat diet converge on a master regulator of lipid biosynthesis to promote prostate cancer growth and metastasis. It provides a mechanistic link supporting the notion that Western high-fat diets can promote prostate cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobayashi, N. et al. Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res. 68, 3066–3073 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Q. et al. Targeting Th17–IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model. Prostate 77, 888–899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Q. et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 72, 2589–2599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Laurent, V. et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat. Commun. 7, 10230 (2016). This study shows that peri-prostatic adipose tissue can produce chemokines that promote prostate cancer cell migration. Importantly, chemokine-receptor-induced chemotaxis is enhanced by obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koh, C. M. et al. MYC and prostate cancer. Genes Cancer 1, 617–628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Narlik-Grassow, M. et al. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS ONE 8, e60277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiménez-García, M. P. et al. The role of PIM1/PIM2 kinases in tumors of the male reproductive system. Sci. Rep. 6, 38079 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ewald, J. A. et al. Androgen deprivation induces senescence characteristics in prostate cancer cells in vitro and in vivo. Prostate 73, 337–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Pernicová, Z. et al. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia 13, 526–536 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010). Pten inactivation can occur in the absence of DNA damage and cellular hyperproliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Toso, A. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Revandkar, A. et al. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat. Commun. 7, 13719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barreto-Andrade, J. C. et al. Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Mol. Cancer Therapeutics 10, 1185–1193 (2011).

    Article  CAS  Google Scholar 

  86. Kawata, H. et al. Stimulation of cellular senescent processes, including secretory phenotypes and anti-oxidant responses, after androgen deprivation therapy in human prostate cancer. J. steroid Biochem. Mol. Biol. 165, 219–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010). This study shows that androgen receptor signalling triggers DNA DSBs in order to generate characteristic gene re-arrangements in prostate cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 162, 454 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Beer, T. M. et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 35, 40–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase III trial. Lancet. Oncol. 15, 700–712 (2014). Together with reference 93, this study shows that anti-CTLA4 antibody monotherapy did not improve overall survival in patients with metastatic castration-resistant prostate cancer when compared with placebo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020). This trial shows that anti-PD-1 monotherapy had very modest activity in patients with metastatic castration-resistant prostate cancer, although the association of DNA repair defects and antitumour activity is of interest.

    Article  PubMed  CAS  Google Scholar 

  97. Hossain, D. M. et al. TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin. Cancer Res. 21, 3771–3782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Comito, G. et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Di Mitri, D. et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer. Cell Rep. 28, 2156–2168 e2155 (2019). This study demonstrates how tumour-associated macrophages can be pharmacologically reprogrammed to have tumour-inhibitory functions.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Chi, N., Tan, Z., Ma, K., Bao, L. & Yun, Z. Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. Int. J. Clin. Exp. Med. 7, 3181–3192 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Idorn, M., Kollgaard, T., Kongsted, P., Sengelov, L. & Thor Straten, P. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol. Immunother. 63, 1177–1187 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208-220.

  104. Di Mitri, D. et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515, 134–137 (2014). Pten-null prostate tumours in mice are infiltrated by myeloid cells that protect a fraction of proliferating cells from senescence, thus sustaining tumour growth.

    Article  PubMed  CAS  Google Scholar 

  105. Feng, S. et al. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc. Natl Acad. Sci. USA 115, 10094–10099 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 113, 986–992 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Araki, S. et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67, 6854–6862 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Vykhovanets, E. V., Maclennan, G. T., Vykhovanets, O. V. & Gupta, S. IL-17 expression by macrophages is associated with proliferative inflammatory atrophy lesions in prostate cancer patients. Int. J. Clin. Exp. Pathol. 4, 552–565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nonomura, N. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 107, 1918–1922 (2011).

    Article  PubMed  Google Scholar 

  111. Galvan, G. C. et al. Effects of obesity on the regulation of macrophage population in the prostate tumor microenvironment. Nutr. Cancer 69, 996–1002 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Maxwell, P. J. et al. Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma. Eur. Urol. 64, 177–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Maxwell, P. J., Neisen, J., Messenger, J. & Waugh, D. J. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells. Oncotarget 5, 4895–4908 (2014). Paracrine functional cooperation between prostate tumour cells and their stroma promotes tumour proliferation and invasion.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Armstrong, C. W. et al. PTEN deficiency promotes macrophage infiltration and hypersensitivity of prostate cancer to IAP antagonist/radiation combination therapy. Oncotarget 7, 7885–7898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Majumder, P. K. & Sellers, W. R. Akt-regulated pathways in prostate cancer. Oncogene 24, 7465–7474 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Linch, M. et al. Intratumoural evolutionary landscape of high-risk prostate cancer: the PROGENY study of genomic and immune parameters. Ann. Oncol. 28, 2472–2480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, G., Wang, J. & Sadar, M. D. Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res. 68, 9918–9927 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, L. et al. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 73, 6068–6079 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Spranger, S. & Gajewski, T. F. A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J. Immunother. Cancer 3, 43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stakheev, D. et al. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci. Rep. 9, 4761 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Tian, X.-H. et al. XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 32, 100 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Melis, M. H. M. et al. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model. Oncotarget 8, 93867–93877 (2017). This study demonstrates the tumour-promoting effect of the adaptive immune response in MYC-driven prostate cancers.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Vo, B. T. et al. TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway. Endocrinology 154, 1768–1779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, J. et al. B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer. Cancer Res. 72, 4765–4776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Castro, E. et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol. 68, 186–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kote-Jarai, Z. et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br. J. Cancer 105, 1230–1234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J. Natl Cancer Inst. 91, 1310–1316 (1999).

    Article  Google Scholar 

  130. Leongamornlert, D. et al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer 106, 1697–1701 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Porter, C. M., Shrestha, E., Peiffer, L. B. & Sfanos, K. S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 21, 345–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Lopez-Garcia, M., Romero-Gonzalez, R. & Garrido Frenich, A. Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography — orbitrap high resolution mass spectrometry. J. Chromatography. A 1540, 21–30 (2018).

    Article  CAS  Google Scholar 

  133. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lin, H.-K. et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schwarze, S. R., Fu, V. X., Desotelle, J. A., Kenowski, M. L. & Jarrard, D. F. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7, 816–823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Blute, M. L. Jr. et al. Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS ONE 12, e0172048 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Rodrigues, D. N. et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J. Clin. Invest. 128, 5185 (2018). This study shows that a subset of lethal prostate cancers is underpinned by mismatch repair defects. This is associated with high tumour mutational burden, increased immune cell infiltration, increased expression of T cell-related transcripts, and upregulation of specific immunosuppressive mechanisms.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Haffner, M. C. et al. Comprehensive evaluation of programmed death-ligand 1 expression in primary and metastatic prostate cancer. Am. J. Pathol. 188, 1478–1485 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boudadi, K. et al. Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget 9, 28561–28571 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Cabel, L. et al. Long-term complete remission with Ipilimumab in metastatic castrate-resistant prostate cancer: case report of two patients. J. Immunother. Cancer 5, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hansen, A. R. et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann. Oncol. 29, 1807–1813 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Higuchi, T. et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol. Res. 3, 1257–1268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS–cGAMP–STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Karzai, F. et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 6, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yeo, M. K. et al. Association of PD-L1 expression and PD-L1 gene polymorphism with poor prognosis in lung adenocarcinoma and squamous cell carcinoma. Hum. Pathol. 68, 103–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Sun, J. et al. Correlation between B7-H3 expression and rheumatoid arthritis: A new polymorphism haplotype is associated with increased disease risk. Clin. Immunol. 159, 23–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Allott, E. H., Masko, E. M. & Freedland, S. J. Obesity and prostate cancer: weighing the evidence. Eur. Urol. 63, 800–809 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Sfanos, K. S., Wilson, B. A., De Marzo, A. M. & Isaacs, W. B. Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proc. Natl Acad. Sci. USA 106, 3443–3448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dadaev, T. et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 9, 2256 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548–2556 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Multigner, L. et al. Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 28, 3457–3462 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Lebdai, S. et al. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer. Oncoimmunology 8, e1581528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lee, L. et al. Aggressive-variant microsatellite-stable POLE mutant prostate cancer with high mutation burden and durable response to immune checkpoint inhibitor therapy. JCO Precision Oncol. 2, 1–8 (2018).

    Google Scholar 

  162. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Wu, Y. M. et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173, 1770–1782.e14 (2018). This study shows that CDK12 loss defines a distinct subset of metastatic castration-resistant prostate cancers characterized by focal tandem duplications, leading to gene fusions and marked differential gene expression. A further subset may benefit from immune checkpoint inhibitors.

    Article  CAS  PubMed  Google Scholar 

  164. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Guedes, L. B. et al. MSH2 loss in primary prostate cancer. Clin. Cancer Res. 23, 6863–6874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jenzer, M. et al. The BRCA2 mutation status shapes the immune phenotype of prostate cancer. Cancer Immunol. Immunother. 68, 1621–1633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Haraldsdottir, S. et al. Prostate cancer incidence in males with Lynch syndrome. Genet. Med. 16, 553–557 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pursell, Z. F. et al. polymerase epsilon participates in leading-strand DNA replication. Science 317, 127–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rayner, E. et al. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer 16, 71–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Johanns, T. M. et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 6, 1230–1236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Mehnert, J. M. et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Invest. 126, 2334–2340 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Snyder, A. & Wolchok, J. D. Successful treatment of a patient with glioblastoma and a germline POLE mutation: where next? Cancer Discov. 6, 1210–1211 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Howitt, B. E. et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 1, 1319–1323 (2015).

    Article  PubMed  Google Scholar 

  175. Bajrami, I. et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 74, 287–297 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Blazek, D. et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25, 2158–2172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ekumi, K. M. et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res. 43, 2575–2589 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Joshi, P. M., Sutor, S. L., Huntoon, C. J. & Karnitz, L. M. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J. Biol. Chem. 289, 9247–9253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Juan, H. C., Lin, Y., Chen, H. R. & Fann, M. J. Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ. 23, 1038–1048 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Mirochnik, Y. et al. Androgen receptor drives cellular senescence. PLoS ONE 7, e31052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Roediger, J. et al. Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src–Akt pathway. Mol. Cancer 13, 214 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.S.d.B. acknowledges funding from Movember, Prostate Cancer UK, the Prostate Cancer Foundation, Cancer Research UK and the Medical Research Council. J.S.d.B. is a National Institutes of Health Research (NIHR) Senior Investigator. The views expressed in this article are those of the author(s) and not necessarily those of the National Health Service, the NIHR or the Department of Health. K.S.S. acknowledges support from the Prostate Cancer Foundation. R.S.M. acknowledges funding from an NIH/NCI R01 grant (R01CA245294), the CPRIT Individual Investigator Research Award (RP190454) and an Impact Award from the U.S. Department of Defense Prostate Cancer Research Program (W81XWH-17-1-0675). C.G.D. was supported by the Prostate Cancer Foundation, U.S. Department of Defense grant W81XWH-13-1-0369 and the Patrick C. Walsh Fund. A.A. was supported by European Research Council Consolidator grant 683136, Swiss Cancer League grant KFS4267-08-2017, SNSF grant 310030_176045, Prostate Cancer Foundation grant 19CHAL08 and a Fondazione Italiana per la ricerca sul Cancro (AIRC) Investigator Grant (22030).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made substantial contributions to the discussion of the content. J.S.d.B. and C.G. wrote the manuscript. B.G., A.M.D.M., K.S.S., R.S.M., J.G., C.G.D. and A.A. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Johann S. de Bono.

Ethics declarations

Competing interests

J.S.d.B., B.G. and C.G. are employed by the Institute of Cancer Research, which has commercial interests in abiraterone, in the use of PARP inhibitors in DNA repair-defective cancers and in IL-23 driving AR signalling in prostate cancer. J.S.d.B. has served on advisory boards for companies, including AstraZeneca (AZ), Astellas, Bayer, Boehringer Ingelheim, Cellcentric, Daiichi Sankyo, Genentech/Roche, Genmab, GSK, Janssen, Merck Serono, Merck Sharp & Dohme (MSD), Menarini/Silicon Biosystems, Orion, Pfizer, Qiagen, Sanofi Aventis, Sierra Oncology and Taiho. His institution has received funding or other support for his research work from AZ, Astellas, Bayer, Cellcentric, Daiichi Sankyo, Genentech, Genmab, GSK, Janssen, Merck Serono, MSD, Menarini/Silicon Biosystems, Orion, Pfizer, Sanofi Aventis, Sierra Oncology and Taiho. He has been the CI/PI of many industry-sponsored clinical trials. A.M.D.M. has served as a sponsored research recipient from Janssen R&D and Myriad Genetics, and currently he serves as a consultant for Cepheid Inc. J.G. owns equity and has acted as a consultant for Unity Biotechnology and Geras Bio. J.G. is an inventor in a Medical Research Council patent related to senolytic therapies (PCT/GB2018/051437). C.G.D. has served on advisory boards for AZ Medimmune, Bristol Myers Squibb (BMS), F-Star, Genocea, Janssen, Merck, Pfizer, Pierre Fabre, Genentech/Roche and Sanofi Aventis. His institution holds AZ Medimmune, BMS and Janssen patents, and he has interests in Harpoon, Kleo, Shattuck Labs, Tizona and Werewolf. A.A. is a cofounder and shareholder of Oncosence; he is inventor of the following patents: WO2019142095A1, WO2019142097A1, WO2019180636A1 and US20200095314A1. No relevant conflicts of interest were disclosed by other authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Metastatic castration-resistant prostate cancer

(mCRPC). Prostate cancer that has spread to sites of the body beyond the prostate and continues to progress despite androgen deprivation therapy.

Infection

Invasion of a host organism’s bodily tissue by disease-causing organisms. This is different from colonization, which is the presence of bacteria on a body surface without causing disease (or infection).

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous group of immature myeloid cells that deviate from the standard path of differentiation during pathologic states, such as cancer, chronic infection or tissue damage, resulting in emergency myelopoiesis. These cells are generally defined by their phenotypic, functional and molecular characteristics.

Senescence

A state in which cells enter cell cycle arrest without undergoing cell death.

Senescence-associated secretory phenotype

(SASP). Secretory phenotype of senescent cells that leads to the expression of a spectrum of soluble factors that promote inflammation, epithelial–mesenchymal transition and immunosuppression and drive tumour progression, amongst other effects.

Androgen deprivation therapy

(ADT). Treatments (for instance, through luteinizing hormone-releasing hormone agonists or surgical castration) that significantly reduce the level of testosterones and other anti-androgens in the circulation, generally the first type of hormone therapy used to treat advanced prostate cancer.

Tumour microenvironment

(TME). The environment around a tumour, including the surrounding blood vessels, immune cells, stromal cells, signalling molecules and extracellular matrices.

Microbiome

The collective genetic material of the entire collection of microorganisms in a specific niche.

Chemical injury

Exposure of the prostatic epithelium to toxic agents proposed as aetiological agents for the development of inflammation in the prostate. For example, urine contains uric acid, which can activate innate immune responses.

Proliferative inflammatory atrophy

(PIA). Focal areas of atrophy, hyperproliferation and inflammation that occur in response to prostatic epithelial damage.

Prostatic intraepithelial neoplasia

(PIN). The earliest accepted stage in prostate carcinogenesis, with phenotypic, biochemical and genetic changes due to incipient cancer but without invasion of the basement membrane of acini.

Peri-prostatic adipose tissue

(PPAT). Fat deposits that surround the prostate gland (which can be present in either obese or non-obese individuals) that can contribute to prostate tumour growth and metastases through the secretion of hormones, growth factors, chemokines and other pro-inflammatory molecules.

Extracapsular extension

Local tumour growth beyond the fibromuscular band surrounding the prostate.

DNA repair genes

(DRGs). Genes that encode the key enzymes involved in the recognition and restoration of the normal base-pair sequence and structure of damaged DNA.

Tumour-associated macrophages

(TAMs). A class of macrophages found in abundance in some solid tumours that often contribute to tumour growth and immunosuppression in the tumour microenvironment.

DNA damage response

A network of cellular pathways and machineries that sense, signal, and repair DNA lesions to prevent the generation of potentially deleterious mutations that threaten cell viability and potentially lead to neoplasia.

Mismatch repair

A process that corrects mismatched nucleotides in otherwise complementary paired DNA strands.

Senolytics

Drugs that specifically target and induce the death of senescent cells.

Tumour mutational burden

(TMB). The total number of mutations carried by tumour cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bono, J.S., Guo, C., Gurel, B. et al. Prostate carcinogenesis: inflammatory storms. Nat Rev Cancer 20, 455–469 (2020). https://doi.org/10.1038/s41568-020-0267-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0267-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer