Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum microscopy with van der Waals heterostructures

Abstract

Solid-state spin sensors have the capacity to act as quantum microscopes for probing material properties and physical processes. However, so far, these tools have relied on quantum defects hosted in rigid, three-dimensional (3D) crystals such as diamond, limiting their ability to closely interface with the sample. Here we demonstrate a versatile quantum microscope using point defects embedded within a thin layer of the van der Waals material hexagonal boron nitride. To showcase the multi-modal capabilities of this platform, we assemble two different heterostructures of a van der Waals material in combination with a quantum-active boron nitride flake. We demonstrate time-resolved, simultaneous temperature and magnetic imaging near the Curie temperature of a van der Waals ferromagnet, as well as map out charge currents and Joule heating in an operating graphene device. The straightforward integration of the hexagonal boron nitride quantum sensor with other van der Waals materials will yield substantial practical benefits for the design and measurement of 2D devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum microscopy with spin defects in hBN.
Fig. 2: Magnetic imaging of a CrTe2 ferromagnet.
Fig. 3: Time-resolved simultaneous temperature and magnetic imaging.
Fig. 4: Imaging Joule heating and current flow in a graphene device.

Similar content being viewed by others

Data availability

Data are available from Zenodo at https://doi.org/10.5281/zenodo.7117809. Source data are provided with this paper.

References

  1. Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    Article  ADS  Google Scholar 

  2. Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

    Article  ADS  Google Scholar 

  3. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  ADS  Google Scholar 

  4. Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    Article  ADS  Google Scholar 

  5. Fu, R. R. et al. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science 346, 1089–1092 (2014).

    Article  ADS  Google Scholar 

  6. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    Article  ADS  Google Scholar 

  7. de Gille, R. W. et al. Quantum magnetic imaging of iron organelles within the pigeon cochlea. Proc. Natl Acad. Sci. USA 118, e2112749118 (2021).

    Article  Google Scholar 

  8. Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    Article  ADS  Google Scholar 

  9. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  ADS  Google Scholar 

  10. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  11. Bassett, L. C., Alkauskas, A., Exarhos, A. L. & Fu, K.-M. C. Quantum defects by design. Nanophotonics 8, 1867–1888 (2019).

    Article  Google Scholar 

  12. Ping, Y. & Smart, T. J. Computational design of quantum defects in two-dimensional materials. Nat. Comput. Sci. 1, 646–654 (2021).

    Article  Google Scholar 

  13. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  ADS  Google Scholar 

  14. Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).

    Article  ADS  Google Scholar 

  15. Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    Article  ADS  Google Scholar 

  16. Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article  ADS  Google Scholar 

  17. Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).

    Article  ADS  Google Scholar 

  18. Liu, W. et al. Temperature-dependent energy-level shifts of spin defects in hexagonal boron nitride. ACS Photonics 8, 1889–1895 (2021).

    Article  Google Scholar 

  19. Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).

    Article  ADS  Google Scholar 

  20. Purbawati, A. et al. In-plane magnetic domains and Néel-like domain walls in thin flakes of the room temperature CrTe2 van der Waals ferromagnet. ACS Appl. Mater. Interfaces 12, 30702–30710 (2020).

    Article  Google Scholar 

  21. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  22. Tetienne, J.-P. et al. Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).

    Article  ADS  Google Scholar 

  23. Broadway, D. A. et al. Improved current density and magnetisation reconstruction through vector magnetic field measurements. Phys. Rev. Appl. 14, 024076 (2020).

    Article  ADS  Google Scholar 

  24. Comtet, J. et al. Wide-field spectral super-resolution mapping of optically active defects in hexagonal boron nitride. Nano Lett. 19, 2516–2523 (2019).

    Article  ADS  Google Scholar 

  25. Chen, X.-D. et al. Superresolution multifunctional sensing with the nitrogen-vacancy center in diamond. Phys. Rev. Appl. 12, 044039 (2019).

    Article  ADS  Google Scholar 

  26. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  ADS  Google Scholar 

  27. Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354 (2018).

    Article  ADS  Google Scholar 

  28. Simpson, D. A. et al. Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions. Nat. Commun. 8, 458 (2017).

    Article  ADS  Google Scholar 

  29. Huang, M. et al. Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride. Nat. Commun. 13, 5369 (2022).

  30. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  31. Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article  ADS  Google Scholar 

  32. Hall, L. T. et al. Monitoring ion-channel function in real time through quantum decoherence. Proc. Natl Acad. Sci. USA 107, 18777–18782 (2010).

    Article  ADS  Google Scholar 

  33. Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).

    Article  ADS  Google Scholar 

  34. Kianinia, M. et al. Generation of spin defects in hexagonal boron nitride. ACS Photonics 7, 2147–2152 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) through grants CE170100012, DP190101506, FT200100073, DP220100178 and CE200100010, the Office of Naval Research Global (N62909-22-1-2028) and the Asian Office of Aerospace Research & Development (FA2386-20-1-4014). We acknowledge support from the Australian Nanofabrication Facilities at the UTS OptoFab node. A.J.H. and I.O.R. are supported by an Australian Government Research Training Program Scholarship. S.C.S. gratefully acknowledges the support of an Ernst and Grace Matthaei scholarship. Y.F.G. acknowledges support by the National Natural Science Foundation of China (grants 92065201 and 11874264).

Author information

Authors and Affiliations

Authors

Contributions

I.A. and J.-P.T. conceived the experiment. A.J.H. and S.C.S. performed the quantum microscopy measurements and analysed the data, assisted by G.J.A. and I.O.R. T.Y. fabricated and characterized the heterostructures, assisted by S.R., Y.L. and M.K. J.A.S. performed the ion irradiation. X.F.H. and Y.F.G. synthesized the CrTe2 crystals, with further characterization by S.R. and Y.L. A.J.H., S.C.S., T.Y., I.A. and J.-P.T. wrote the paper, with input from all the authors. All the authors discussed the results.

Corresponding authors

Correspondence to I. Aharonovich or J.-P. Tetienne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Discussion (15 sections).

Source Data Fig. 1

Numerical data for generating the image in Fig. 1e and the curves in Fig. 1f,g.

Source Data Fig. 2

Numerical data for generating the images in Fig. 2d,e.

Source Data Fig. 3

Numerical data for generating the images in Fig. 3d–i.

Source Data Fig. 4

Numerical data for generating the images in Fig. 1b–e, and the linecuts in Fig. 1f,g.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Healey, A.J., Scholten, S.C., Yang, T. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023). https://doi.org/10.1038/s41567-022-01815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01815-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing