Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics

Subjects

Abstract

Aliovalent doping is a way to optimize the electrical properties of semiconductors, but its impact on the phonon structure and propagation is seldom considered properly. Here we show that aliovalent doping can be much more effective in reducing the lattice thermal conductivity of thermoelectric semiconductors than the commonly employed isoelectronic alloying strategy. We demonstrate this in the heavy-band NbFeSb system, finding that a reduction of 65% in the lattice thermal conductivity is achieved through only 10% aliovalent Hf doping, compared with the four times higher isoelectronic Ta alloying. We show that aliovalent doping introduces free charge carriers and enhances screening, leading to the softening and deceleration of optical phonons. Moreover, the heavy dopant can induce the avoided crossing of acoustic and optical phonon branches, decelerating the acoustic phonons. These results highlight the significant role of aliovalent dopants in regulating the phonon structure and suppressing the phonon propagation of semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimal carrier concentration and suppression of lattice thermal conductivity via aliovalent doping for typical TE materials.
Fig. 2: Comparison of κL values of NbFeSb with either aliovalent doping or isoelectronic alloying.
Fig. 3: Softening of optical phonons and suppressed group velocity.
Fig. 4: Weakened chemical bonding after aliovalent doping in NbFeSb.
Fig. 5: Avoided-crossing behaviour and suppression of sound velocity.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request. Experimental data from the ISIS Neutron and Muon Source are available at https://doi.org/10.5286/ISIS.E.RB1820186. Source data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).

    Google Scholar 

  2. Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innov. 2, 100180 (2021).

    Google Scholar 

  3. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    ADS  Google Scholar 

  4. Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    ADS  Google Scholar 

  5. Ren, Q. et al. Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials. Nat. Commun. 11, 3142 (2020).

    ADS  Google Scholar 

  6. Hu, C., Xia, K., Fu, C., Zhao, X. & Zhu, T. Carrier grain boundary scattering in thermoelectric materials. Energy Environ. Sci. 15, 1406–1422 (2022).

    Google Scholar 

  7. Ioffe, A. F. Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, 1957).

  8. Yu, J. et al. Half‐Heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energy Mater. 10, 2000888 (2020).

    Google Scholar 

  9. Freer, R. et al. Key properties of inorganic thermoelectric materials—tables (version 1). J. Phys.: Energy 4, 022002 (2022).

    ADS  Google Scholar 

  10. Liu, Y. et al. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials. Adv. Mater. 30, 1800881 (2018).

    Google Scholar 

  11. Zhu, H. et al. Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. Sci. Adv. 5, eaav5813 (2019).

    ADS  Google Scholar 

  12. Yu, J. et al. Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Adv. Energy Mater. 8, 1701313 (2018).

    Google Scholar 

  13. Zhu, H. et al. Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat. Commun. 9, 2497 (2018).

    ADS  Google Scholar 

  14. Xing, Y. et al. A device-to-material strategy guiding the ‘double-high’ thermoelectric module. Joule 4, 2475–2483 (2020).

    Google Scholar 

  15. Xie, H. et al. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4, 6888 (2015).

    Google Scholar 

  16. Fu, C., Zhu, T., Liu, Y., Xie, H. & Zhao, X. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ. Sci. 8, 216–220 (2015).

    Google Scholar 

  17. Pei, Y. et al. Optimum carrier concentration in n-type PbTe thermoelectrics. Adv. Energy Mater. 4, 1400486 (2014).

    Google Scholar 

  18. Wang, H., LaLonde, A. D., Pei, Y. & Snyder, G. J. The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 23, 1586–1596 (2013).

    Google Scholar 

  19. Hu, L., Zhu, T., Liu, X. & Zhao, X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014).

    Google Scholar 

  20. Yang, J., Meisner, G. P. & Chen, L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl. Phys. Lett. 85, 1140–1142 (2004).

    ADS  Google Scholar 

  21. Liu, Y. et al. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying. J. Mater. Chem. A 3, 22716–22722 (2015).

    ADS  Google Scholar 

  22. Fu, C. et al. High band degeneracy contributes to high thermoelectric performance in p-type half-Heusler compounds. Adv. Energy Mater. 4, 1400600 (2014).

    Google Scholar 

  23. May, A. F. & Snyder, G. J. Introduction to modeling thermoelectric transport at high temperatures. in Materials, Preparation, and Characterization in Thermoelectrics 207–224 (CRC Press, 2017).

  24. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    ADS  Google Scholar 

  25. Li, W., Carrete, J., A. Katcho, N. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    ADS  MATH  Google Scholar 

  26. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  27. Noffsinger, J. et al. EPW: a program for calculating the electron–phonon coupling using maximally localized Wannier functions. Comput. Phys. Commun. 181, 2140–2148 (2010).

    ADS  MATH  Google Scholar 

  28. Tritt, T. M. Thermal Conductivity (Springer, 2004).

  29. Max, B. & Kun, H. Dynamical Theory of Crystal Lattices (Clarendon Press, 1954).

  30. Kandpal, H. C., Felser, C. & Seshadri, R. Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D: Appl. Phys. 39, 776–785 (2006).

    ADS  Google Scholar 

  31. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Google Scholar 

  32. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Google Scholar 

  33. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Google Scholar 

  34. Nelson, R. et al. LOBSTER: local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory. J. Comput. Chem. 41, 1931–1940 (2020).

    Google Scholar 

  35. Callaway, J. & von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149–1154 (1960).

    ADS  MATH  Google Scholar 

  36. Dong, J., Sankey, O. F. & Myles, C. W. Theoretical study of the lattice thermal conductivity in Ge framework semiconductors. Phys. Rev. Lett. 86, 2361–2364 (2001).

    ADS  Google Scholar 

  37. Yang, J. et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. npj Comput. Mater. 2, 15015 (2016).

    ADS  Google Scholar 

  38. Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).

    ADS  Google Scholar 

  39. Tamura, S. Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858–866 (1983).

    ADS  Google Scholar 

  40. Delaire, O. et al. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe1–xMxSi (M = Ir, Os). Phys. Rev. B 91, 094307 (2015).

    ADS  Google Scholar 

  41. Wu, Y. et al. Lattice strain advances thermoelectrics. Joule 3, 1276–1288 (2019).

    Google Scholar 

  42. Slack, G. A. & Galginaitis, S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Phys. Rev. 133, A253–A268 (1964).

    ADS  Google Scholar 

  43. Slack, G. A. Effect of isotopes on low-temperature thermal conductivity. Phys. Rev. 105, 829–831 (1957).

    ADS  Google Scholar 

  44. Klemens, P. G. Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507–509 (1960).

    ADS  Google Scholar 

  45. Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963).

    ADS  Google Scholar 

  46. Delaire, O. et al. Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder. Proc. Natl Acad. Sci. USA 108, 4725–4730 (2011).

    ADS  Google Scholar 

  47. Racu, A. M., Menzel, D., Schoenes, J. & Doll, K. Crystallographic disorder and electron-phonon coupling in Fe1–xCoxSi single crystals: Raman spectroscopy study. Phys. Rev. B. 76, 115103 (2007).

    ADS  Google Scholar 

  48. Menzel, D. et al. Electron-phonon interaction and spectral weight transfer in Fe1–xCoxSi. Phys. Rev. B. 79, 165111 (2009).

    ADS  Google Scholar 

  49. Koza, M. M. et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805–810 (2008).

    ADS  Google Scholar 

  50. Huang, B. & Kaviany, M. Filler-reduced phonon conductivity of thermoelectric skutterudites: ab initio calculations and molecular dynamics simulations. Acta Mater. 58, 4516–4526 (2010).

    ADS  Google Scholar 

  51. Li, W. & Mingo, N. Thermal conductivity of fully filled skutterudites: role of the filler. Phys. Rev. B. 89, 184304 (2014).

    ADS  Google Scholar 

  52. Li, W. & Mingo, N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys. Rev. B. 91, 144304 (2015).

    ADS  Google Scholar 

  53. Lin, H. et al. Concerted rattling in CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem. Int. Ed. 55, 11431–11436 (2016).

    Google Scholar 

  54. He, J. et al. Ultralow thermal conductivity in full Heusler semiconductors. Phys. Rev. Lett. 117, 046602 (2016).

    ADS  Google Scholar 

  55. Tan, G., Hao, S., Zhao, J., Wolverton, C. & Kanatzidis, M. G. High thermoelectric performance in electron-doped AgBi3S5 with ultralow thermal conductivity. J. Am. Chem. Soc. 139, 6467–6473 (2017).

    Google Scholar 

  56. Azuah, R. T. et al. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).

    Google Scholar 

  57. Lin, J. Y. Y., Islam, F. & Kresh, M. Multiphonon: phonon density of states tools for inelastic neutron scattering powder data. J. Open Source Softw. 3, 440 (2018).

    ADS  Google Scholar 

  58. Ren, Q. et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nat. Commun. 13, 2293 (2022).

    ADS  Google Scholar 

  59. Ren, Q. et al. Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6. Nat. Mater. 22, 999–1006 (2023).

    ADS  Google Scholar 

  60. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Google Scholar 

  61. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  Google Scholar 

  62. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Google Scholar 

Download references

Acknowledgements

T.Z. thanks the National Natural Science Foundation of China (no. 92163203), the National Science Fund for Distinguished Young Scholars (no. 51725102) and the Fundamental Research Funds for the Central Universities (no. 2021FZZX001) for support. C. Fu thanks the National Natural Science Foundation of China (no. 52101275) and the Fundamental Research Funds for the Central Universities (no. 226-2023-00001). J.Y. thanks the National Natural Science Foundation of China (nos. 52172216 and 92163212) and the Key Research Project of Zhejiang Lab (no. 2021PE0AC02). J.M. thanks the National Science Foundation of China (no. U2032213) for support. C. Felser thanks the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer (no. 392228380). Q.R. thanks the project from Guangdong Basic and Applied Basic Research Foundation (grant no. 2021B1515140014). Q.R. also acknowledges the beam time granted by ISIS (RB no. 1820186), SINQ (proposal no. 20181498) and J-PARC/MLF (proposal no. 2018B0144). P.M. thanks the National Natural Science Foundation of China (no. 12005243) and the Guangdong Basic and Applied Basic Research Foundation (grant no. 2022B1515120014).We thank J. Yu and K. Xia for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C. Fu and T.Z. designed the project. S.H. prepared the samples and carried out the high-temperature transport measurements. C. Fu and C. Felser performed the low-temperature transport measurements. S.D. and J.Y. performed the first-principles calculations. Q.R. and J.M. carried out the INS experiment and high-resolution neutron diffraction studies with input from M.D.L., D.S., P.M., S.T. and T.K. Q.R. and J.M. analyzed the neutron scattering data and Q.R. carried out the Rietveld refinement of the neutron diffraction patterns. S.H. and C. Fu analysed the data and wrote the original manuscript, with input from C.H. and Z.G. T.Z. and C. Felser supervised the project. All the authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Jiong Yang, Chenguang Fu or Tiejun Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Zhilun Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–7 and Discussion.

Source data

Source Data Fig. 1

Optimal carrier concentration data versus DOS effective mass (Fig. 1a) and reduction in lattice thermal conductivity versus doping/alloying concentration (Fig. 1b).

Source Data Fig. 2

Experimental lattice thermal conductivity data (Fig. 2a) and calculated lattice thermal conductivity data (Fig. 2b–d).

Source Data Fig. 3

INS data (Fig. 3a,b), calculated phonon DOS (Fig. 3b) and group velocity data (Fig. 3c).

Source Data Fig. 4

Calculated phonon dispersion data (Fig. 4a,b), integrated partial COHP data (Fig. 4c) and deformation electron density isosurface (Fig. 4d).

Source Data Fig. 5

Calculated group velocity data (Fig. 5a), phonon dispersion data (Fig. 5b) and partial phonon DOS data (Fig. 5c).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Dai, S., Ma, J. et al. Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics. Nat. Phys. 19, 1649–1657 (2023). https://doi.org/10.1038/s41567-023-02188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02188-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing