Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical actionability of molecular targets in endometrial cancer


Endometrial cancer accounts for ~76,000 deaths among women each year worldwide. Disease mortality and the increasing number of new diagnoses make endometrial cancer an important consideration in women’s health, particularly in industrialized countries, where the incidence of this tumour type is highest. Most endometrial cancers are carcinomas, with the remainder being sarcomas. Endometrial carcinomas can be classified into several histological subtypes, including endometrioid, serous and clear cell carcinomas. Histological subtyping is currently used routinely to guide prognosis and treatment decisions for endometrial cancer patients, while ongoing studies are evaluating the potential clinical utility of molecular subtyping. In this Review, we summarize the overarching molecular features of endometrial cancers and highlight recent studies assessing the potential clinical utility of specific molecular features for early detection, disease risk stratification and directing targeted therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of endometrial cancer origin, development and molecular classification.
Fig. 2: Minimally invasive sampling methods for endometrial cancer (EC) patients.
Fig. 3: Molecular-based risk/treatment stratification strategies for endometrial cancer (EC) patients.
Fig. 4: Functional grouping of genes in which aberrations are acquired in metastases of endometrial cancer.


  1. 1.

    American Cancer Society. Cancer facts & figures 2019. Atlanta: American Cancer Society (2019).

  2. 2.

    Amant, F., Mirza, M. R., Koskas, M. & Creutzberg, C. L. Cancer of the corpus uteri. Int. J. Gynaecol. Obstet. 143 Suppl 2, 37–50 (2018).

    Google Scholar 

  3. 3.

    Gruber, S. B. & Thompson, W. D. A population-based study of endometrial cancer and familial risk in younger women. Cancer and steroid hormone study group. Cancer Epidemiol. Biomarkers Prev. 5, 411–417 (1996).

    CAS  PubMed  Google Scholar 

  4. 4.

    Lynch, H. T., Snyder, C. L., Shaw, T. G., Heinen, C. D. & Hitchins, M. P. Milestones of lynch syndrome: 1895–2015. Nat. Rev. Cancer 15, 181–194 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Palles, C., Latchford, A. & Valle, L. in Hereditary Colorectal Cancer (eds Valle, L., Gruber, S. & Capellá, G.) 113–134 (Springer, 2018).

  6. 6.

    Ngeow, J., Stanuch, K., Mester, J. L., Barnholtz-Sloan, J. S. & Eng, C. Second malignant neoplasms in patients with Cowden syndrome with underlying germline PTEN mutations. J. Clin. Oncol. 32, 1818–1824 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gaber, C., Meza, R., Ruterbusch, J. J. & Cote, M. L. Endometrial cancer trends by race and histology in the USA: projecting the number of new cases from 2015 to 2040. J Racial Ethn. Health Disparities 4, 895–903 (2017).

    Google Scholar 

  8. 8.

    Setiawan, V. W. et al. Type I and II endometrial cancers: have they different risk factors? J. Clin. Oncol. 31, 2607–2618 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Brinton, L. A. et al. Etiologic heterogeneity in endometrial cancer: evidence from a gynecologic oncology group trial. Gynecol. Oncol. 129, 277–284 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lortet-Tieulent, J., Ferlay, J., Bray, F. & Jemal, A. International patterns and trends in endometrial cancer incidence, 1978-2013. J. Natl. Cancer Inst. 110, 354–361 (2018).

    PubMed  Google Scholar 

  11. 11.

    Clarke, M. A., Devesa, S. S., Harvey, S. V. & Wentzensen, N. Hysterectomy-corrected uterine corpus cancer incidence trends and differences in relative survival reveal racial disparities and rising rates of nonendometrioid cancers. J. Clin. Oncol. (2019).

    PubMed  Google Scholar 

  12. 12.

    Faber, M. T., Frederiksen, K., Jensen, A., Aarslev, P. B. & Kjaer, S. K. Time trends in the incidence of hysterectomy-corrected overall, type 1 and type 2 endometrial cancer in Denmark 1978-2014. Gynecol. Oncol. 146, 359–367 (2017).

    PubMed  Google Scholar 

  13. 13.

    Dedes, K. J., Wetterskog, D., Ashworth, A., Kaye, S. B. & Reis-Filho, J. S. Emerging therapeutic targets in endometrial cancer. Nat. Rev. Clin. Oncol. 8, 261–271 (2011).

    CAS  PubMed  Google Scholar 

  14. 14.

    Noone A. M. et al. SEER Cancer Statistics Review, 1975–2015, National Cancer Institute. Bethesda, MD, (2018).

  15. 15.

    Kandoth, C. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013). Landmark TCGA study that reports the molecular genomic landscape of endometrioid and serous endometrial carcinomas, defining four distinct molecular subgroups.

    PubMed  Google Scholar 

  16. 16.

    Cherniack, A. D. et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell 31, 411–423 (2017). Landmark TCGA study that reports the molecular genomic landscape of 57 uterine carcinosarcomas.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Le Gallo, M. et al. The FOXA2 transcription factor is frequently somatically mutated in uterine carcinosarcomas and carcinomas. Cancer 124, 65–73 (2018).

    PubMed  Google Scholar 

  19. 19.

    Le Gallo, M. et al. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing. Cancer 123, 3261–3268 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Jones, S. et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat. Commun. 5, 5006 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    DeLair, D. F. et al. The genetic landscape of endometrial clear cell carcinomas. J. Pathol. 243, 230–224 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kinde, I. et al. Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci. Transl. Med. 5, 167ra164 (2013). First study to show that endometrial cancer-associated mutations can be detected during routine Pap tests; led to development of the prototype ‘PapGene’ test (2013).

    Google Scholar 

  23. 23.

    Zhao, S. & Santin, A. D. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition. Proc. Natl. Acad. Sci. USA 113, 12238–12243 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Kuhn, E. et al. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J. Natl. Cancer Inst. 104, 1503–1513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    McConechy, M. K. et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J. Pathol. 228, 20–30 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Felix, A. S. et al. Factors associated with type I and type II endometrial cancer. Cancer Causes Control 21, 1851–1856 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sherman, M. E. et al. Risk factors and hormone levels in patients with serous and endometrioid uterine carcinomas. Mod. Pathol. 10, 963–968 (1997).

    CAS  PubMed  Google Scholar 

  28. 28.

    Yang, H. P. et al. Endometrial cancer risk factors by 2 main histologic subtypes: the NIH-AARP diet and health study. Am. J. Epidemiol. 177, 142–151 (2013).

    PubMed  Google Scholar 

  29. 29.

    Mutter, G. L., Monte, N. M., Neuberg, D., Ferenczy, A. & Eng, C. Emergence, involution, and progression to carcinoma of mutant clones in normal endometrial tissues. Cancer Res. 74, 2796–2802 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Levine, R. L. et al. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res. 58, 3254–3258 (1998).

    CAS  PubMed  Google Scholar 

  31. 31.

    Mutter, G. L. et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J. Natl. Cancer Inst. 92, 924–930 (2000).

    CAS  PubMed  Google Scholar 

  32. 32.

    Lin, M. C., Burkholder, K. A., Viswanathan, A. N., Neuberg, D. & Mutter, G. L. Involution of latent endometrial precancers by hormonal and nonhormonal mechanisms. Cancer 115, 2111–2118 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Russo, M. et al. Clonal evolution in paired endometrial intraepithelial neoplasia/atypical hyperplasia and endometrioid adenocarcinoma. Hum. Pathol. 67, 69–77 (2017).

    PubMed  Google Scholar 

  34. 34.

    Lazo de la Vega, L. et al. Multiclonality and marked branched evolution of low-grade endometrioid endometrial carcinoma. Mol. Cancer Res. 17, 731–740 (2019).

    CAS  PubMed  Google Scholar 

  35. 35.

    Mota, A. et al. Genetic analysis of uterine aspirates improves the diagnostic value and captures the intra-tumor heterogeneity of endometrial cancers. Mod. Pathol. 30, 134–145 (2017).

    CAS  PubMed  Google Scholar 

  36. 36.

    Joshi, A., Miller, C. Jr., Baker, S. J. & Ellenson, L. H. Activated mutant p110alpha causes endometrial carcinoma in the setting of biallelic Pten deletion. Am. J. Pathol. 185, 1104–1113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Urick, M. E. et al. PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 71, 4061–4067 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Cheung, L. W. et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 1, 170–185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Oda, K. et al. PIK3CA cooperates with other phosphatidylinositol 3’-kinase pathway mutations to effect oncogenic transformation. Cancer Res. 68, 8127–8136 (2008).

    CAS  PubMed  Google Scholar 

  40. 40.

    Oda, K., Stokoe, D., Taketani, Y. & McCormick, F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 65, 10669–10673 (2005).

    CAS  PubMed  Google Scholar 

  41. 41.

    Terakawa, J. et al. Ovarian insufficiency and CTNNB1 mutations drive malignant transformation of endometrial hyperplasia with altered PTEN/PI3K activities. Proc. Natl. Acad. Sci. USA 116, 4528–4537 (2019).

    CAS  Google Scholar 

  42. 42.

    Wang, H. et al. DNA mismatch repair deficiency accelerates endometrial tumorigenesis in Pten heterozygous mice. Am. J. Pathol. 160, 1481–1486 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Byron, S. A. et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLOS ONE 7, e30801 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wang, X., Khatri, S., Broaddus, R., Wang, Z. & Hawkins, S. M. Deletion of Arid1a in reproductive tract mesenchymal cells reduces fertility in female mice. Biol. Reprod. 94, 93 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kim, T. H. et al. ARID1A Is essential for endometrial function during early pregnancy. PLOS Genet. 11, e1005537 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ayhan, A. et al. Increased proliferation in atypical hyperplasia/endometrioid intraepithelial neoplasia of the endometrium with concurrent inactivation of ARID1A and PTEN tumour suppressors. J. Pathol. Clin. Res. 1, 186–193 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sherman, M. E., Bur, M. E. & Kurman, R. J. p53 in endometrial cancer and its putative precursors: evidence for diverse pathways of tumorigenesis. Hum. Pathol. 26, 1268–1274 (1995).

    CAS  PubMed  Google Scholar 

  48. 48.

    Lax, S. F., Kendall, B., Tashiro, H., Slebos, R. J. & Hedrick, L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer 88, 814–824 (2000).

    CAS  PubMed  Google Scholar 

  49. 49.

    Wild, P. J. et al. p53 suppresses type II endometrial carcinomas in mice and governs endometrial tumour aggressiveness in humans. EMBO Mol. Med. 4, 808–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Daikoku, T. et al. Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res. 68, 5619–5627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kuhn, E., Bahadirli-Talbott, A. & Shih Ie, M. Frequent CCNE1 amplification in endometrial intraepithelial carcinoma and uterine serous carcinoma. Mod. Pathol. 27, 1014–1019 (2014).

    CAS  PubMed  Google Scholar 

  52. 52.

    Zhao, S. et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc. Natl. Acad. Sci. USA 110, 2916–2912 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Rudd, M. L. et al. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin. Cancer Res. 17, 1331–1340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Haesen, D. et al. Recurrent PPP2R1A mutations in uterine cancer act through a dominant-negative mechanism to promote malignant cell growth. Cancer Res. 76, 5719–5731 (2016).

    CAS  PubMed  Google Scholar 

  55. 55.

    Urick, M. E. & Bell, D. W. In vitro effects of FBXW7 mutation in serous endometrial cancer: increased levels of potentially druggable proteins and sensitivity to SI-2 and dinaciclib. Mol. Carcinog. 57, 1445–1457 (2018).

    CAS  PubMed  Google Scholar 

  56. 56.

    McConechy, M. K. et al. In-depth molecular profiling of the biphasic components of uterine carcinosarcomas. J. Pathol. Clin. Res. 1, 173–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Chiyoda, T. et al. Expression profiles of carcinosarcoma of the uterine corpus-are these similar to carcinoma or sarcoma? Genes Chromosomes Cancer 51, 229–239 (2012).

    CAS  PubMed  Google Scholar 

  58. 58.

    Jin, Z. et al. Carcinosarcomas (malignant mullerian mixed tumors) of the uterus and ovary: a genetic study with special reference to histogenesis. Int. J. Gynecol. Pathol. 22, 368–373 (2003).

    PubMed  Google Scholar 

  59. 59.

    Abeln, E. C. et al. Molecular genetic evidence for the conversion hypothesis of the origin of malignant mixed mullerian tumours. J. Pathol. 183, 424–431 (1997).

    CAS  PubMed  Google Scholar 

  60. 60.

    Wada, H. et al. Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumors. Cancer Res. 57, 5379–5385 (1997).

    CAS  PubMed  Google Scholar 

  61. 61.

    Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  Google Scholar 

  63. 63.

    An, H. J., Logani, S., Isacson, C. & Ellenson, L. H. Molecular characterization of uterine clear cell carcinoma. Mod. Pathol. 17, 530–537 (2004).

    CAS  PubMed  Google Scholar 

  64. 64.

    Hoang, L. N. et al. Targeted mutation analysis of endometrial clear cell carcinoma. Histopathology 66, 664–674 (2014).

    Google Scholar 

  65. 65.

    Han, G. et al. Endometrial carcinomas with clear cells: a study of a heterogeneous group of tumors including interobserver variability, mutation analysis, and immunohistochemistry with HNF-1beta. Int. J. Gynecol. Pathol. 34, 323–333 (2015).

    CAS  PubMed  Google Scholar 

  66. 66.

    Stelloo, E. et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. Mod. Pathol. 28, 836–844 (2015).

    CAS  PubMed  Google Scholar 

  67. 67.

    McConechy, M. K. et al. Endometrial carcinomas with POLE exonuclease domain mutations have a favorable prognosis. Clin. Cancer Res. 22, 2865–2873 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Church, D. N. et al. Prognostic significance of POLE proofreading mutations in endometrial cancer. J. Natl. Cancer Inst. 107, 402 (2015).

    PubMed  Google Scholar 

  69. 69.

    Meng, B. et al. POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol. Oncol. 134, 15–19 (2014).

    CAS  PubMed  Google Scholar 

  70. 70.

    Hussein, Y. R. et al. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod. Pathol. 28, 505–514 (2015).

    CAS  PubMed  Google Scholar 

  71. 71.

    Billingsley, C. C. et al. Polymerase varepsilon (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. Cancer 121, 386–394 (2015).

    CAS  PubMed  Google Scholar 

  72. 72.

    van Gool, I. C. et al. POLE proofreading mutations elicit an antitumor immune response in endometrial cancer. Clin. Cancer Res. 21, 3347–33557 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Bellone, S. et al. Polymerase epsilon (POLE) ultra-mutated tumors induce robust tumor-specific CD4+T cell responses in endometrial cancer patients. Gynecol. Oncol. 138, 11–17 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Shukla, S. A., Howitt, B. E., Wu, C. J. & Konstantinopoulos, P. A. Predicted neoantigen load in non-hypermutated endometrial cancers: Correlation with outcome and tumor-specific genomic alterations. Gynecol. Oncol. Rep. 19, 42–45 (2017).

    PubMed  Google Scholar 

  75. 75.

    Howitt, B. E. et al. Association of Polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 1, 1319–1323 (2015).

    PubMed  Google Scholar 

  76. 76.

    Eggink, F. A. et al. Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncoimmunology 6, e1264565 (2017).

    PubMed  Google Scholar 

  77. 77.

    Bellone, S. et al. Polymerase epsilon (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro. Gynecol. Oncol. 144, 146–152 (2017).

    CAS  PubMed  Google Scholar 

  78. 78.

    Van Gool, I. C. et al. Adjuvant treatment for POLE proofreading domain-mutant cancers: sensitivity to radiotherapy, chemotherapy, and nucleoside analogues. Clin. Cancer Res. 24, 3197–3203 (2018).

    PubMed  Google Scholar 

  79. 79.

    Talhouk, A. et al. Molecular subtype not immune response drives outcomes in endometrial carcinoma. Clin. Cancer Res. 25, 2537–2548 (2019).

    PubMed  Google Scholar 

  80. 80.

    Clarke, M. A. et al. Association of endometrial cancer risk with postmenopausal bleeding in women: a systematic review and meta-analysis. JAMA Intern. Med. 178, 1210–1222 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Wang, Y. et al. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci. Transl. Med. 10, eaap8793 (2018). Publication demonstrating the detection of early-stage endometrial cancers from samples collected during routine Pap tests using the ‘PapSEEK’ test (2018).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Del Priore, G. et al. Endometrial brush biopsy for the diagnosis of endometrial cancer. J. Reprod. Med. 46, 439–443 (2001).

    PubMed  Google Scholar 

  83. 83.

    Kipp, B. R. et al. Direct uterine sampling with the Tao brush sampler using a liquid-based preparation method for the detection of endometrial cancer and atypical hyperplasia: a feasibility study. Cancer 114, 228–235 (2008).

    PubMed  Google Scholar 

  84. 84.

    Maksem, J., Sager, F. & Bender, R. Endometrial collection and interpretation using the Tao brush and the CytoRich fixative system: a feasibility study. Diagn. Cytopathol. 17, 339–346 (1997).

    CAS  PubMed  Google Scholar 

  85. 85.

    Wu, H. H., Casto, B. D. & Elsheikh, T. M. Endometrial brush biopsy. An accurate outpatient method of detecting endometrial malignancy. J. Reprod. Med. 48, 41–45 (2003).

    PubMed  Google Scholar 

  86. 86.

    Nair, N. et al. Genomic analysis of uterine lavage fluid detects early endometrial cancers and reveals a prevalent landscape of driver mutations in women without histopathologic evidence of cancer: a prospective cross-sectional study. PLOS Med. 13, e1002206 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Maritschnegg, E. et al. Lavage of the uterine cavity for molecular detection of mullerian duct carcinomas: a proof-of-concept study. J. Clin. Oncol. 33, 4293–4300 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Suda, K. et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 24, 1777–1789 (2018).

    CAS  PubMed  Google Scholar 

  89. 89.

    Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Guo, S. W. Cancer driver mutations in endometriosis: variations on the major theme of fibrogenesis. Reprod. Med. Bio.l 17, 369–397 (2018).

    CAS  Google Scholar 

  91. 91.

    Martignetti, J. A. et al. Detection of endometrial precancer by a targeted gynecologic cancer liquid biopsy. Cold Spring Harb. Mol. Case Stud. 4, pii: a003269 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Bakkum-Gamez, J. N. et al. Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons. Gynecol. Oncol. 137, 14–22 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Fiegl, H. et al. Methylated DNA collected by tampons — a new tool to detect endometrial cancer. Cancer Epidemiol. Biomarkers Prev. 13, 882–888 (2004).

    CAS  PubMed  Google Scholar 

  94. 94.

    Talhouk, A. et al. A clinically applicable molecular-based classification for endometrial cancers. Br. J. Cancer 113, 299–310 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wortman, B. G. et al. Ten-year results of the PORTEC-2 trial for high-intermediate risk endometrial carcinoma: improving patient selection for adjuvant therapy. Br. J. Cancer 119, 1067–1074 (2018).

    CAS  PubMed  Google Scholar 

  96. 96.

    Stelloo, E. et al. Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer-combined analysis of the PORTEC cohorts. Clin. Cancer Res. 22, 4215–4224 (2016). Description of the Trans PORTEC molecular classification system that is currently being tested in clinical trials of endometrial cancer patients.

    CAS  PubMed  Google Scholar 

  97. 97.

    US National Library of Medicine., (2018).

  98. 98.

    Auguste, A. et al. Refinement of high-risk endometrial cancer classification using DNA damage response biomarkers: a TransPORTEC initiative. Mod. Pathol. 31, 1851–1861 (2018).

    CAS  PubMed  Google Scholar 

  99. 99.

    Talhouk, A. et al. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 123, 802–813 (2017).

    CAS  Google Scholar 

  100. 100.

    Kommoss, S. et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 29, 1180–1188 (2018). Description of the ‘locked down’ ProMisE molecular classifier that is now ready for clinical evaluation (2018).

    CAS  PubMed  Google Scholar 

  101. 101.

    Britton, H. et al. Molecular classification defines outcomes and opportunities in young women with endometrial carcinoma. Gynecol. Oncol. 153, 487–495 (2019).

    PubMed  Google Scholar 

  102. 102.

    Stelloo, E. et al. High concordance of molecular tumor alterations between pre-operative curettage and hysterectomy specimens in patients with endometrial carcinoma. Gynecol. Oncol. 133, 197–204 (2014).

    CAS  PubMed  Google Scholar 

  103. 103.

    Talhouk, A. & McAlpine, J. N. New classification of endometrial cancers: the development and potential applications of genomic-based classification in research and clinical care. Gynecol. Oncol. Res. Pract. 3, 14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Kurnit, K. C. et al. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod. Pathol. 30, 1032–1041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Myers, A., Barry, W. T., Hirsch, M. S., Matulonis, U. & Lee, L. Beta-catenin mutations in recurrent FIGO IA grade I endometrioid endometrial cancers. Gynecol. Oncol. 134, 426–427 (2014).

    CAS  PubMed  Google Scholar 

  106. 106.

    Wortman, B. G. et al. Molecular-integrated risk profile to determine adjuvant radiotherapy in endometrial cancer: Evaluation of the pilot phase of the PORTEC-4a trial. Gynecol. Oncol. 151, 69–75 (2018).

    CAS  PubMed  Google Scholar 

  107. 107.

    Soslow, R. A. et al. Endometrial carcinoma diagnosis: use of FIGO grading and genomic subcategories in clinical practice: recommendations of the international society of gynecological pathologists. Int. J. Gynecol. Pathol. 38 Suppl 1, S64–S74 (2019).

    PubMed  Google Scholar 

  108. 108.

    Meric-Bernstam, F. et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J. Clin. Oncol. 33, 2753–2762 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Stockley, T. L. et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial. Genome Med. 8, 109 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Wheler, J. J. et al. Cancer therapy directed by comprehensive genomic profiling: a single center study. Cancer Res. 76, 3690–3701 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Soumerai, T. E. et al. Clinical utility of prospective molecular characterization in advanced endometrial cancer. Clin. Cancer Res. 24, 5939–5947 (2018).

    PubMed  Google Scholar 

  113. 113.

    Chawla, A. et al. Estimated cost of anticancer therapy directed by comprehensive genomic profiling in a single-center study. JCO Precis. Oncol. 2, 1–11 (2018).

    Google Scholar 

  114. 114.

    Meng, X. et al. AZD1775 Increases sensitivity to olaparib and gemcitabine in cancer cells with p53 mutations. Cancers (Basel) 10, E149 (2018).

    Google Scholar 

  115. 115.

    Meng, X. et al. Strategies for molecularly enhanced chemotherapy to achieve synthetic lethality in endometrial tumors with mutant p53. Obstet. Gynecol. Int. 2013, 828165 (2013).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Ebeid, K. et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat. Nanotechnol. 13, 72–81 (2018).

    CAS  PubMed  Google Scholar 

  117. 117.

    Meng, X. et al. Induction of mitotic cell death by overriding G2/M checkpoint in endometrial cancer cells with non-functional p53. Gynecol. Oncol. 128, 461–469 (2013).

    CAS  PubMed  Google Scholar 

  118. 118.

    Freedman, A. N. et al. Use of next-generation sequencing tests to guide cancer treatment: results from a nationally representative survey of oncologists in the United States. JCO Precis. Oncol. 2, 1–13 (2018).

    Google Scholar 

  119. 119.

    Rodon, J. et al. WINTHER: an international WIN Consortium precision medicine trial using genomic and transcriptomic analysis in patients with advanced malignancies. J. Clin. Oncol. 36, 12011 (2018).

    Google Scholar 

  120. 120.

    Massard, C. et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 Trial. Cancer Discov. 7, 586–595 (2017).

    CAS  PubMed  Google Scholar 

  121. 121.

    Schwaederle, M. et al. Association of biomarker-based treatment strategies with response rates and progression-free survival in refractory malignant neoplasms: a meta-analysis. JAMA Oncol. 2, 1452–1459 (2016).

    PubMed  Google Scholar 

  122. 122.

    Jardim, D. L. et al. Impact of a biomarker-based strategy on oncology drug development: A meta-analysis of clinical trials leading to FDA approval. J. Natl. Cancer Inst. 107 pii: djv253 (2015).

    PubMed  Google Scholar 

  123. 123.

    Tsimberidou, A. M. et al. Personalized medicine in a phase I clinical trials program: the MD Anderson cancer center initiative. Clin. Cancer Res. 18, 6373–6383 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Lheureux, S. & Oza, A. M. Endometrial cancer-targeted therapies myth or reality? review of current targeted treatments. Eur. J. Cancer 59, 99–108 (2016).

    PubMed  Google Scholar 

  125. 125.

    Dedes, K. J. et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci. Transl. Med. 2, 53ra75 (2010).

    PubMed  Google Scholar 

  126. 126.

    Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Miyasaka, A. et al. Anti-tumor activity of olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, in cultured endometrial carcinoma cells. BMC Cancer 14, 179 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Bian, X. et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene 37, 341–351 (2018).

    CAS  PubMed  Google Scholar 

  129. 129.

    Dosil, M. A. et al. Palbociclib has antitumour effects on Pten-deficient endometrial neoplasias. J. Pathol. 242, 152–164 (2017).

    CAS  PubMed  Google Scholar 

  130. 130.

    Fader, A. N. et al. Randomized phase ii trial of carboplatin-paclitaxel versus carboplatin-paclitaxel-trastuzumab in uterine serous carcinomas that overexpress human epidermal growth factor receptor 2/neu. J Clin. Oncol. 36, 2044–20516 (2018).

    CAS  PubMed  Google Scholar 

  131. 131.

    Musselman, K. et al. Identification of a therapeutic target using molecular sequencing for treatment of recurrent uterine serous adenocarcinoma. Gynecol. Oncol. Rep. 28, 54–57 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    US National Library of Medicine., (2019).

  133. 133.

    Bergstrom, C. P., Geest, K., O’Gara, R., Corless, C. L. & Morgan, T. K. Discordant mutations in paired primary and metastatic endometrial adenocarcinomas identified by semiconductor-based sequencing for rapid cancer genotyping. Reprod. Sci. 23, 1575–1579 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Gibson, W. J. et al. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat. Genet. 48, 848–55 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Ashley, C. W. et al. Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression. Gynecol. Oncol. 152, 11–19 (2019).

    CAS  PubMed  Google Scholar 

  136. 136.

    Soslow, R. A. et al. Clinicopathologic analysis of matched primary and recurrent endometrial carcinoma. Am. J. Surg. Pathol. 36, 1771–1781 (2012).

    PubMed  Google Scholar 

  137. 137.

    Ta, R. M., Hecht, J. L. & Lin, D. I. Discordant loss of mismatch repair proteins in advanced endometrial endometrioid carcinoma compared to paired primary uterine tumors. Gynecol. Oncol. 151, 401–406 (2018).

    CAS  PubMed  Google Scholar 

  138. 138.

    Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Barroilhet, L. & Matulonis, U. The NCI-MATCH trial and precision medicine in gynecologic cancers. Gynecol. Oncol. 148, 585–590 (2018).

    PubMed  Google Scholar 

  140. 140.

    Mangat, P. K. et al. Rationale and design of the targeted agent and profiling utilization registry study. JCO Precis. Oncol. (2018).

  141. 141.

    US National Library of Medicine., (2019).

  142. 142.

    Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017). Study describing the efficacy of single-agent pembrolizumab in mismatch repair-deficient endometrial cancer patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Cosgrove, C. M. et al. Epigenetic silencing of MLH1 in endometrial cancers is associated with larger tumor volume, increased rate of lymph node positivity and reduced recurrence-free survival. Gynecol. Oncol. 146, 588–595 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    McMeekin, D. S. et al. Clinicopathologic significance of mismatch repair defects in endometrial cancer: an NRG oncology/gynecologic oncology group study. J Clin. Oncol. 34, 3062–3068 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Zighelboim, I. et al. Microsatellite instability and epigenetic inactivation of MLH1 and outcome of patients with endometrial carcinomas of the endometrioid type. J Clin. Oncol. 25, 2042–2048 (2007).

    CAS  PubMed  Google Scholar 

  146. 146.

    Ott, P. A. et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer: results from the KEYNOTE-028 Study. J Clin. Oncol. 35, 2535–2541 (2017).

    CAS  PubMed  Google Scholar 

  147. 147.

    Vanderstraeten, A., Luyten, C., Verbist, G., Tuyaerts, S. & Amant, F. Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunol. Immunother. 63, 545–557 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Mitchell, T. C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J. Clin. Oncol. (2018).

  149. 149.

    Mehnert, J. M. et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Invest. 126, 2334–4 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Fleming, G. F. et al. Clinical activity, safety and biomarker results from a phase Ia study of atezolizumab (atezo) in advanced/recurrent endometrial cancer (rEC). J. Clin. Oncol. 35, 15_suppl, 5585–5585 (2017).

    Google Scholar 

  151. 151.

    Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 e814 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    CAS  PubMed  Google Scholar 

  154. 154.

    Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511–516 (2019).

    CAS  PubMed  Google Scholar 

  155. 155.

    Kategaya, L., Perumal, S. K., Hager, J. H. & Belmont, L. D. Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability. iScience 13, 488–497 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Lieb, S. et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. Elife 8, e43333 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    McConechy, M. K. et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod. Pathol. 27, 128–1347 (2014).

    CAS  PubMed  Google Scholar 

  158. 158.

    Jeske, Y. W. et al. FGFR2 mutations are associated with poor outcomes in endometrioid endometrial cancer: an NRG oncology/gynecologic oncology group study. Gynecol. Oncol. 145, 366–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Tashiro, H. et al. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am. J. Pathol. 150, 177–185 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    US National Library of Medicine., (2019).

  161. 161.

    US National Library of Medicine., (2019).

  162. 162.

    US National Library of Medicine., (2019).

  163. 163.

    US National Library of Medicine., (2018).

  164. 164.

    Wong, A. & Ngeow, J. Hereditary syndromes manifesting as endometrial carcinoma: how can pathological features aid risk assessment? Biomed. Res. Int. 2015, 219012 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references


The authors apologize to those authors whose work we could not cite owing to space limitations. This work was supported by the Intramural Research Program of the National Human Genome Research Institute at NIH (HG200338 and HG200379) to D.W.B.

Author information




The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Daphne W. Bell.

Ethics declarations

Competing interests

D.W.B. receives royalty income from US patent no. 7,294,468 ‘Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments’, which is licensed to Esoterix Genetic Labs LLC. M.E.U. has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information



Tumour comprising both carcinoma and sarcoma.


Surgical removal of the uterus.

Epithelial-to-mesenchymal transition

(EMT). Process by which epithelial cells acquire characteristics of mesenchymal cells, including but not limited to decreased cell-to-cell adhesion, decreased polarity and increased motility.


Cancer caused by uncontrolled proliferation of epithelial cells.

Complex atypical hyperplasia

(CAH). When occurring in the endometrium, precancerous changes in the epithelial cells lining the uterus, characterized by abnormal growth and the acquisition of somatic genomic aberrations.

Ovarian insufficiency

Loss of normal ovarian function.

Mismatch repair

(MMR). Type of DNA repair that corrects base–base mismatches and insertions/deletions.

Atrophic endometrium

Thin layer of nonproliferative epithelial cells lining the uterus; characteristic of postmenopausal women.

Serous endometrial intraepithelial carcinoma

(SEIC). Noninvasive malignant precursor to serous endometrial cancer.


Cancer caused by uncontrolled proliferation of connective tissue.

The Cancer Genome Atlas

(TCGA). NIH-funded initiative that molecularly characterized over 20,000 primary cancer and matched normal samples, covering 33 cancer types.

Progression-free survival

(PFS). Length of time a patient lives without objective worsening of disease.

Microsatellite instability

(MSI). Alteration of the number of short, repeated sequences of DNA because of a defect in DNA mismatch repair.

Disease-free survival

Length of time a patient lives without signs of disease.

Papanicolaou (Pap) test

Routine screening tool in which cervical cells are collected using a small brush and are analysed microscopically for signs of disease (e.g., irregular cell morphology).

Tao brush

Flexible brush used to sample the inside of the uterus.

Pap brush

Flexible brush used to sample the inside of the cervix.

Next-generation sequencing

(NGS). High-throughput technologies (also known as massively parallel or deep sequencing) that enable faster determination of DNA or RNA base pair codes than previously used technologies (e.g. Sanger sequencing) were capable of.

Uterine lavage

Process by which the uterus is flushed with a sterile solution.


Colorectal cancer screening test that enables patients to collect stool samples in-home; samples are mailed to a lab where they are analysed for the presence of blood and DNA abnormalities.

Lymphovascular space invasion

(LVSI). Spreading of cancer to the lymphatic system or blood vessels.


Chemotherapy drug that inhibits cell growth and/or causes apoptosis by inducing DNA–DNA and DNA–protein crosslinks.


Chemotherapy drug that binds tubulin and inhibits cell division; also induces apoptosis through binding and inhibition of B cell leukaemia 2.


Recombinant monoclonal humanized epidermal growth factor receptor 2 antibody.

Tumour-infiltrating lymphocytes

(TILs). White blood cells (immune cells) found within tumour tissue.

TCGA’s Pan-Gyn cohort

The 1,087 invasive breast carcinomas, 308 endocervical adenocarcinomas, 579 high-grade serous ovarian cystadenocarcinomas, 548 uterine corpus endometrial carcinomas and 57 uterine carcinosarcomas molecularly characterized by TCGA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urick, M.E., Bell, D.W. Clinical actionability of molecular targets in endometrial cancer. Nat Rev Cancer 19, 510–521 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing