Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2

Abstract

Moiré superlattices in van der Waals heterostructures have emerged as a powerful tool for engineering quantum phenomena. Here we report the observation of a correlated interlayer exciton insulator in a double-layer heterostructure composed of a WSe2 monolayer and a WS2/WSe2 moiré bilayer that are separated by ultrathin hexagonal boron nitride. The moiré WS2/WSe2 bilayer features a Mott insulator state when the density of holes is one per moiré lattice site. When electrons are added to the Mott insulator in the WS2/WSe2 moiré bilayer and an equal number of holes are injected into the WSe2 monolayer, a new interlayer exciton insulator emerges with the holes in the WSe2 monolayer and the electrons in the doped Mott insulator bound together through interlayer Coulomb interactions. The interlayer exciton insulator is stable up to a critical hole density in the WSe2 monolayer, beyond which the interlayer exciton dissociates. Our study highlights the opportunities for realizing quantum phases in double-layer moiré systems due to the interplay between the moiré flat band and strong interlayer electron interactions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of double layers composed of a WS2/WSe2 moiré bilayer and WSe2 monolayer.
Fig. 2: Correlated insulating states in double layers.
Fig. 3: Phase diagram of the correlated interlayer exciton insulator.
Fig. 4: Temperature dependence of the Mott insulator and correlated interlayer exciton insulator.

Data availability

Source data are provided with this paper.

References

  1. Mott, N. F. The transition to the metallic state. Philos. Mag. J. Theor. Exp. Appl. Phys. 6, 287–309 (1961).

    Google Scholar 

  2. HALPERIN, B. I. & RICE, T. M. Possible anomalies at a semimetal–semiconductor transistion. Rev. Mod. Phys. 40, 755–766 (1968).

    ADS  Article  Google Scholar 

  3. Kuneš, J. Excitonic condensation in systems of strongly correlated electrons. J. Phys. Condens. Matter 27, 333201 (2015).

    ADS  Article  Google Scholar 

  4. Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    ADS  Article  Google Scholar 

  5. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article  Google Scholar 

  6. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article  Google Scholar 

  7. Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).

    ADS  Article  Google Scholar 

  8. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Article  Google Scholar 

  9. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Article  Google Scholar 

  10. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  Google Scholar 

  11. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article  Google Scholar 

  12. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS  Article  Google Scholar 

  13. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS  Article  Google Scholar 

  14. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  Google Scholar 

  15. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS  Article  Google Scholar 

  16. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS  Article  Google Scholar 

  17. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  Article  Google Scholar 

  18. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  Article  Google Scholar 

  19. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    ADS  Article  Google Scholar 

  20. Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    ADS  Article  Google Scholar 

  21. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  Article  Google Scholar 

  22. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  Article  Google Scholar 

  23. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS  Article  Google Scholar 

  24. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS  Article  Google Scholar 

  25. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    ADS  Article  Google Scholar 

  26. Jin, C. et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 20, 940–944 (2021).

    ADS  Article  Google Scholar 

  27. Miao, S. et al. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun. 12, 3608 (2021).

    ADS  Article  Google Scholar 

  28. Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated electronic phases in a WSe2/WS2 moiré superlattice. Phys. Rev. Lett. 127, 037402 (2021).

    ADS  Article  Google Scholar 

  29. Courtade, E. et al. Charged excitons in monolayer WSe2: experiment and theory. Phys. Rev. B 96, 085302 (2017).

    ADS  Article  Google Scholar 

  30. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  31. Li, Z. et al. Direct observation of gate-tunable dark trions in monolayer WSe2. Nano Lett. 19, 6886–6893 (2019).

    ADS  Article  Google Scholar 

  32. Liu, E. et al. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 123, 027401 (2019).

    ADS  Article  Google Scholar 

  33. Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).

    ADS  Article  Google Scholar 

  34. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    ADS  Article  Google Scholar 

  35. Wu, F.-C., Xue, F. & MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).

    ADS  Article  Google Scholar 

  36. Conti, S., Neilson, D., Peeters, F. M. & Perali, A. Transition metal dichalcogenides as strategy for high temperature electron–hole superfluidity. Condens. Matter 5, 22 (2020).

    Article  Google Scholar 

  37. Conti, S., Van der Donck, M., Perali, A., Peeters, F. M. & Neilson, D. Doping-dependent switch from one- to two-component superfluidity in coupled electron–hole van der Waals heterostructures. Phys. Rev. B 101, 220504 (2020).

    ADS  Article  Google Scholar 

  38. Barkeshli, M., Nayak, C., Papić, Z., Young, A. & Zaletel, M. Topological exciton Fermi surfaces in two-component fractional quantized Hall insulators. Phys. Rev. Lett. 121, 026603 (2018).

    ADS  Article  Google Scholar 

  39. Hu, Y., Venderbos, J. W. F. & Kane, C. L. Fractional excitonic insulator. Phys. Rev. Lett. 121, 126601 (2018).

    ADS  Article  Google Scholar 

  40. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 (van der Waals heterostructures programme, KCWF16). The device fabrication was also supported by the U.S. Army Research Office under MURI award W911NF-17-1-0312. E.C.R. acknowledges support from the Department of Defense through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. S.T. acknowledges support from DOE-SC0020653, NSF CMMI 1933214, NSF mid-scale 1935994, NSF 1904716, NSF DMR 1552220 and DMR 1955889. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, grant no. PMXP0112101001, JSPS KAKENHI grant no. JP20H00354 and the CREST(JPMJCR15F3), JST.

Author information

Authors and Affiliations

Authors

Contributions

F.W. conceived the research. Z.Z. fabricated the device and performed most of the experimental measurements. E.C.R., D.W. and W.Z. contributed to the optical measurements. Z.Z. and F.W. performed data analysis. E.C.R., D.W., W.Z., S.W., M.C. and A.Z. contributed to the fabrication of van der Waals heterostructures. M.P.Z. contributed to the theory. M.S., K.Y. and S.T. grew WSe2 and WS2 crystals. K.W. and T.T. grew hBN crystals. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Andrea Perali and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Device information.

ac, Three side-view schematics, optical microscope images, and second harmonic generation (SHG) results of Device I (a), Device II (b), and Device III (c). a, The top (bottom) hBN thickness is approximately 50 nm (50 nm). The stack is capped with an approximately 65 nm thick hBN layer. In the optical microscopy image, the dashed green (red) line outlines the WS2 (WSe2) layer in the moiré heterostructure, the dashed yellow line outlines the WSe2 monolayer, the dashed black (white) line outlines the top (bottom) FLG gate. These three flakes are aligned, as demonstrated by the SHG signal. The moiré bilayer has a near-60º twist angle. b, The top (bottom) hBN thickness is approximately 80 nm (40 nm). The stack is capped with an approximately 55 nm thick hBN layer. In the optical microscopy image, the dashed green (red) line outlines the WS2 (WSe2) layer in the moiré heterostructure, the dashed yellow line outlines the monolayer WSe2, and the dashed black line outlines the top and bottom FLG gate. The solid lines correspond to a few-layer TMDCs that are attached to the monolayers. The twist angle between the moiré bilayer and the WSe2 monolayer is around 25 degrees. The moiré bilayer has a near-zero twist angle as it shows an enhanced SHG signal. c, The stacking order of Device III is opposite to that in Device I and Device II. The moiré bilayer in device III is below the WSe2 monolayer. The top (bottom) hBN thickness is approximately 9 nm (15 nm). The stack is further capped with an approximately 8 nm thick hBN layer. In the optical microscopy image, the dashed green (red) line outlines the WS2 (WSe2) layer in the moiré heterostructure, the dashed yellow line outlines the monolayer WSe2, the dashed black (white) line outlines the top (bottom) FLG gate. The solid lines correspond to a few-layer TMDCs that are attached to the monolayers. These three layers are aligned, as determined by the SHG measurements. The moiré bilayer in device III has a near-zero twist angle.

Source data

Extended Data Fig. 2 Reflection contrast spectra of 2s exciton at four representative vertical electric fields.

ad, The two-dimensional color plots of reflection contrast spectra at the E field of 80 mV nm−1 (a), 8 mV nm−1 (b), 0 mV nm−1 (c), and −8 mV nm−1 (d). The monolayer WSe2 2s exciton resonances at p/p0 = 1/3, 2/3, and 1 in a correspond to the generalized Wigner crystal and Mott insulator states. Prominent 2s exciton resonances are still observed at p/p0 = 1 in bd, indicating a correlated insulating state when the total doping is at one hole per moiré superlattice site.

Source data

Extended Data Fig. 3 Mott insulator state revealed by the interlayer exciton photoluminescence.

a, The two-dimensional color plot of derivative reflection contrast spectra of 2s exciton at E = 80 mV nm−1. Well-defined and red-shifted monolayer WSe2 2s exciton resonances at p/p0 = 1 and 2 correspond to the Mott insulator and the full filling of the moiré band (that is, two holes per moiré superlattice). b, The two-dimensional color plot of interlayer exciton PL spectra of the WS2/WSe2 moiré bilayer at E = 80 mV nm−1. The PL resonance energy blueshifts suddenly, and the PL intensity exhibits a sudden increase at p/p0 = 1 and 2, which is consistent with the correlated states probed by the 2s exciton spectra. Therefore, this abrupt increase of interlayer exciton PL intensity provides a reliable signature of the Mott insulating state with one hole at each moiré superlattice (pmoiré /p0 = 1 or 2).

Source data

Extended Data Fig. 4 The trion signal at different vertical electric fields in the correlated interlayer exciton insulator.

The binding energy of the trion energy is around 21 meV.

Source data

Extended Data Fig. 5 Phase diagram of the correlated interlayer exciton insulator in device II and device III.

a and b, The WSe2 monolayer trion signal in the reflection contrast spectra (a) and WSe2 monolayer 2s exciton signal in the derivative reflection contrast spectra (b) as a function of gates’ induced hole density and vertical electric field E in device II. The dashed black line, determined by the emergence of the trion signal in a, separates region I (with a charge-neutral WSe2 monolayer) from region II (with a hole-doped WSe2 monolayer). The strongest 2s resonance at p/p0 = 1 in the region I of b defines the Mott insulator state of the moiré bilayer. This Mott insulator state becomes a correlated interlayer exciton insulator as the resonance extends to region II of b at the combined hole density p/p0 = (pmoiré +pmono) = 1. c and d, WSe2 monolayer trion signal (c) and WSe2 monolayer 2s exciton signal (d) in the derivative reflection contrast spectra function of gates’ induced hole density and vertical electric field E in device III. The dashed black line, determined by the emergence of the trion signal in c, separates region I (with a charge-neutral WSe2 monolayer) from region II (with a hole-doped WSe2 monolayer). The strongest 2s resonance in region I of c defines the Mott insulator state of the moiré bilayer. This Mott insulator state also becomes an interlayer exciton insulator as the resonance extends into region II of c with the combined hole density p/p0 = (pmoiré +pmono) = 1, and eventually disappears at the negative vertical electric field.

Source data

Extended Data Fig. 6 Line cuts of 2s exciton signal in the Mott insulator and correlated interlayer exciton insulator.

a, Reflection contrast spectra in the Mott insulator (E = 80 mV nm−1) and correlated interlayer exciton insulator (E = 0, −4, and −8 mV nm−1). b, Derivative reflection contrast spectra in the Mott insulator (E = 80 mV nm−1) and correlated interlayer exciton insulator (E = 0, −4, and −8 mV nm−1). It clearly shows that the WSe2 2s exciton feature decreases in amplitude at p/p0 = 1 with a reduced vertical electric field (increased hole doping in the WSe2 monolayer). The WSe2 2s exciton amplitudes of the interlayer exciton insulator states (E = 0, −4, and −8 mV nm−1) are weaker than that of the Mott insulator (E = 80 mV nm−1).

Source data

Extended Data Fig. 7 Line cuts of trion signal in the Mott insulator and correlated interlayer exciton insulator.

For the Mott insulator (E = 80 mV nm−1), the WSe2 monolayer does not have a trion state, while in the correlated interlayer exciton insulator state, the WSe2 monolayer does have a trion state (E = 0, −4, and −8 mV nm−1).

Source data

Extended Data Fig. 8 Estimation of critical interlayer exciton density.

ac, WSe2 monolayer trion intensity (a), Derivative of interlayer exciton PL intensity with respect to gates induced hole density \(dI_{IX}/\left[ { - \frac{1}{e}\left( {C_{t1}V_t + C_{b1}V_b} \right)} \right]\) (b), and WSe2 monolayer 2s exciton intensity (c) as a function of the gates induced hole density \(- \frac{1}{e}\left( {C_{t1}V_t + C_{b1}V_b} \right)\) and vertical electric field E. The same figures are plotted in Fig. 3a–c, in the main text. The critical point is labeled as point X, where the correlated interlayer exciton insulator starts to melt, as shown in c. The dashed black line in a denotes states with the same trion PL intensity as, and therefore similar pmono to, the X point. The dashed green line in b corresponds to the Mott insulator in the moiré bilayer (pmoiré/p0 = 1), which is determined by the maximum of \(dI_{IX}/\left[ { - \frac{1}{e}\left( {C_{t1}V_t + C_{b1}V_b} \right)} \right]\) in b. The carrier density in the WSe2 monolayer pmono along this green dashed line can be calculated as pmono = ppmoiré. The intersection of the dashed blue line and the dashed green line is around p/p0 = 1.5. The hole density in the WSe2 monolayer is pmono = ppmoiré = 1.5 p0p0 = 0.5 p0 at the intersection. Point X should have a similar pmono because it has the same trion intensity. Therefore, the critical interlayer exciton density at point X is nX = pmono ≈ 0.5 p0.

Source data

Supplementary information

Supplementary information

Supplementary Figs. 1–9 and Sections 1–5

Supplementary Data 1

Background subtraction

Supplementary Data 2

Capacitance model

Supplementary Data 3

2s exciton signal_Vb_Vt

Supplementary Data 4

Offset estimation

Supplementary Data 5

P0 estimation

Supplementary Data 6

Gaussian fit at four E fields

Supplementary Data 7

E-dependent integrated trion area

Supplementary Data 8

P-dependent integrated trion area

Supplementary Data 9

Gaussian fit at four p doping levels

Source data

Source Data Fig. 1

Reflection contrast spectrum

Source Data Fig. 2

2s exciton, trion and IX

Source Data Fig. 3

2s exciton, trion and IX phase diagram

Source Data Fig. 4

Temperature-dependent 2s exciton

Source Data Extended Data Fig. 1

Device information

Source Data Extended Data Fig. 2

Reflection contrast spectra of 2s exciton

Source Data Extended Data Fig. 3

Mott insulator revealed by IX PL

Source Data Extended Data Fig. 4

Trion binding energy

Source Data Extended Data Fig. 5

Phase diagram of device II and III

Source Data Extended Data Fig. 6

Line cuts of 2s exciton signal

Source Data Extended Data Fig. 7

Line cuts of trion signal

Source Data Extended Data Fig. 8

Estimation of critical interlayer exciton density

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Regan, E.C., Wang, D. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-022-01702-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing