Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improving cancer immunotherapy through nanotechnology


The 2018 Nobel Prize in Physiology or Medicine was awarded to pioneers in the field of cancer immunotherapy, as the utility of leveraging a patient’s coordinated and adaptive immune system to fight the patient’s unique tumour has now been validated robustly in the clinic. Still, the proportion of patients who respond to immunotherapy remains modest (~15% objective response rate across indications), as tumours have multiple means of immune evasion. The immune system is spatiotemporally controlled, so therapies that influence the immune system should be spatiotemporally controlled as well, in order to maximize the therapeutic index. Nanoparticles and biomaterials enable one to program the location, pharmacokinetics and co-delivery of immunomodulatory compounds, eliciting responses that cannot be achieved upon administration of such compounds in solution. The convergence of cancer immunotherapy, nanotechnology, bioengineering and drug delivery is opportune, as each of these fields has matured independently to the point that it can now be used to complement the others substantively and rationally, rather than modestly and empirically. As a result, unmet needs increasingly can be addressed with deductive intention. This Review explores how nanotechnology and related approaches are being applied to augmenting both endogenous leukocytes and adoptively transferred ones by informing specificity, influencing localization and improving function.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Nanotechnology can substantially improve the utility of adoptive-cell therapy.
Fig. 2: Nanoparticles can be used to modulate endogenous immune cells in situ.
Fig. 3: Co-formulation of vaccine components dramatically improves effector responses.
Fig. 4: Nanoparticle carriers are needed to deliver immunomodulatory payloads efficiently into the cytosol of immune cells.
Fig. 5: Perioperative immunotherapy represents a high-leverage context for improving the frequency and magnitude of antitumour immune responses.


  1. 1.

    Khalil, D. N., Smith, E. L., Brentjens, R. J. & Wolchok, J. D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273–290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Jeanbart, L. & Swartz, M. A. Engineering opportunities in cancer immunotherapy. Proc. Natl Acad. Sci. USA 112, 14467–14472 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Mitchell, M. J., Jain, R. K. & Langer, R. Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer. 17, 659–675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Winer, A., Bodor, J. N. & Borghaei, H. Identifying and managing the adverse effects of immune checkpoint blockade. J. Thorac. Dis. 10, S480–S489 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dellacherie, M. O., Seo, B. R. & Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. (in the press).

  12. 12.

    Milling, L., Zhang, Y. & Irvine, D. J. Delivering safer immunotherapies for cancer. Adv. Drug Deliv. Rev. 114, 79–101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kwong, B., Liu, H. & Irvine, D. J. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 32, 5134–5147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Pfreundschuh, M. G. et al. Phase I study of intratumoral application of recombinant human tumor necrosis factor. Eur. J. Cancer Clin. Oncol. 25, 379–388 (1989).

    CAS  PubMed  Google Scholar 

  15. 15.

    van Herpen, C. M. et al. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. Int. J. Cancer 123, 2354–2361 (2008).

    PubMed  Google Scholar 

  16. 16.

    Bartsch, H. H., Pfizenmaier, K., Schroeder, M. & Nagel, G. A. Intralesional application of recombinant human tumor necrosis factor alpha induces local tumor regression in patients with advanced malignancies. Eur. J. Cancer Clin. Oncol. 25, 287–291 (1989).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl. Med. 9, eaan0401 (2017).

    PubMed  Google Scholar 

  18. 18.

    Kwong, B., Gai, S. A., Elkhader, J., Wittrup, K. D. & Irvine, D. J. Localized immunotherapy via liposome-anchored Anti-CD137+ IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 73, 1547–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Zhang, Y., Li, N., Suh, H. & Irvine, D. J. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun. 9, 6 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ishihara, J. et al. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci. Transl. Med. 11, eaau3259 (2019). This study illustrates that conjugation or fusion of a collagen-binding domain to biologics promotes their accumulation in tumours, improving the therapeutic index of systemically administered immunotherapy.

    CAS  PubMed  Google Scholar 

  21. 21.

    Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8+ T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Schuster, S. J. et al. Chimeric antigen receptor t cells in refractory b-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Hollyman, D. et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother. 32, 169–180 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Huang, X. et al. Sleeping beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol. Ther. 16, 580–589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Perica, K. et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8, 2252–2260 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Perica, K. et al. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. ACS Nano 9, 6861–6871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hickey, J. W. et al. Efficient magnetic enrichment of antigen-specific T cells by engineering particle properties. Biomaterials 187, 105–116 (2018). This study demonstrates the importance of optimizing particle size, concentration, ligand and ligand density for maximal enrichment, activation and expansion of antigen-specific T cells.

    CAS  PubMed  Google Scholar 

  32. 32.

    Sunshine, J. C., Perica, K., Schneck, J. P. & Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35, 269–277 (2014).

    CAS  PubMed  Google Scholar 

  33. 33.

    Hickey, J. W., Vicente, F. P., Howard, G. P., Mao, H. Q. & Schneck, J. P. Biologically inspired design of nanoparticle artificial antigen-presenting cells for immunomodulation. Nano Lett. 17, 7045–7054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kosmides, A. K., Necochea, K., Hickey, J. W. & Schneck, J. P. Separating T cell targeting components onto magnetically clustered nanoparticles boosts activation. Nano Lett. 18, 1916–1924 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ben-Akiva, E., Meyer, R. A., Wilson, D. R. & Green, J. J. Surface engineering for lymphocyte programming. Adv. Drug Deliv. Rev. 114, 102–115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Siefert, A. L., Fahmy, T. M. & Kim, D. Artificial antigen-presenting cells for immunotherapies. Methods Mol. Biol. 1530, 343–353 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Fadel, T. R. et al. Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation. Small 9, 666–672 (2013).

    CAS  PubMed  Google Scholar 

  38. 38.

    Fadel, T. R. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 9, 639–647 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Stephan, M. T., Stephan, S. B., Bak, P., Chen, J. & Irvine, D. J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33, 5776–5787 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Huang, B. et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying Tcells. Sci. Transl. Med. 7, 291ra294 (2015).

    Google Scholar 

  43. 43.

    Hinrichs, C. S. & Rosenberg, S. A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol. Rev. 257, 56–71 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wing, A. et al. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol. Res. 6, 605–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Sommer, C. et al. Preclinical evaluation of allogeneic CAR T cells targeting BCMA for the treatment of multiple myeloma. Mol. Ther. 27, 1126–1138 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    MacLeod, D. T. et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol. Ther. 25, 949–961 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sackstein, R., Schatton, T. & Barthel, S. R. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab Invest. 97, 669–697 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017). This study shows that circulating T cells can be transfected in vivo to express a CAR transgene and thereby target and kill leukaemic cells, affording an off-the-shelf alternative to adoptive cell transfer.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 8, 1747 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  55. 55.

    Gajewski, T. F. The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin. Oncol. 42, 663–671 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119 (2018).

    Google Scholar 

  57. 57.

    Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Amoozgar, Z. & Goldberg, M. S. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Adv. Drug Deliv. Rev. 91, 38–51 (2015).

    CAS  PubMed  Google Scholar 

  60. 60.

    C., N., Gustafson, H. H. & Pun, S. H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 114, 206–221 (2017).

    Google Scholar 

  61. 61.

    Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Crusz, S. M. & Balkwill, F. R. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584–596 (2015).

    CAS  PubMed  Google Scholar 

  63. 63.

    Li, A. V. et al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5, 204ra130 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Nembrini, C. et al. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl Acad. Sci. USA 108, E989–E997 (2011).

    CAS  PubMed  Google Scholar 

  65. 65.

    Hanson, M. C. et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J. Clin. Invest. 125, 2532–2546 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Luo, M. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12, 648–654 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014). This study reveals that antigens and adjuvants can be efficiently delivered to lymph nodes by conjugating them to lipophilic albumin-binding tails using a polar linker that promotes solubility, thereby dramatically improving antitumour efficacy and markedly reducing systemic toxicity.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    CAS  PubMed  Google Scholar 

  69. 69.

    Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    CAS  PubMed  Google Scholar 

  70. 70.

    Wilson, J. T. A sweeter approach to vaccine design. Science 363, 584–585 (2019).

    CAS  PubMed  Google Scholar 

  71. 71.

    Tokatlian, T. et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363, 649–654 (2019).

    CAS  PubMed  Google Scholar 

  72. 72.

    Zhu, G., Zhang, F., Ni, Q., Niu, G. & Chen, X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano 11, 2387–2392 (2017).

    CAS  PubMed  Google Scholar 

  73. 73.

    Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    CAS  PubMed  Google Scholar 

  75. 75.

    Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016). This study illustrates that charge-optimized lipoparticles can efficiently deliver RNA to lymphoid organs and APCs in mice; the ability of this technique to effectively prime antigen-specific T cells was confirmed in patients with cancer.

    PubMed  Google Scholar 

  76. 76.

    Ramishetti, S. & Peer, D. Engineering lymphocytes with RNAi. Adv. Drug Deliv. Rev. (2018).

    CAS  PubMed  Google Scholar 

  77. 77.

    Moffett, H. F. et al. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat. Commun. 8, 389 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Junt, T. & Barchet, W. Translating nucleic acid-sensing pathways into therapies. Nat. Rev. Immunol. 15, 529–544 (2015).

    CAS  PubMed  Google Scholar 

  79. 79.

    Ribas, A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov. 8, 1250–1257 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Harrington, K. J. et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas [abstract LBA15]. Ann. Oncol. 29 (Suppl. 8) (2018).

  82. 82.

    Meric-Bernstam, F. et al. Phase I dose-finding study of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced solid tumors or lymphomas. Soc. Immunother. Cancer Abstr. 2018, 462-463 (SITC, 2018).

  83. 83.

    Luteijn, R. et al. SLC19A1 is a cyclic dinucleotide transporter. Preprint at bioRxiv (2019).

  84. 84.

    Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell (2019).

    PubMed  Google Scholar 

  85. 85.

    Cheng, N. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1–insensitive models of triple-negative breast cancer. JCI Insight 3, 120638 (2018).

    PubMed  Google Scholar 

  86. 86.

    Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019). This study demonstrates that rationally designed, multiblock, pH-sensitive polymersomes increase cytosolic delivery of cyclic dinucleotides, thereby enhancing antitumour immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Jacobson, M. E., Wang-Bishop, L., Becker, K. W. & Wilson, J. T. Delivery of 5’-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy. Biomater. Sci. 7, 547–559 (2019).

    CAS  PubMed  Google Scholar 

  88. 88.

    Hornung, V. et al. 5’-triphosphate RNA is the ligand for RIG-I. Science 314, 994-997 (2006).

    PubMed  Google Scholar 

  89. 89.

    Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    CAS  PubMed  Google Scholar 

  91. 91.

    Sagiv-Barfi, I. et al. Eradication of spontaneous malignancy by local immunotherapy. Sci. Transl. Med. 10, eaan4488 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Marabelle, A. et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Invest. 123, 2447–2463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Predina, J. et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery. Proc. Natl Acad. Sci. USA 110, E415–E424 (2013).

    CAS  PubMed  Google Scholar 

  95. 95.

    Horowitz, M., Neeman, E., Sharon, E. & Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 12, 213–226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med. 10, eaan3464 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Hiller, J. G., Perry, N. J., Poulogiannis, G., Riedel, B. & Sloan, E. K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 15, 205–218 (2018).

    PubMed  Google Scholar 

  98. 98.

    Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 1–10 (2017).

    Google Scholar 

  100. 100.

    Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    CAS  PubMed  Google Scholar 

  101. 101.

    Smith, T. T. et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Invest. 127, 2176–2191 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019).

    CAS  PubMed  Google Scholar 

  103. 103.

    Tseng, D. et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013).

    CAS  PubMed  Google Scholar 

  104. 104.

    Park, C. G. et al. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 10, eaar1916 (2018). This study shows that reprogramming the post-resection milieu from immunosuppressive to immunostimulatory not only prevents local recurrence but also eradicates disseminated disease, and that sustaining drug exposure locally is required in order to achieve a durable survival benefit.

    PubMed  Google Scholar 

  105. 105.

    Kim, K. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl Acad. Sci. USA 111, 11774–11779 (2014).

    CAS  PubMed  Google Scholar 

  106. 106.

    Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    US National Library of Medicine. (2019).

  108. 108.

    Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707-716 (2018). This study reveals that cytokines can be conjugated to the surface of T cells using a reversible crosslinker that enables triggered release of native protein in the context of TCR activation, and that adoptive transfer of such ‘backpacked’ cells confers antitumour responses vastly superior to those from unmodified cells plus free cytokine.

  109. 109.

    Milhem, M. et al. Intratumoral toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab can reverse resistance to PD-1 inhibition in a phase Ib trial in subjects with advanced melanoma [abstract CT144]. Cancer Res. 78 (13 Suppl.) (2018).

  110. 110.

    US National Library of Medicine. (2019).

  111. 111.

    Radovic-Moreno, A. F. et al. Immunomodulatory spherical nucleic acids. Proc. Natl Acad. Sci. USA 112, 3892–3897 (2015).

    CAS  PubMed  Google Scholar 

  112. 112.

    US National Library of Medicine. (2019).

  113. 113.

    US National Library of Medicine. (2019).

  114. 114.

    Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1, 8ra19 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Bencherif, S. A. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 6, 7556 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

    CAS  PubMed  Google Scholar 

  117. 117.

    Nature Collection: Nobel Prize in Physiology or Medicine 2018, (2018).

  118. 118.

    Zheng, Y., Tang, L., Mabardi, L., Kumari, S. & Irvine, D. J. Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano 11, 3089–3100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Editorial. Time to deliver. Nat. Biotechnol. 961, 10 (2014).

    Google Scholar 

  120. 120.

    Kim, S., Shah, S. B., Graney, P. L. & Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater. 4, 355–378 (2019).

    Google Scholar 

  121. 121.

    Gosselin, E. A., Eppler, H. B., Bromberg, J. S. & Jewell, C. M. Designing natural and synthetic immune tissues. Nat. Mater. 17, 484–498 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Dura, B. et al. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat. Commun. 6, 5940 (2015).

    CAS  PubMed  Google Scholar 

  123. 123.

    Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Muraro, M. G. et al. Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments. Oncoimmunology 6, e1331798 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018). This study demonstrates that novel technologies can be applied in order to elucidate spatial relationships and features in the context of human tumour tissue, providing insights into patient stratification.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Lin, J. R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Weiden, J., Tel, J. & Figdor, C. G. Synthetic immune niches for cancer immunotherapy. Nat. Rev. Immunol. 18, 212–219 (2018).

    CAS  PubMed  Google Scholar 

  132. 132.

    Kobayashi, Y. & Watanabe, T. Gel-trapped lymphorganogenic chemokines trigger artificial tertiary lymphoid organs and mount adaptive immune responses in vivo. Front. Immunol. 7, 316 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Fan, Y. et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol. Ther. 23, 1262–1277 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Reinisch, A. et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat. Med. 22, 812–821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Shah, N. J. et al. An injectable bone marrow-like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat. Biotechnol. 37, 293–302 (2019). This study illustrates that a scaffold can be used to release factors that promote the recruitment of specific cells and induce differentiation of progenitor cells to particular lineages, underscoring the utility of macroscale devices that can establish defined niches to program immunity in situ.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Rothschilds, A. et al. Order of administration of combination cytokine therapies can decouple toxicity from efficacy in syngeneic mouse tumor models. Oncoimmunology 8, e1558678 (2019).

    PubMed  Google Scholar 

  137. 137.

    Messenheimer, D. J. et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin. Cancer Res. 23, 6165–6177 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Rothschilds, A. M. & Wittrup, K. D. What, why, where, and when: bringing timing to immuno-oncology. Trends Immunol. 40, 12–21 (2019).

    CAS  PubMed  Google Scholar 

  139. 139.

    Goldberg, M. S. Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161, 201–204 (2015).

    CAS  PubMed  Google Scholar 

  140. 140.

    Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M. E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA 104, 15549–15554 (2007).

    CAS  PubMed  Google Scholar 

  141. 141.

    Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Xie, Y. Q. et al. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomater Sci. 7, 1345–1357 (2019).

    CAS  PubMed  Google Scholar 

  143. 143.

    Wang, H. & Mooney, D. J. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17, 761–772 (2018).

    CAS  PubMed  Google Scholar 

  144. 144.

    Liebers, R. & Jager, D. Surgical wound immunotherapy. Nat. Nanotechnol. 14, 7–8 (2019).

    CAS  PubMed  Google Scholar 

Download references


The author thanks W. Rindler for helpful comments.

Author information



Corresponding author

Correspondence to Michael S. Goldberg.

Ethics declarations

Competing interests

M.S.G. is an inventor on patent applications related to ref.53 (Schmid et al., 2017) and ref.104 (Park et al., 2018). M.S.G. is also an employee of STIMIT.

Additional information

Peer review information

Nature Reviews Cancer thanks J. T. Wilson, J. Tel and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Therapeutic index

The ratio of efficacy to safety, which compares the amount of a drug that produces the therapeutic effect to the amount that causes toxicity.

Immune tolerance

A state of unresponsiveness by the immune system to antigens that allows for discrimination of self from non-self and is inappropriately fostered by tumours.

Area under the curve

(AUC). A pharmacokinetic parameter that represents total drug exposure by describing a quantitative relationship between drug concentration in the blood and time.


A burgeoning field that incorporates the tools and approaches of bioengineering, materials science, nanotechnology, drug delivery and immunology to influence the immune system — particularly, to elicit robust antitumour immune responses — in a manner not achieved by the administration of the same molecules in solution.

Pattern recognition receptors

Host sensors that can detect molecules associated with pathogens and/or cellular damage, thus inducing innate immunity, typically through the production of pro-inflammatory cytokines.


Spherical vesicles composed of at least one lipid bilayer that are often used to entrap and deliver therapeutics.

Enhanced permeability and retention

(EPR). A proposed effect that suggests that molecules and particles of a certain size concentrate in tumours more so than in other tissues, owing to the leaky vasculature and poor lymphatic drainage of solid tumours.

Mesoporous silica rods

A biomaterial that exhibits a high aspect ratio, enabling spontaneous assembly to form a three-dimensional microenvironment for host immune cells.

Synthetic biology

An intersection of biotechnology and molecular biology in which biological modules and systems are devised and created, with a particular emphasis on the incorporation of logic gates and other computer-like operations involving inputs, signal integration and outputs.


Also known as freeze drying, a process in which water is removed from a sample under vacuum via sublimation following freezing.


A molecule that augments immune responses to antigens (for example, Toll-like receptor agonists).


An antigen that is created by a gene fusion or somatic mutation.


Structures comprising a lipid bilayer and amphipathic membrane-stabilizing proteins.


Antigens that are immunogenic, provoking a cellular and/or humoral immune response.


An oligonucleotide, typically identified through in vitro selection, that binds to a target of interest.

Cyclic dinucleotide pharmacophores

Molecular structures defined by a closed ring comprising two nucleotides that are recognized by the innate immune pattern recognition receptor stimulator of interferon genes (STING).


Polymeric analogues of liposomes that can serve as an artificial vesicle to entrap drug-containing solutions, often affording greater control over particle stability and drug release rate.

Block copolymer

A polymer comprising two or more homopolymer blocks, connected via covalent bonds, that can confer blended or combined properties of the individual blocks.


Nanoparticulate forms of a hydrogel (a crosslinked hydrophilic polymer network).

Mass cytometry

Also known as cytometry by time of flight (CyTOF), a mass spectrometry-based variation of flow cytometry in which antibodies are labelled with heavy metal ions that have discrete masses, rather than with fluorophores that can have spectral overlap.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldberg, M.S. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 19, 587–602 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing