Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unified state diagram for the yielding transition of soft colloids

Abstract

Concentrated colloidal suspensions and emulsions are amorphous soft solids, widespread in technological and industrial applications and studied as model systems in physics and materials sciences. They are easily fluidized by applying mechanical stress, undergoing a yielding transition that still lacks a unified description. Here we investigate yielding in three classes of repulsive soft solids and find that at the microscopic level, yielding consists of a transition between two distinct dynamical states. We rationalize this by proposing a lattice model with dynamical coupling between neighbouring sites, leading to a unified state diagram for yielding. Employing the analogy with van der Waals phase diagram for real gases, we show that distance from a critical point plays a major role in the emergence of first-order-like versus second-order-like features in yielding, thereby reconciling previously contrasting observations on the nature of the transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Viscoelasticity and spontaneous dynamics of a dense microgel suspension.
Fig. 2: Yielding of soft solids as a dynamic transition.
Fig. 3: Theoretical and numerical modelling of the yielding transition.
Fig. 4: Unified state diagram for the yielding transition.
Fig. 5: Distance from a critical point governs the nature of the yielding transition.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available via figshare at https://doi.org/10.6084/m9.figshare.22674334. Additional data concerning this study are available from the corresponding author upon reasonable request.

Code availability

The code that supports the plots within this paper and other findings of this study is available via GitHub at https://github.com/steaime/SimulIsing.

References

  1. Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017).

    ADS  Google Scholar 

  2. Koumakis, N., Brady, J. F. & Petekidis, G. Complex oscillatory yielding of model hard-sphere glasses. Phys. Rev. Lett. 110, 178301 (2013).

    ADS  Google Scholar 

  3. Mason, T. G., Bibette, J. & Weitz, D. A. Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179, 439–448 (1996).

    ADS  Google Scholar 

  4. Knowlton, E. D., Pine, D. J. & Cipelletti, L. A microscopic view of the yielding transition in concentrated emulsions. Soft Matter 10, 6931–6940 (2014).

    ADS  Google Scholar 

  5. Rogers, M. C. et al. Microscopic signatures of yielding in concentrated nanoemulsions under large-amplitude oscillatory shear. Phys. Rev. Mater. 2, 095601 (2018).

    Google Scholar 

  6. Rogers, S. A., Erwin, B. M., Vlassopoulos, D. & Cloitre, M. Oscillatory yielding of a colloidal star glass. J. Rheol. 55, 733–752 (2011).

    Google Scholar 

  7. Ketz, R. J., Prud’homme, R. K. & Graessley, W. W. Rheology of concentrated microgel solutions. Rheol. Acta 27, 531–539 (1988).

    Google Scholar 

  8. Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020 (1997).

    ADS  Google Scholar 

  9. Seth, J. R., Mohan, L., Locatelli-Champagne, C., Cloitre, M. & Bonnecaze, R. T. A micromechanical model to predict the flow of soft particle glasses. Nat. Mater. 10, 838–843 (2011).

    ADS  Google Scholar 

  10. Donley, G. J., Singh, P. K., Shetty, A. & Rogers, S. A. Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition. Proc. Natl Acad. Sci. USA 117, 21945–21952 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  11. Brader, J. M. et al. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments. Phys. Rev. E 82, 061401 (2010).

    ADS  Google Scholar 

  12. Voigtmann, T. Nonlinear glassy rheology. Curr. Opin. Colloid Interface Sci. 19, 549–560 (2014).

    Google Scholar 

  13. Picard, G., Ajdari, A., Bocquet, L. & Lequeux, F. Simple model for heterogeneous flows of yield stress fluids. Phys. Rev. E 66, 051501 (2002).

    ADS  Google Scholar 

  14. Benzi, R. et al. Unified theoretical and experimental view on transient shear banding. Phys. Rev. Lett. 123, 248001 (2019).

    ADS  Google Scholar 

  15. Liu, C., Martens, K. & Barrat, J.-L. Mean-field scenario for the athermal creep dynamics of yield-stress fluids. Phys. Rev. Lett. 120, 028004 (2018).

    ADS  Google Scholar 

  16. Sainudiin, R., Moyers-Gonzalez, M. & Burghelea, T. A microscopic Gibbs field model for the macroscopic yielding behaviour of a viscoplastic fluid. Soft Matter 11, 5531–5545 (2015).

    ADS  Google Scholar 

  17. Keim, N. C. & Arratia, P. E. Yielding and microstructure in a 2D jammed material under shear deformation. Soft Matter 9, 6222–6225 (2013).

    ADS  Google Scholar 

  18. Fiocco, D., Foffi, G. & Sastry, S. Oscillatory athermal quasistatic deformation of a model glass. Phys. Rev. E 88, 020301 (2013).

    ADS  Google Scholar 

  19. Hima Nagamanasa, K., Gokhale, S., Sood, A. K. & Ganapathy, R. Experimental signatures of a nonequilibrium phase transition governing the yielding of a soft glass. Phys. Rev. E 89, 062308 (2014).

    ADS  Google Scholar 

  20. Jeanneret, R. & Bartolo, D. Geometrically protected reversibility in hydrodynamic Loschmidt-echo experiments. Nat. Commun. 5, 3474 (2014).

    Google Scholar 

  21. Kawasaki, T. & Berthier, L. Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. Phys. Rev. E 94, 022615 (2016).

    ADS  Google Scholar 

  22. Leishangthem, P., Parmar, A. D. S. & Sastry, S. The yielding transition in amorphous solids under oscillatory shear deformation. Nat. Commun. 8, 14653 (2017).

    ADS  Google Scholar 

  23. Edera, P. et al. Deformation profiles and microscopic dynamics of complex fluids during oscillatory shear experiments. Soft Matter 17, 8553–8566 (2021).

    ADS  Google Scholar 

  24. Lerouge, S. & Berret, J.-F. Shear-induced transitions and instabilities in surfactant wormlike micelles. in Polymer Characterization Vol. 230 (eds Dusek, K. & Joanny, J.-F.) 1–71 (Springer, 2009).

  25. Cipelletti, L. et al. Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss. 123, 237–251 (2003).

    ADS  Google Scholar 

  26. Madsen, A., Leheny, R. L., Guo, H., Sprung, M. & Czakkel, O. Beyond simple exponential correlation functions and equilibrium dynamics in X-ray photon correlation spectroscopy. New J. Phys. 12, 055001 (2010).

    ADS  Google Scholar 

  27. Denisov, D. V. et al. Sharp symmetry-change marks the mechanical failure transition of glasses. Sci. Rep. 5, 14359 (2015).

    ADS  Google Scholar 

  28. Divoux, T., Grenard, V. & Manneville, S. Rheological hysteresis in soft glassy materials. Phys. Rev. Lett. 110, 018304 (2013).

    ADS  Google Scholar 

  29. Bocquet, L., Colin, A. & Ajdari, A. Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103, 036001 (2009).

    ADS  Google Scholar 

  30. Nordstrom, K. N., Gollub, J. P. & Durian, D. J. Dynamical heterogeneity in soft-particle suspensions under shear. Phys. Rev. E 84, 021403 (2011).

    ADS  Google Scholar 

  31. Hebraud, P., Lequeux, F., Munch, J. P. & Pine, D. J. Yielding and rearrangements in disordered emulsions. Phys. Rev. Lett. 78, 4657–4660 (1997).

    ADS  Google Scholar 

  32. Hohler, R., Cohen-Addad, S. & Hoballah, H. Periodic nonlinear bubble motion in aqueous foam under oscillating shear strain. Phys. Rev. Lett. 79, 1154 (1997).

    ADS  Google Scholar 

  33. Petekidis, G., Moussaïd, A. & Pusey, P. N. Rearrangements in hard-sphere glasses under oscillatory shear strain. Phys. Rev. E 66, 051402 (2002).

    ADS  Google Scholar 

  34. van Megen, W., Mortensen, T. C., Williams, S. R. & Muller, J. Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition. Phys. Rev. E 58, 6073–6085 (1998).

    ADS  Google Scholar 

  35. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    ADS  Google Scholar 

  36. Derec, C., Ajdari, A. & Lequeux, F. Rheology and aging: a simple approach. Eur. Phys. J. E 4, 355–361 (2001).

    Google Scholar 

  37. Miyazaki, K., Wyss, H. M., Weitz, D. A. & Reichman, D. R. Nonlinear viscoelasticity of metastable complex fluids. Europhys. Lett. 75, 915–921 (2006).

    ADS  Google Scholar 

  38. Hess, A. & Aksel, N. Yielding and structural relaxation in soft materials: evaluation of strain-rate frequency superposition data by the stress decomposition method. Phys. Rev. E 84, 051502 (2011).

    ADS  Google Scholar 

  39. Biroli, G. & Garrahan, J. P. Perspective: the glass transition. J. Chem. Phys. 138, 12A301 (2013).

    Google Scholar 

  40. Zausch, J. et al. From equilibrium to steady state: the transient dynamics of colloidal liquids under shear. J. Phys.: Condens. Matter 20, 404210 (2008).

    Google Scholar 

  41. Berker, A. N. Critical behavior induced by quenched disorder. Phys. A: Stat. Mech. Appl. 194, 72–76 (1993).

    Google Scholar 

  42. Bellafard, A., Chakravarty, S., Troyer, M. & Katzgraber, H. G. The effect of quenched bond disorder on first-order phase transitions. Ann. Phys. 357, 66–78 (2015).

    ADS  MathSciNet  Google Scholar 

  43. Divoux, T., Fardin, M. A., Manneville, S. & Lerouge, S. Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48, 81–103 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  44. Radhakrishnan, R. & Fielding, S. M. Shear banding of soft glassy materials in large amplitude oscillatory shear. Phys. Rev. Lett. 117, 188001 (2016).

    ADS  Google Scholar 

  45. Pham, K. N. et al. Multiple glassy states in a simple model system. Science 296, 104–106 (2002).

    ADS  Google Scholar 

  46. Gibaud, T., Frelat, D. & Manneville, S. Heterogeneous yielding dynamics in a colloidal gel. Soft Matter 6, 3482–3488 (2010).

    Google Scholar 

  47. Truzzolillo, D. et al. Overcharging and reentrant condensation of thermoresponsive ionic microgels. Soft Matter 14, 4110–4125 (2018).

    ADS  Google Scholar 

  48. Philippe, A.-M. et al. Glass transition of soft colloids. Phys. Rev. E 97, 040601(R) (2018).

    ADS  Google Scholar 

  49. Aime, S. et al. A stress-controlled shear cell for small-angle light scattering and microscopy. Rev. Sci. Instrum. 87, 123907 (2016).

    ADS  Google Scholar 

  50. Cipelletti, L., Trappe, V. & Pine, D. J. Scattering techniques. in Fluids, Colloids and Soft Materials (eds Fernandez-Nieves, A. & Puertas, A.) 131–148 (John Wiley & Sons, 2016).

  51. Aime, S. & Cipelletti, L. Probing shear-induced rearrangements in Fourier space. II. Differential dynamic microscopy. Soft Matter 15, 213–226 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank E. D. Knowlton for help with the experiments on emulsions and L. Berthier for illuminating discussions. This work was funded by the French CNES, ANR (grant nos. ANR-14-CE32-0005 FAPRES (to L.C. and L.R.) and ANR-20-CE06-0028, MultiNet (to L.C. and L.R.)), and by the EU (Marie Skłodowska-Curie ITN Supolen grant 607937 (to S.A. and L.R.)). L.C. acknowledges support from the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

S.A., L.R., D.J.P. and L.C. designed the experiments. S.A. performed the experiments and numerical simulations. S.A. and D.T. conceived the model. All authors analysed the results, discussed and improved the model and contributed to writing the paper.

Corresponding author

Correspondence to Luca Cipelletti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Peter Schall, Thibaut Divoux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aime, S., Truzzolillo, D., Pine, D.J. et al. A unified state diagram for the yielding transition of soft colloids. Nat. Phys. 19, 1673–1679 (2023). https://doi.org/10.1038/s41567-023-02153-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02153-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing