Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable quantum simulation of spin models with a two-dimensional ion crystal

An Author Correction to this article was published on 12 February 2024

This article has been updated

Abstract

Quantum spin models have been extensively used to study the properties of strongly correlated systems and to find approximate solutions to combinatorial optimization problems. Trapped-ion systems have reliably demonstrated the quantum simulation of various quantum spin models in one-dimensional chains. The extension of trapped-ion simulators to two dimensions has been an enticing goal for decades. Here we present the quantum simulation of Ising models with two-dimensional ion crystals in a Paul trap. We benchmark the simulator by implementing various spin models with complex interaction networks and adiabatically prepare the corresponding ground states. Spin–spin interactions with different signs and sufficiently large strengths are generated by driving different vibrational modes. We probe the quantum coherence of the simulation by reversing the ramping profile of the transverse field to the initial value and then quantify the probability of returning to the initial state. Then, we test the scalability of the system for a large-scale quantum simulation. Our results show that major portions of the spin states are in the ground state even for highly frustrated spin models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum simulation of frustrated quantum magnets with 2D ion crystal.
Fig. 2: Verification of quantum simulation with a 2D crystal having four ions.
Fig. 3: Quantum simulation and quantum coherence of various spin models with a seven-ion 2D crystal.
Fig. 4: Benchmarking of quantum simulation with increasing number of spins in a 2D ion crystal.

Similar content being viewed by others

Data availability

All relevant data are available from the corresponding authors upon request.

Change history

References

  1. Wannier, G. H. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  2. Moessner, R. & Ramirez, A. P. Geometrical frustration. Phys. Today 59, 24–29 (2006).

  3. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757–761 (2008).

  4. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

  5. Schmidt, B. & Thalmeier, P. Frustrated two dimensional quantum magnets. Phys. Rep. 703, 1–59 (2017).

  6. Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15, 3241 (1982).

  7. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article  Google Scholar 

  8. Wen, X.-G. Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181 (1973).

  11. King, A. D., Nisoli, C., Dahl, E. D., Poulin-Lamarre, G. & Lopez-Bezanilla, A. Qubit spin ice. Science 373, 576–580 (2021).

  12. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

  13. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

  14. Qiu, X., Zoller, P. & Li, X. Programmable quantum annealing architectures with Ising quantum wires. PRX Quantum 1, 020311 (2020).

    Article  Google Scholar 

  15. Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photon. 11, 646–650 (2017).

  16. Wang, P. et al. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 12, 233 (2021).

    Article  ADS  Google Scholar 

  17. Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010).

  18. Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 377 (2011).

    Article  ADS  Google Scholar 

  19. Islam, R. et al. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583–587 (2013).

  20. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  21. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000).

  22. Schätz, T., Friedenauer, A., Schmitz, H., Petersen, L. & Kahra, S. Towards (scalable) quantum simulations in ion traps. J. Mod. Opt. 54, 2317–2325 (2007).

  23. Chiaverini, J. & Lybarger, W. E. Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77, 022324 (2008).

    Article  ADS  Google Scholar 

  24. Clark, R. J., Lin, T., Brown, K. R. & Chuang, I. L. A two-dimensional lattice ion trap for quantum simulation. J. Appl. Phys. 105, 013114 (2009).

    Article  ADS  Google Scholar 

  25. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

  26. Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).

  28. Bermudez, A., Almeida, J., Schmidt-Kaler, F., Retzker, A. & Plenio, M. B. Frustrated quantum spin models with cold Coulomb crystals. Phys. Rev. Lett. 107, 207209 (2011).

    Article  ADS  Google Scholar 

  29. Nath, R. et al. Hexagonal plaquette spin–spin interactions and quantum magnetism in a two-dimensional ion crystal. New J. Phys. 17, 065018 (2015).

    Article  ADS  Google Scholar 

  30. Yoshimura, B., Stork, M., Dadic, D., Campbell, W. C. & Freericks, J. K. Creation of two-dimensional Coulomb crystals of ions in oblate Paul traps for quantum simulations. EPJ Quantum Technol. 2, 2 (2015).

    Article  Google Scholar 

  31. Richerme, P. Two-dimensional ion crystals in radio-frequency traps for quantum simulation. Phys. Rev. A 94, 032320 (2016).

    Article  ADS  Google Scholar 

  32. Sterling, R. C. et al. Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nat. Commun. 5, 3637 (2014).

    Article  ADS  Google Scholar 

  33. Mielenz, M. et al. Arrays of individually controlled ions suitable for two-dimensional quantum simulations. Nat. Commun. 7, ncomms11839 (2016).

    Article  ADS  Google Scholar 

  34. Hakelberg, F., Kiefer, P., Wittemer, M., Warring, U. & Schaetz, T. Interference in a prototype of a two-dimensional ion trap array quantum simulator. Phys. Rev. Lett. 123, 100504 (2019).

    Article  ADS  Google Scholar 

  35. D’Onofrio, M. et al. Radial two-dimensional ion crystals in a linear Paul trap. Phys. Rev. Lett. 127, 020503 (2021).

    Article  ADS  Google Scholar 

  36. Wang, Y. et al. Coherently manipulated 2D ion crystal in a monolithic Paul trap. Adv. Quantum Technol. 3, 2000068 (2020).

    Article  ADS  Google Scholar 

  37. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    Article  ADS  Google Scholar 

  38. Deng, X.-L., Porras, D. & Cirac, J. I. Effective spin quantum phases in systems of trapped ions. Phys. Rev. A 72, 063407 (2005).

    Article  ADS  Google Scholar 

  39. Kim, K. et al. Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).

    Article  ADS  Google Scholar 

  40. Korenblit, S. et al. Quantum simulation of spin models on an arbitrary lattice with trapped ions. New J. Phys. 14, 095024 (2012).

    Article  ADS  Google Scholar 

  41. Shapira, Y. et al. Theory of robust multiqubit nonadiabatic gates for trapped ions. Phys. Rev. A 101, 032330 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  42. Qiao, M. et al. Double-electromagnetically-induced-transparency ground-state cooling of stationary two-dimensional ion crystals. Phys. Rev. Lett. 126, 023604 (2021).

    Article  ADS  Google Scholar 

  43. Feng, L. et al. Efficient ground-state cooling of large trapped-ion chains with an electromagnetically-induced-transparency tripod scheme. Phys. Rev. Lett. 125, 053001 (2020).

    Article  ADS  Google Scholar 

  44. Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    Article  ADS  Google Scholar 

  45. Richerme, P. et al. Experimental performance of a quantum simulator: optimizing adiabatic evolution and identifying many-body ground states. Phys. Rev. A 88, 012334 (2013).

    Article  ADS  Google Scholar 

  46. Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

  47. Shaffer, R., Megidish, E., Broz, J., Chen, W.-T. & Häffner, H. Practical verification protocols for analog quantum simulators. npj Quantum Inf. 7, 46 (2021).

    Article  ADS  Google Scholar 

  48. Altshuler, B., Krovi, H. & Roland, J. Anderson localization makes adiabatic quantum optimization fail. Proc. Natl Acad. Sci. USA 107, 12446–12450 (2010).

  49. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  50. Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

    Article  ADS  Google Scholar 

  51. Bruzewicz, C. D., Sage, J. M. & Chiaverini, J. Measurement of ion motional heating rates over a range of trap frequencies and temperatures. Phys. Rev. A 91, 041402 (2015).

    Article  ADS  Google Scholar 

  52. Hite, D. A., McKay, K. S. & Pappas, D. P. Surface science motivated by heating of trapped ions from the quantum ground state. New J. Phys. 23, 103028 (2021).

    Article  ADS  Google Scholar 

  53. Kiesenhofer, D. et al. Controlling two-dimensional Coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 4, 020317 (2023).

    Article  ADS  Google Scholar 

  54. Giachetti, G., Defenu, N., Ruffo, S. & Trombettoni, A. Berezinskii-Kosterlitz-Thouless phase transitions with long-range couplings. Phys. Rev. Lett. 127, 156801 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  55. Giachetti, G., Defenu, N., Ruffo, S. & Trombettoni, A. Villain model with long-range couplings. J. High Energ. Phys. 2023, 238 (2023).

    Article  MathSciNet  Google Scholar 

  56. Lechner, W., Hauke, P. & Zoller, P. A quantum annealing architecture with all-to-all connectivity from local interactions. Sci. Adv. 1, e1500838 (2015).

    Article  ADS  Google Scholar 

  57. Blümel, R. et al. Efficient stabilized two-qubit gates on a trapped-ion quantum computer. Phys. Rev. Lett. 126, 220503 (2021).

    Article  ADS  Google Scholar 

  58. Blümel, R., Grzesiak, N., Pisenti, N., Wright, K. & Nam, Y. Power-optimal, stabilized entangling gate between trapped-ion qubits. npj Quantum Inf. 7, 147 (2021).

    Article  ADS  Google Scholar 

  59. Kuramoto, Y. & Yokoyama, H. Exactly soluble supersymmetric t-J-type model with long-range exchange and transfer. Phys. Rev. Lett. 67, 1338 (1991).

    Article  ADS  Google Scholar 

  60. Kuramoto, Y. & Kato, Y. Dynamics of One-Dimensional Quantum Systems: Inverse-Square Interaction Models (Cambridge Univ. Press, 2009).

  61. Haldane, F. D. M. Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-\(\frac{1}{2}\) antiferromagnetic Heisenberg chain with 1/r2 exchange. Phys. Rev. Lett. 60, 635 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  62. Shastry, B. S. Exact solution of an S=1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. Phys. Rev. Lett. 60, 639 (1988).

    Article  ADS  Google Scholar 

  63. Graß, T. & Lewenstein, M. Trapped-ion quantum simulation of tunable-range Heisenberg chains. EPJ Quantum Technol. 1, 8 (2014).

  64. Chertkov, E., Villalonga, B. & Clark, B. K. Numerical evidence for many-body localization in two and three dimensions. Phys. Rev. Lett. 126, 180602 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. You, J. Bollinger and J. Freericks for carefully reading the manuscript. This work was supported by the Innovation Program for Quantum Science and Technology under grant no. 2021ZD0301602, and the National Natural Science Foundation of China under grant nos. 92065205, 11974200 and 62335013.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and M.Q. conceived the idea and designed the experiments. M.Q., Z.C., Y.W., B.D. and N.J. with assistance from W.C., P.W., C.L., E.G., X.S. and H.T. developed the experimental system. M.Q. with the help of J.Z. optimized the experimental schemes. M.Q. took and analysed the data. K.K. supervised the project. M.Q., K.K., Z.C., E.G. and Y.W. contributed to the writing of the manuscript with the agreement of all other authors.

Corresponding authors

Correspondence to Mu Qiao or Kihwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, M., Cai, Z., Wang, Y. et al. Tunable quantum simulation of spin models with a two-dimensional ion crystal. Nat. Phys. 20, 623–630 (2024). https://doi.org/10.1038/s41567-023-02378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02378-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing