Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic trapping of ultracold molecules at high density

Abstract

Trapping ultracold molecules in conservative traps is essential for multiple applications, including quantum-state-controlled chemistry, quantum simulations and quantum information processing. The study of molecular collisions, in particular, requires samples at high densities, which have been challenging to achieve so far with established cooling and trapping techniques. Here we report the magnetic trapping of molecules in the triplet ground state at high density and ultralow temperature. We measure the inelastic loss rates in a single-spin sample and spin mixtures of fermionic molecules and spin-stretched atom–molecule mixtures. We demonstrate the sympathetic cooling of molecules in the magnetic trap by the radio-frequency evaporation of co-trapped atoms and observe an increase in the molecules’ phase-space density by a factor of 16. Magnetic trapping at these densities allows the study of both atom–molecule and molecule–molecule collisions in the ultracold regime in the absence of trapping light, which often leads to undesired photochemistry effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the experimental sequence.
Fig. 2: Ground-state hyperfine structure of triplet NaLi and decay of spin-stretched molecules.
Fig. 3: Inelastic loss of molecular spin mixtures.
Fig. 4: Sympathetic cooling of NaLi by Na atoms.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes used to generate the results are available from the corresponding author upon reasonable request.

References

  1. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Google Scholar 

  2. Balakrishnan, N. Perspective: ultracold molecules and the dawn of cold controlled chemistry. J. Chem. Phys. 145, 150901 (2016).

    ADS  Google Scholar 

  3. Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Google Scholar 

  4. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    ADS  Google Scholar 

  5. Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    ADS  Google Scholar 

  6. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Google Scholar 

  7. Herrera, F., Cao, Y., Kais, S. & Whaley, K. B. Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing. New J. Phys. 16, 075001 (2014).

    MATH  ADS  Google Scholar 

  8. Hughes, M. et al. Robust entangling gate for polar molecules using magnetic and microwave fields. Phys. Rev. A 101, 062308 (2020).

    ADS  Google Scholar 

  9. Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    ADS  Google Scholar 

  10. Weinstein, J. D., DeCarvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998).

    ADS  Google Scholar 

  11. Campbell, W. C., Tsikata, E., Lu, H.-I., van Buuren, L. D. & Doyle, J. M. Magnetic trapping and Zeeman relaxation of NH (X3Σ). Phys. Rev. Lett. 98, 213001 (2007).

    ADS  Google Scholar 

  12. Lu, H.-I., Kozyryev, I., Hemmerling, B., Piskorski, J. & Doyle, J. M. Magnetic trapping of molecules via optical loading and magnetic slowing. Phys. Rev. Lett. 112, 113006 (2014).

    ADS  Google Scholar 

  13. Tsikata, E., Campbell, W., Hummon, M., Lu, H.-I. & Doyle, J. M. Magnetic trapping of NH molecules with 20 s lifetimes. New J. Phys. 12, 065028 (2010).

    ADS  Google Scholar 

  14. Liu, Y., Zhou, S., Zhong, W., Djuricanin, P. & Momose, T. One-dimensional confinement of magnetically decelerated supersonic beams of O2 molecules. Phys. Rev. A 91, 021403 (2015).

    ADS  Google Scholar 

  15. Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).

    ADS  Google Scholar 

  16. Riedel, J. et al. Accumulation of Stark-decelerated NH molecules in a magnetic trap. Eur. Phys. J. D 65, 161–166 (2011).

    ADS  Google Scholar 

  17. Segev, Y. et al. Collisions between cold molecules in a superconducting magnetic trap. Nature 572, 189–193 (2019).

    ADS  Google Scholar 

  18. Koller, M. et al. Electric-field-controlled cold dipolar collisions between trapped CH3F molecules. Phys. Rev. Lett. 128, 203401 (2022).

    ADS  Google Scholar 

  19. Reens, D., Wu, H., Langen, T. & Ye, J. Controlling spin flips of molecules in an electromagnetic trap. Phys. Rev. A 96, 063420 (2017).

    ADS  Google Scholar 

  20. McCarron, D., Steinecker, M., Zhu, Y. & DeMille, D. Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121, 013202 (2018).

    ADS  Google Scholar 

  21. Williams, H. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).

    ADS  Google Scholar 

  22. Son, H. et al. Control of reactive collisions by quantum interference. Science 375, 1006–1010 (2022).

    ADS  Google Scholar 

  23. Park, J. J. et al. Spectrum of Feshbach resonances in NaLi + Na collisions. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.00863 (2023).

  24. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    ADS  Google Scholar 

  25. Wang, X.-Y. et al. Magnetic Feshbach resonances in collisions of 23Na40K with 40K. New J. Phys. 23, 115010 (2021).

    ADS  Google Scholar 

  26. Park, J. J., Lu, Y.-K., Jamison, A. O., Tscherbul, T. V. & Ketterle, W. A Feshbach resonance in collisions between triplet ground-state molecules. Nature 614, 54–58 (2023).

    ADS  Google Scholar 

  27. Mayle, M., Ruzic, B. P. & Bohn, J. L. Statistical aspects of ultracold resonant scattering. Phys. Rev. A 85, 062712 (2012).

    ADS  Google Scholar 

  28. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    ADS  Google Scholar 

  29. Christianen, A., Karman, T. & Groenenboom, G. C. Quasiclassical method for calculating the density of states of ultracold collision complexes. Phys. Rev. A 100, 032708 (2019).

    ADS  Google Scholar 

  30. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    ADS  Google Scholar 

  31. Liu, Y. & Ni, K.-K. Bimolecular chemistry in the ultracold regime. Annu. Rev. Phys. Chem. 73, 73–96 (2022).

    ADS  Google Scholar 

  32. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    ADS  Google Scholar 

  33. Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold Rb87Cs133 molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    ADS  Google Scholar 

  34. Gregory, P. D. et al. Molecule–molecule and atom–molecule collisions with ultracold RbCs molecules. New J. Phys. 23, 125004 (2021).

    ADS  Google Scholar 

  35. Gersema, P. et al. Probing photoinduced two-body loss of ultracold nonreactive bosonic 23Na87Rb and 23Na39K molecules. Phys. Rev. Lett. 127, 163401 (2021).

    ADS  Google Scholar 

  36. Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Research 3, 033013 (2021).

    ADS  Google Scholar 

  37. Lara, M., Bohn, J. L., Potter, D., Soldán, P. & Hutson, J. M. Ultracold Rb-Oh collisions and prospects for sympathetic cooling. Phys. Rev. Lett. 97, 183201 (2006).

    ADS  Google Scholar 

  38. Żuchowski, P. S. & Hutson, J. M. Prospects for producing ultracold NH3 molecules by sympathetic cooling: a survey of interaction potentials. Phys. Rev. A 78, 022701 (2008).

    ADS  Google Scholar 

  39. Hummon, M. T. et al. Cold N + NH collisions in a magnetic trap. Phys. Rev. Lett. 106, 053201 (2011).

    ADS  Google Scholar 

  40. Jurgilas, S. et al. Collisions between ultracold molecules and atoms in a magnetic trap. Phys. Rev. Lett. 126, 153401 (2021).

    ADS  Google Scholar 

  41. Akerman, N. et al. Trapping of molecular oxygen together with lithium atoms. Phys. Rev. Lett. 119, 073204 (2017).

    ADS  Google Scholar 

  42. Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    ADS  Google Scholar 

  43. Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    ADS  Google Scholar 

  44. Derevianko, A., Babb, J. & Dalgarno, A. High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers. Phys. Rev. A 63, 052704 (2001).

    ADS  Google Scholar 

  45. Hermsmeier, R., Kłos, J., Kotochigova, S. & Tscherbul, T. V. Quantum spin state selectivity and magnetic tuning of ultracold chemical reactions of triplet alkali-metal dimers with alkali-metal atoms. Phys. Rev. Lett. 127, 103402 (2021).

    ADS  Google Scholar 

  46. Tomza, M., Madison, K. W., Moszynski, R. & Krems, R. V. Chemical reactions of ultracold alkali-metal dimers in the lowest-energy 3Σ state. Phys. Rev. A 88, 050701 (2013).

    ADS  Google Scholar 

  47. Voges, K. K., Gersema, P., Hartmann, T., Ospelkaus, S. & Zenesini, A. Hyperfine dependent atom-molecule loss analyzed by the analytic solution of few-body loss equations. Phys. Rev. Research 4, 023184 (2022).

    ADS  Google Scholar 

  48. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    ADS  Google Scholar 

  49. Caldwell, L. et al. Long rotational coherence times of molecules in a magnetic trap. Phys. Rev. Lett. 124, 063001 (2020).

    ADS  Google Scholar 

  50. Mosk, A. et al. Mixture of ultracold lithium and cesium atoms in an optical dipole trap. Appl. Phys. B 73, 791–799 (2001).

    ADS  Google Scholar 

  51. Tiesinga, E. et al. A spectroscopic determination of scattering lengths for sodium atom collisions. J. Res. Natl Inst. Stand. Technol. 101, 505–520 (1996).

    Google Scholar 

Download references

Acknowledgements

We thank J. Doyle for valuable discussions. We acknowledge support from the National Science Foundation through grant no. PHY-1734011 for the Center for Ultracold Atoms and through grant no. 1506369, and from the Air Force Office of Scientific Research (MURI, grant no. FA9550-21-1-0069). Some of the analysis was performed by W.K. at the Aspen Center for Physics, which is supported by the National Science Foundation grant PHY-1607611. J.J.P. acknowledges additional support from the Samsung Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

J.J.P. and Y.-K.L. carried out the experimental work. All authors contributed to the development of models, data analysis and writing of the manuscript.

Corresponding author

Correspondence to Juliana J. Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.J., Lu, YK., Jamison, A.O. et al. Magnetic trapping of ultracold molecules at high density. Nat. Phys. 19, 1567–1572 (2023). https://doi.org/10.1038/s41567-023-02141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02141-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing