Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heterogeneous cavitation from atomically smooth liquid–liquid interfaces

Abstract

Pressure reduction in liquids may result in vaporization and bubble formation—a process known as cavitation. It is commonly observed in hydraulic machinery, ship propellers and even in the context of medical therapy within the human body. Although cavitation may be beneficial for the removal of malign tissue, in many cases it is unwanted due to its ability to erode nearly any material in close contact. The current understanding is that the origins of heterogeneous cavitation are nucleation sites where stable gas cavities reside, for example, on contaminant particles, submerged surfaces or shell-stabilized microscopic bubbles1,2. Here we present the discovery of an atomically smooth interface between two immiscible liquids acting as a nucleation site. The non-polar liquid has a higher gas solubility and, upon pressure reduction, it acts as a gas reservoir as gas accumulates at the interface. We describe experiments that reveal the formation of cavitation on non-polar droplets in contact with water, and elucidate the working mechanism that leads to the nucleation of gas pockets through simulations.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Cavitation in a thin liquid gap and experimental snapshots of secondary cavitation with different cavitation nuclei.
Fig. 2: Density profiles of the simulation sample.
Fig. 3: Experimental set-up for secondary cavitation inception and observation in a thin liquid gap.
Fig. 4: Snapshot of the computational sample at −20 MPa.

Data availability

The authors declare that data supporting the findings of this study are available within the Paper and its Supplementary Information. The original experimental recordings are available on Zenodo at https://doi.org/10.5281/zenodo.6912298.

Code availability

Codes used for the present simulations are community codes available to any reader free of charges, namely the LAMMPS molecular dynamics software.

References

  1. Atchley, A. A. & Prosperetti, A. The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86, 1065–1084 (1989).

    Article  ADS  Google Scholar 

  2. Marschall, H. B., Mørch, K. A., Keller, A. P. & Kjeldsen, M. Cavitation inception by almost spherical solid particles in water. Phys. Fluids 15, 545–553 (2003).

    Article  MATH  ADS  Google Scholar 

  3. Harvey, E. N., McElroy, W. D. & Whiteley, A. H. On cavity formation in water. J. Appl. Phys. 18, 162–172 (1947).

    Article  ADS  Google Scholar 

  4. Crum, L. A. Tensile strength of water. Nature 278, 148–149 (1979).

    Article  ADS  Google Scholar 

  5. Borkent, B. M., Gekle, S., Prosperetti, A. & Lohse, D. Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21, 102003 (2009).

    Article  MATH  ADS  Google Scholar 

  6. ichi Tsuda, S., Takagi, S. & Matsumoto, Y. A study on the growth of cavitation bubble nuclei using large-scale molecular dynamics simulations. Fluid Dyn. Res. 40, 606–615 (2008).

    Article  MATH  ADS  Google Scholar 

  7. Watanabe, H., Inaoka, H. & Ito, N. Ripening kinetics of bubbles: a molecular dynamics study. J. Chem. Phys. 145, 124707 (2016).

    Article  ADS  Google Scholar 

  8. Holl, J. W. Nuclei and cavitation. J. Basic Eng. 92, 681–688 (1970).

    Article  Google Scholar 

  9. Zheng, Q., Durben, D. J., Wolf, G. H. & Angell, C. A. Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254, 829–832 (1991).

    Article  ADS  Google Scholar 

  10. Azouzi, M. E. M., Ramboz, C., Lenain, J.-F. & Caupin, F. A coherent picture of water at extreme negative pressure. Nat. Phys. 9, 38–41 (2013).

    Article  Google Scholar 

  11. Debenedetti, P. G. Metastable Liquids: Concepts and Principles Vol. 1 (Princeton Univ. Press, 1996).

  12. Caupin, F. & Herbert, E. Cavitation in water: a review. C. R. Phys. 7, 1000–1017 (2006).

    Article  ADS  Google Scholar 

  13. Gao, Z., Wu, W. & Wang, B. The effects of nanoscale nuclei on cavitation. J. Fluid Mech. 911, A20 (2021).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Rosselló, J. M. & Ohl, C.-D. On-demand bulk nanobubble generation through pulsed laser illumination. Phys. Rev. Lett. 127, 044502 (2021).

    Article  ADS  Google Scholar 

  15. Riess, J. G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif. Cells Blood Substit. Immobil. Biotechnol. 33, 47–63 (2005).

    Article  Google Scholar 

  16. Lorton, O. et al. Molecular oxygen loading in candidate theranostic droplets stabilized with biocompatible fluorinated surfactants: particle size effect and application to in situ 19F MRI mapping of oxygen partial pressure. J. Magn. Reson. 295, 27–37 (2018).

    Article  ADS  Google Scholar 

  17. Holman, R. et al. Perfluorocarbon emulsion contrast agents: a mini review. Front. Chem 9, 810029 (2022).

    Article  Google Scholar 

  18. Desgranges, S. et al. Micron-sized PFOB liquid core droplets stabilized with tailored-made perfluorinated surfactants as a new class of endovascular sono-sensitizers for focused ultrasound thermotherapy. J. Mater. Chem. B 7, 927–939 (2019).

    Article  Google Scholar 

  19. Pfeiffer, P. et al. Thermally assisted heterogeneous cavitation through gas supersaturation. Phys. Rev. Lett. 128, 194501 (2022).

    Article  ADS  Google Scholar 

  20. Mezger, M. et al. High-resolution in situ X-ray study of the hydrophobic gap at the water/octadecyl-trichlorosilane interface. Proc. Natl Acad. Sci. USA 103, 18401–18404 (2006).

    Article  ADS  Google Scholar 

  21. Lubetkin, S. D. Why is it much easier to nucleate gas bubbles than theory predicts? Langmuir 19, 2575–2587 (2003).

    Article  Google Scholar 

  22. Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959).

    Article  ADS  Google Scholar 

  23. Giacomello, A., Chinappi, M., Meloni, S. & Casciola, C. M. Geometry as a catalyst: how vapor cavities nucleate from defects. Langmuir 29, 14873–14884 (2013).

    Article  Google Scholar 

  24. Zhou, Y., Li, B., Gu, Y. & Chen, M. A molecular dynamics simulation study on the cavitation inception of water with dissolved gases. Mol. Phys. 117, 1894–1902 (2019).

    Article  ADS  Google Scholar 

  25. Kuritz, N., Murat, M., Balaish, M., Ein-Eli, Y. & Natan, A. PFC and triglyme for Li-air batteries: a molecular dynamics study. J. Phys. Chem. B . 120, 3370–3377 (2016).

    Article  Google Scholar 

  26. Schürmann, A. et al. Diffusivity and solubility of oxygen in solvents for metal/oxygen batteries: a combined theoretical and experimental study. J. Electrochem. Soc. 165, A3095–A3099 (2018).

    Article  Google Scholar 

  27. Kopechek, J., Park, E., Mei, C.-S., McDannold, N. & Porter, T. Accumulation of phase-shift nanoemulsions to enhance MR-guided ultrasound-mediated tumor ablation in vivo. J. Healthc. Eng. 4, 109–126 (2013).

    Article  Google Scholar 

  28. Moyer, L. C. et al. High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles. J. Ther. Ultrasound 3, 7 (2015).

    Article  Google Scholar 

  29. Lorton, O. et al. Enhancement of HIFU thermal therapy in perfused tissue models using micron-sized FTAC-stabilized PFOB-core endovascular sonosensitizers. Int. J. Hyperth. 37, 1116–1130 (2020).

    Article  Google Scholar 

  30. Huang, L. et al. Efficacy and safety of high-intensity focused ultrasound ablation for hepatocellular carcinoma by changing the acoustic environment: microbubble contrast agent (SonoVue) and transcatheter arterial chemoembolization. Int. J. Hyperth. 36, 243–251 (2019).

    Article  Google Scholar 

  31. Rapet, J., Quinto-Su, P. A. & Ohl, C.-D. Cavitation inception from transverse waves in a thin liquid gap. Phys. Rev. Appl. 14, 024041 (2020).

    Article  ADS  Google Scholar 

  32. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  33. Tortora, M. et al. The interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles. Nanoscale 12, 22698–22709 (2020).

    Article  Google Scholar 

  34. Battino, R., Rettich, T. R. & Tominaga, T. The solubility of nitrogen and air in liquids. J. Phys. Chem. Ref. Data 13, 563–600 (1984).

    Article  ADS  Google Scholar 

  35. Costa Gomes, M. F., Deschamps, J. & Pádua, A. A. Effect of bromine substitution on the solubility of gases in hydrocarbons and fluorocarbons. Fluid Ph. Equilibria 251, 128–136 (2007).

    Article  Google Scholar 

  36. Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).

    Article  ADS  Google Scholar 

  37. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article  ADS  Google Scholar 

  38. Marchio, S., Meloni, S., Giacomello, A. & Casciola, C. M. Wetting and recovery of nano-patterned surfaces beyond the classical picture. Nanoscale 11, 21458–21470 (2019).

    Article  Google Scholar 

  39. Abascal, J. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2006).

    Article  ADS  Google Scholar 

  40. Jiang, J. & Sandler, S. I. Separation of CO2 and N2 by adsorption in C168 schwarzite: a combination of quantum mechanics and molecular simulation study. J. Am. Chem. Soc. 127, 11989–11997 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

M. Pumera is acknowledged for providing the magnetic beads. We thank A. Eremin for the confocal thickness measurements. This work was financially supported by the European Social Fund (no. ZS/2019/10/103050) as part of the initiative ‘Sachsen-Anhalt WISSENSCHAFT Spitzenforschung/Synergien’, the Deutsche Forschungsgemeinschaft (programme no. PF 951/3-1), the ‘Fondo per l’incentivazione alla ricerca (FIR), 2020’ from the University of Ferrara in Italy, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement UCOM no. 813766.

Author information

Authors and Affiliations

Authors

Contributions

C.-D.O. designed the study, R.S. selected the inclusion, and P.P. performed the experiments and analysed the data. S.M. designed the simulation campaign. M.S. performed the simulations with the help of M.T. S.M., M.S., M.T. and C.M.C. analysed the simulation data. P.P. and S.M. and R.H. wrote the paper. All authors discussed the results, read, revised and approved the final version.

Corresponding authors

Correspondence to Patricia Pfeiffer or Simone Meloni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Shu Takagi, John Ralston, Nathan Speirs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Discussion.

Supplementary Video 1

A 1-ns branch of the atomistic sample of the MD trajectory at −20 MPa.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, P., Shahrooz, M., Tortora, M. et al. Heterogeneous cavitation from atomically smooth liquid–liquid interfaces. Nat. Phys. 18, 1431–1435 (2022). https://doi.org/10.1038/s41567-022-01764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01764-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing