Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging and computing with disorder

Abstract

Complex and inhomogeneous media are ubiquitous around us. Snow, fog, biological tissues and turbid water — even just a piece of frosted glass — are opaque to light due to scattering. Similarly, radio waves bounce and mix around buildings in cities, and acoustic waves reverberate in our bodies or across the Earth’s mantle. Although this scattering process seems to mix and completely destroy all information, thus preventing imaging or communication, a different approach has emerged — exploiting this apparently detrimental effect to one’s advantage by processing information carried by waves. This Perspective discusses how this powerful concept has recently triggered a wealth of advances in imaging and computing.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Complex media as perfect mixers.
Fig. 2: Two examples of computational imaging in complex media.
Fig. 3: Computing with disorder.

References

  1. Goodman, J. W. Some fundamental properties of speckle. J. Opt. Soc. Am. 66, 1145–1150 (1976).

    Article  ADS  Google Scholar 

  2. Aubry, A. & Derode, A. Random matrix theory applied to acoustic backscattering and imaging in complex media. Phys. Rev. Lett. 102, 084301 (2009).

    Article  ADS  Google Scholar 

  3. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

  4. Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

    Article  ADS  Google Scholar 

  5. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  6. Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. https://doi.org/10.1038/s41567-022-01723-8 (2022).

  7. Beenakker, C. W. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731 (1997).

    Article  ADS  Google Scholar 

  8. Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. https://doi.org/10.1038/s41567-022-01677-x (2022).

  9. Goetschy, A. & Stone, A. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).

    Article  ADS  Google Scholar 

  10. Pappu, R., Recht, B., Taylor, J. & Gershenfeld, N. Physical one-way functions. Science 297, 2026–2030 (2002).

    Article  ADS  Google Scholar 

  11. Goorden, S. A., Horstmann, M., Mosk, A. P., Škorić, B. & Pinkse, P. W. Quantum-secure authentication of a physical unclonable key. Optica 1, 421–424 (2014).

    Article  ADS  Google Scholar 

  12. Xiong, W. et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys. Rev. Lett. 117, 053901 (2016).

    Article  ADS  Google Scholar 

  13. Baranger, H. U. & Mello, P. A. Mesoscopic transport through chaotic cavities: a random S-matrix theory approach. Phys. Rev. Lett. 73, 142 (1994).

    Article  ADS  Google Scholar 

  14. Wigner, E. P. Random matrices in physics. SIAM Rev. 9, 1–23 (1967).

    Article  ADS  MATH  Google Scholar 

  15. Mehta, M. L. Random Matrices (Elsevier, 2004).

  16. Wishart, J. The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20, 32–52 (1928).

    Article  MATH  Google Scholar 

  17. Marčenko, V. A. & Pastur, L. A. Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1, 507–536 (1967).

    Article  Google Scholar 

  18. Wigner, E. P. Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  19. Achlioptas, D. Database-friendly random projections: Johnson-lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. Mahoney, M. W. Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3, 123–224 (2011).

    MATH  Google Scholar 

  21. Rahimi, A., Recht, B. et al. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems 20 (NIPS, 2007).

  22. Candes, E. J. & Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. theory 52, 5406–5425 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  23. Baraniuk, R., Davenport, M., DeVore, R. & Wakin, M. A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. Fergus, R., Torralba, A. & Freeman, W. T. Random Lens Imaging (MIT CSAIL, 2006); http://people.csail.mit.edu/billf/publications/Random_Lens_Imaging.pdf

  25. Asif, M. S., Ayremlou, A., Sankaranarayanan, A., Veeraraghavan, A. & Baraniuk, R. G. Flatcam: thin, lensless cameras using coded aperture and computation. IEEE Trans. Comput. Imag. 3, 384–397 (2016).

    Article  MathSciNet  Google Scholar 

  26. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article  Google Scholar 

  27. Liutkus, A. et al. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep. 4, 5552 (2014).

    Article  Google Scholar 

  28. Sefler, G. A., Shaw, T. J. & Valley, G. C. Demonstration of speckle-based compressive sensing system for recovering rf signals. Opt. Express 26, 21390–21402 (2018).

    Article  ADS  Google Scholar 

  29. Sleasman, T., Imani, M. F., Gollub, J. N. & Smith, D. R. Microwave imaging using a disordered cavity with a dynamically tunable impedance surface. Phys. Rev. Appl. 6, 054019 (2016).

    Article  ADS  Google Scholar 

  30. Antipa, N. et al. Diffusercam: lensless single-exposure 3d imaging. Optica 5, 1–9 (2018).

    Article  ADS  Google Scholar 

  31. Berto, P., Rigneault, H. & Guillon, M. Wavefront sensing with a thin diffuser. Opt. Lett. 42, 5117–5120 (2017).

    Article  ADS  Google Scholar 

  32. Moretti, C. & Gigan, S. Readout of fluorescence functional signals through highly scattering tissue. Nat. Photon. 14, 361–364 (2020).

    Article  ADS  Google Scholar 

  33. Redding, B. & Cao, H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett. 37, 3384–3386 (2012).

    Article  ADS  Google Scholar 

  34. Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746–751 (2013).

    Article  ADS  Google Scholar 

  35. Horisaki, R., Takagi, R. & Tanida, J. Learning-based imaging through scattering media. Opt. Express 24, 13738–13743 (2016).

    Article  ADS  Google Scholar 

  36. Satat, G., Tancik, M., Gupta, O., Heshmat, B. & Raskar, R. Object classification through scattering media with deep learning on time resolved measurement. Opt. Express 25, 17466–17479 (2017).

    Article  ADS  Google Scholar 

  37. Li, Y., Xue, Y. & Tian, L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5, 1181–1190 (2018).

    Article  ADS  Google Scholar 

  38. Li, S., Deng, M., Lee, J., Sinha, A. & Barbastathis, G. Imaging through glass diffusers using densely connected convolutional networks. Optica 5, 803–813 (2018).

    Article  ADS  Google Scholar 

  39. Borhani, N., Kakkava, E., Moser, C. & Psaltis, D. Learning to see through multimode fibers. Optica 5, 960–966 (2018).

    Article  ADS  Google Scholar 

  40. Rahmani, B., Loterie, D., Konstantinou, G., Psaltis, D. & Moser, C. Multimode optical fiber transmission with a deep learning network. Light. Sci. Appl. 7, 69 (2018).

    Article  ADS  Google Scholar 

  41. del Hougne, M., Gigan, S. & del Hougne, P. Deeply sub-wavelength localization with reverberation-coded-aperture. Phys. Rev. Lett. 127, 043903 (2021).

    Article  ADS  Google Scholar 

  42. Turpin, A., Vishniakou, I. & d Seelig, J. Light scattering control in transmission and reflection with neural networks. Opt. Express 26, 30911–30929 (2018).

    Article  ADS  Google Scholar 

  43. Caramazza, P., Moran, O., Murray-Smith, R. & Faccio, D. Transmission of natural scene images through a multimode fibre. Nat. Commun. 10, 2029 (2019).

    Article  ADS  Google Scholar 

  44. Kellman, M. R., Bostan, E., Repina, N. A. & Waller, L. Physics-based learned design: optimized coded-illumination for quantitative phase imaging. IEEE Trans. Comput. Imag. 5, 344–353 (2019).

    Article  Google Scholar 

  45. Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015).

    Article  ADS  Google Scholar 

  46. Horstmeyer, R., Chen, R. Y., Kappes, B. & Judkewitz, B. Convolutional neural networks that teach microscopes how to image. Preprint at https://arxiv.org/abs/1709.07223 (2017).

  47. Elmalem, S., Giryes, R. & Marom, E. Learned phase coded aperture for the benefit of depth of field extension. Opt. Express 26, 15316–15331 (2018).

    Article  ADS  Google Scholar 

  48. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  49. Ando, T., Horisaki, R. & Tanida, J. Speckle-learning-based object recognition through scattering media. Opt. Express 23, 33902–33910 (2015).

    Article  ADS  Google Scholar 

  50. Saade, A. et al. Random projections through multiple optical scattering: approximating kernels at the speed of light. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing 6215–6219 (IEEE, 2016).

  51. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004).

    Article  ADS  Google Scholar 

  52. Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018).

    Article  ADS  Google Scholar 

  53. Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).

    Article  Google Scholar 

  54. Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017).

    Article  Google Scholar 

  55. Rafayelyan, M., Dong, J., Tan, Y., Krzakala, F. & Gigan, S. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X 10, 041037 (2020).

    Google Scholar 

  56. Paudel, U., Luengo-Kovac, M., Pilawa, J., Shaw, T. J. & Valley, G. C. Classification of time-domain waveforms using a speckle-based optical reservoir computer. Opt. Express 28, 1225–1237 (2020).

    Article  ADS  Google Scholar 

  57. Porte, X. et al. A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser. J. Phys. Photon. 3, 024017 (2021).

    Article  Google Scholar 

  58. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article  ADS  Google Scholar 

  59. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article  ADS  Google Scholar 

  60. Stellinga, D. et al. Time of flight 3d imaging through multimode optical fibres. Science 374, 1395–1399 (2021).

    Article  ADS  Google Scholar 

  61. Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 11, 6154 (2020).

    Article  ADS  Google Scholar 

  62. Sun, Y., Xia, Z. & Kamilov, U. S. Efficient and accurate inversion of multiple scattering with deep learning. Opt. Express 26, 14678–14688 (2018).

    Article  ADS  Google Scholar 

  63. Matthès, M. W., Bromberg, Y., de Rosny, J. & Popoff, S. M. Learning and avoiding disorder in multimode fibers. Phys. Rev. X 11, 021060 (2021).

    Google Scholar 

  64. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  ADS  Google Scholar 

  65. Teğin, U., Yíldírím, M., Oğuz, İ., Moser, C. & Psaltis, D. Scalable optical learning operator. Nat. Comput. Sci. 1, 542–549 (2021).

    Article  Google Scholar 

  66. Nøkland, A. Direct feedback alignment provides learning in deep neural networks. In 30th Conference on Neural Information Processing Systems (NIPS, 2016); https://proceedings.neurips.cc/paper/2016/file/d490d7b4576290fa60eb31b5fc917ad1-Paper.pdf

  67. Launay, J., Poli, I., Boniface, F. & Krzakala, F. Direct feedback alignment scales to modern deep learning tasks and architectures. Adv. Neural. Inf. Process. Syst. 33, 9346–9360 (2020).

    Google Scholar 

  68. Del Hougne, P., Imani, M. F., Diebold, A. V., Horstmeyer, R. & Smith, D. R. Learned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network. Adv. Sci. 7, 1901913 (2020).

    Article  Google Scholar 

  69. Alexandropoulos, G. C., Shlezinger, N. & del Hougne, P. Reconfigurable intelligent surfaces for rich scattering wireless communications: recent experiments, challenges, and opportunities. IEEE Trans. Wirel. Commun. 59, 28–34 (2021).

    Google Scholar 

  70. Bouland, A., Fefferman, B., Nirkhe, C. & Vazirani, U. On the complexity and verification of quantum random circuit sampling. Nat. Phys. 15, 159–163 (2019).

    Article  MATH  Google Scholar 

  71. Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article  ADS  Google Scholar 

  72. Matthès, M. W., del Hougne, P., de Rosny, J., Lerosey, G. & Popoff, S. M. Optical complex media as universal reconfigurable linear operators. Optica 6, 465–472 (2019).

    Article  ADS  Google Scholar 

  73. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

    Article  ADS  Google Scholar 

  74. Demas, J. et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nat. Methods 18, 1103–1111 (2021).

    Article  Google Scholar 

  75. Rabut, C. et al. 4D functional ultrasound imaging of whole-brain activity in rodents. Nat. Methods 16, 994–997 (2019).

    Article  Google Scholar 

  76. Amodei, D. & Hernandez, D. AI and compute. OpenAI (16 May 2018); https://blog.openai.com/ai-and-compute

  77. Vellekoop, I. Controlling the Propagation of Light in Disordered Scattering Media. PhD thesis, Univ. Twente (2008); https://doi.org/10.3990/1.9789036526630

  78. Johnson, W. B. & Lindenstrauss, J. Extensions of Lipschitz mappings into a Hilbert space. In Conference in Modern Analysis and Probability 189–206 (Am. Math. Soc., 1984).

  79. Dasgupta, S. & Gupta, A. An Elementary Proof of the Johnson-Lindenstrauss Lemma (International Computer Science Institute, 1999); https://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf

Download references

Acknowledgements

S.G. acknowledges support from the European Research council (SMARTIES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Gigan.

Ethics declarations

Competing interests

S.G. acknowledges financial interest in the startup LightOn.

Peer review

Peer review information

Nature Physics thanks Roarke Horstmeyer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980–985 (2022). https://doi.org/10.1038/s41567-022-01681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01681-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing