
Articles
https://doi.org/10.1038/s41567-022-01574-3

1Department of Physics, Indian Institute of Science, Bangalore, India. 2National Institute for Materials Science, Tsukuba, Japan. 3Max Planck Institute for  
the Physics of Complex Systems, Dresden, Germany. 4These authors contributed equally: Arup Kumar Paul, Ayan Ghosh, Souvik Chakraborty.  
✉e-mail: anindya@iisc.ac.in

Interactions in many-body systems lead to various complex 
emergent quantum phenomena such as superconductivity, mag-
netism and correlated insulating phases. Understanding these 

many-body quantum phenomena and utilizing their various appli-
cabilities remains a key focus of condensed matter research. For 
this reason, magic-angle twisted bilayer graphene (MATBLG) is a 
promising material with its flat-band1–3 induced plethora of exotic 
states such as correlated insulator2,4–7, superconductivity3,4,6–9, fer-
romagnetism10, Chern insulator5,11–15, quantum anomalous Hall 
effect16, nematicity17,18 and Pomeranchuk effect19,20. The discovery 
of these emergent quantum phases, together with its easy tun-
ability using a variety of experimental methods, makes MATBLG 
an unprecedented platform to probe the role of interactions in its 
unique electronic band structure and further the search for novel 
electronic properties with technological applicability. In this direc-
tion, primarily electrical transport and local spectroscopic mea-
surements have been utilized to probe and study the nature of the 
various symmetry-breaking electronic states21–25. Notably, recent 
measurements of local compressibility25 and scanning tunnelling 
microscopy24 have revealed that the Fermi surface of MATBLG is 
highly malleable and undergoes interaction-driven quantum phase 
transitions at integer fillings of the moiré lattice. The key find-
ing is the resetting of the Fermi surface with a strongly particle–
hole-asymmetric density of states around the integer fillings via a 
cascade of Dirac revival transitions24,25. However, unambiguous sig-
natures of the above phenomena in global transport measurement 
are still lacking. Some signature is observed in Hall measurement5,9, 
where the Hall carrier density suddenly resets from a finite value 
to zero without changing its sign at the integer fillings. However, 
the nature and degree of particle–hole asymmetry of the electronic 
structure at the transition points remain unexplored.

In this context, thermopower or the Seebeck effect is a unique 
tool to probe the particle–hole asymmetry of the electronic struc-
ture of MATBLG. Compared to electrical transport, it is relatively 
non-invasive as an open circuit voltage (ΔV) is measured across the 
sample in the presence of a small temperature gradient (ΔT) relative 
to the sample temperature. In the linear regime, using semi-classical 
Boltzmann transport theory and assuming energy-independent 
scattering time, the Seebeck coefficient (S = −ΔV/ΔT) can be 
written as S = −(kB/Te)[∫(ϵ − μ)g(ε)(−df/dε)dε]/[∫g(ε)(−df/dε)
dε], where e, T, μ, g(ε) and −df/dε are, respectively, the electronic 
charge, temperature, chemical potential, density of states and deriv-
ative of the Fermi function, and kB is the Boltzmann constant. It can 
be seen that the numerator is an odd function due to the (ϵ − μ) 
term, and thus, the sign and magnitude of S depend on the nature 
and extent of asymmetry of the density of states around the chemi-
cal potential, as shown schematically in Fig. 1. This figure depicts 
the expected thermopower for different band structures such as 
graphene, a semiconductor and a highly particle–hole-asymmetric 
band. Figure 1a shows the diffusion of electrons ((ϵ − μ) > 0) and 
holes ((ϵ − μ) < 0) from the hot end to the cold end. If the density 
of states is constant or symmetric with the energy around μ, then 
the contributions from the electrons and holes cancel each other 
and S vanishes. This can be seen in Fig. 1b, where for μ at the sym-
metric points such as the Dirac point and the van Hove singularities 
of graphene, and within the semiconducting bandgap, S is zero. On 
the contrary, for a highly particle–hole-asymmetric band, the ther-
mopower does not go to zero at zero energy (Fig. 1b), as the con-
tribution from the hole band dominates over that from the electron 
band. As a result, S is a highly sensitive probe to study the electronic 
structure around the transition points of MATBLG with cascaded 
transition. Moreover, MATBLG, with a superconducting dome 
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around half-filling, analogous to high-critical transition tempera-
ture (Tc) cuprate superconductors3, is an ideal material to study the 
thermopower response around the superconducting transition26.

Motivated by these observations, we have extensively explored 
the thermopower response of MATBLG and non magic-angle 
twisted bilayer graphene (TBLG) devices. Unlike previous work 
involving graphene and TBLG27–34, we have utilized Johnson noise 
thermometry35–38 to directly measure the temperature gradient 
across the MATBLG device and accurately determine S across a 
temperature ranging from 100 mK to 10 K. Our measurements 
reveal an intricate dependence of S on carrier density (ν), tem-
perature (T) and magnetic field (B). Our key observations are as 
follows. First, the measured thermopower at low temperatures devi-
ates completely from the expected zero crossings, following the 
semi-classical Mott formula39. Instead, the thermopower exhibits 
peak-like features at all positive integer fillings including the Dirac 
point. Second, we observe a non-monotonic temperature depen-
dence of the thermopower. The thermopower reaches a record 
high value of approximately 100 μV K−1 at 1 K for half-filling of the 
conduction band. Third, we also observe unusually large peaks of 
S ≈ −(10–15) μV K−1 at sub-kelvin temperatures around the super-
conducting transition, tracing the superconducting dome in the 
hole side, which completely vanishes at a small magnetic field of 
0.1 T. We explain the first two results, showing emergent highly par-
ticle–hole-asymmetric densities of states at integer fillings, quali-
tatively using a simple model within self-consistent Hartree–Fock 
(HF) approximations. Furthermore, we discuss the plausible origins 
of the anomalous peaks around Tc. Our work highlights the ability 
of thermopower to independently provide unique insights into the 
novel quantum phenomena observed in MATBLG.

Set-up and device response
Figure 2a shows a schematic of the devices and the measurement 
set-up for thermopower measurement. The devices consist of hex-
agonal boron nitride (hBN)-encapsulated TBLG on a Si/SiO2 sub-
strate. The details are described in Methods and Supplementary 
Section 1. For the thermopower measurement, an isolated gold 
heater line, as shown in Fig. 2a, is placed parallel to one side of the 
TBLG. To determine the thermopower or Seebeck coefficient (S), 
one needs to measure the generated thermoelectric voltage and 
the temperature difference (ΔT = Th − Tc, where Th and Tc are the 
temperatures of the hot and cold contacts, respectively). We have 
utilized the well-established 2ω lock-in technique27–33 for measur-
ing the thermoelectric voltage (V2ω) at ω = 13 Hz. To measure ΔT, 
we have utilized Johnson noise thermometry35–38. The details of the 
noise thermometry set-up can be found in our earlier work35,40 and 

is also shown in Supplementary Section 3. The excess thermal noise, 
SV = 2kBΔTR, measured across the sample is used to determine ΔT 
(Supplementary Sections 6 and 7), where R is the resistance of the 
device. Note that the above conversion between the excess thermal 
noise and ΔT is valid for a linear temperature profile. Any deviation 
from linearity may correct the coefficient keeping the proportional-
ity relation between SV and ΔT. To obtain the temperature profile 
in our device structure, in Supplementary Section 8 we have solved 
the three-dimensional Fourier heat-diffusion equation for the mul-
tilayer stack using finite element calculations with different parts 
of the device; Si/SiO2 substrate, hBN flakes, metal contacts, TBLG 
and heater. The main finding is that the hBN plays a significant role 
in determining the almost linear temperature profile in our device 
structure. Figure 2c shows the measured V2ω and ΔT as a function 
of the heater current at a bath temperature (T) of 1 K. In Fig. 2d, we 
plot V2ω versus ΔT for MATBLG at different carrier densities (n). 
The linearity of the plots in Fig. 2d suggests that we are in the linear 
regime and the slope of each curve gives S for a given n. We have 
measured S from 100 mK to 10 K in the linear regime by adjust-
ing the heater current such that ΔT always remains much smaller 
than T (Supplementary Section 7). We have used three devices with 
approximate twist angles of 0.26, 1.05 and 1.86°.

The gate-dependent resistance (R) of MATBLG for different 
temperatures is shown in Fig. 2b. Here the gate voltage is replaced 
with an equivalent moiré filling factor, ν = 4n/ns, where n is the 
carrier density induced by the gate voltage and ns is the carrier 
density required to fully fill the flat band (4 electrons/holes per 
moiré unit cell). As can be seen from the R versus ν response, mul-
tiple resistance peaks appear at positive integer fillings, including 
the Dirac point, and these peak features survive up to 50 K and 
above. On the contrary, for negative filling, we see the prominent 
resistance peaks at ν = −4 and between ν = −2 and ν = −3 where 
the resistance drops below 600 mK and saturates like a plateau 
at around 1.8 kΩ, showing the emergence of superconductivity. 
The above resistance arises due to two-probe geometry and gives 
an estimate of the contact resistance of the device. The resistance 
value at full filling (ν = ±4) continuously decreases with increas-
ing temperature. On the other hand, the resistance value at ν = 0 
and 2 decreases with increasing temperature up to ~10 K and 
then increases linearly, showing metallic nature (Supplementary 
Sections 11 and 12). Figure 2e and Fig. 2f plot the evolution of 
differential resistance (dVdI ) versus bias current (IBias) response with 
temperature and perpendicular magnetic field, respectively, at 
ν = −2.5. These results confirm the existence of superconductiv-
ity, although the resistance is measured in two-probe geometry 
(Methods and Supplementary Section 14).
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Fig. 1 | Thermopower for different band structures. a, Top: the diffusion of electrons and holes from the hot end to the cold end. Bottom: the contribution 
of electrons and holes to the chemical potential for a band with linear dispersion. The shaded regions correspond to the Fermi distributions of the hot and 
cold reservoirs. b, Top: a schematic of the density of states (DOS) for graphene (left), semiconductor (middle) and a highly particle–hole (PH)-asymmetric 
band (right) such as that near the Dirac revival of MATBLG. Bottom: the respective thermopowers, with several sign changes according to the 
semi-classical theory DOS and thermopower are shown in arbitrary units (a.u).
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Band reconstruction of MATBLG probed by thermopower
Figure 3a,b shows the measured thermopower versus ν at several 
temperatures from 200 mK to 10 K for MATBLG. At 10 K (Fig. 
3a), the thermopower has approximate mirror symmetry for both 
conduction and valence bands, albeit with opposite signs. It can 
be seen that the thermopower changes its sign at the Dirac point, 
at flat-band full fillings (ν = ±4) and around ν = ±1. The sign of 
the thermopower depends on the type of carrier. It is positive for 
hole-like carriers and negative for electron-like carriers and its 
magnitude goes to zero at the symmetric points of the electronic 
structure, as described in Fig. 1 using the semi-classical equation. 
The density of states goes to zero symmetrically from both the con-
duction and valence bands, like at the Dirac point. Similarly, at the 
band full filling, with the energy gap between the flat and higher 
energy-dispersive bands, S is expected to change sign. One more 
sign change is expected at the middle of the conduction or valence 
band as the single-particle density of states of the flat band reaches 
a maximum (van Hove singularity) around ν = ±2. If the density of 
states is symmetric around the maxima, one would expect a sign 
change in S exactly at ν = ±2. However, the inherent asymmetry of 
the density of states of the conduction band or valence band, which 

is complex for MATBLG, can give rise to the sign change shift from 
ν = ±2.

As we decrease the temperature below 10 K, the apparent asym-
metry of S (Fig. 3b) between the conduction and valence bands 
grows, similar to the asymmetry observed in the resistance data 
in Fig. 2b. Most importantly, the thermopower exhibits a posi-
tive peak around ν = 2, and its magnitude increases rapidly with 
decreasing temperature and reaches a maximum value of the order 
of 95–100 μV K−1 at 1 K, followed by a decrease of the magnitude 
with a further reduction of the temperature. Similarly, positive 
peaks are also seen around ν = 1 and 3 at 3 K and at the Dirac point 
below 1 K. The observed positive peak in thermopower at the posi-
tive integer fillings, including the Dirac point, is quite striking. Any 
energy close to or greater than kBT, either from the single-particle 
band structure or induced by electronic interactions, will give a sign 
change of S. In particular, one would expect S to go to zero at the 
resistance maxima, that is, at the integer fillings given by the Mott 
formula39S = (π2kBT/3e)(d ln(R)/dn)g(ϵ), which gives zero at those 
points as shown in Fig. 3g for 0.2 K. Thus, one can see a complete 
violation of the Mott formula for MATBLG. The violation persists 
even up to 10 K, as shown in Supplementary Section  15. On the 
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measurement consisting of an LC resonant tank circuit and cryo-amplifier (c.a.) is used to measure the temperature difference (ΔT) across the device as 
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contrary, for non magic-angle TBLG devices, the measured sign 
of S and the Mott formula match well, as shown in Fig. 3h for the 
0.26° device (Supplementary Fig 19(a) for higher temperatures and 
Supplementary Fig. 19b for 1.86°).

The recurring thermopower peaks (Fig. 3b) at integer fillings 
with a positive sign (which usually occur for hole-like carriers) 
suggest, at least within an effective single-particle picture, repeated 
restructuring of the Fermi surface at integer fillings such that overall 
hole-like carriers are dominant. Pliable Fermi surfaces due to inter-
actions around the integer fillings have been reported in MATBLG 
and Stoner like transitions5,9,24,25 have been observed experimentally. 
The key features of these transitions are Lifshitz transition followed 
by a Dirac revival, which essentially gives rise to a large asymmet-
ric density of states around the transition point such that, for ν > 0, 
from one side (left side of the transition), the density of states rap-
idly drops whereas from the other side (right side of the transition) 

the density of states increases gradually, similar to a sawtooth. Such 
an asymmetric density of states can give rise to a large value of S 
around the transition point as shown in Fig. 1 and we have discussed 
this in detail in the theoretical section. It can be seen from Fig. 3h 
and Supplementary Section 15 that, for non magic-angle devices, 
we do not observe any thermopower peaks and the measured S is 
around 1 μV K−1 at 1 K as expected for graphene-based devices at 
such low temperatures27–29.

The temperature dependence of S for different integer fillings, 
including the Dirac point, is shown in Fig. 3c. The common key 
feature is the non-monotonic temperature dependence of S with a 
maximum at a certain temperature, which depends on the filling. 
For example, at ν = 2 and 3 the peak appears around 1 K, whereas 
it is around 0.3 K for ν = 1 and the Dirac point. The deviation from 
the linear T dependence of S again suggests the strong violation of 
Mott’s formula39 for the flat band of MATBLG. Figure 3d shows 
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the variation of S for the dispersive band with temperature. Here, 
considering the relatively smaller magnitude of S in the dispersive 
band, we have shown the mean thermopower within a density range 
of ν ± 0.1ν (10 data points around n/ns ≈ 1.6 and n/ns ≈ −1.31) as 
function of temperature, with the error bars representing standard 
deviations around the mean values. The open circles are the indi-
vidual data points and the solid lines trace the mean value. It can 
be seen from Fig. 3d that below 1 K, the fluctuations in mesoscopic 
nature27 dominate. However, above 1 K, it can be clearly seen that the 
measured S in the dispersive bands increases monotonically with 
increasing temperature and shows almost close to linear increment 
for n/ns ≈ 1.6 and n/ns ≈ −1.31, consistent with the Mott formula. 
Furthermore, the response of S with the in-plane magnetic field (B∥) 
underlies the nature of the ground states at different integer fillings. 
As can be seen in Fig. 3e (for a different thermal cycle as shown in 
Supplementary Section 16) the thermopower peaks increase with B∥ 
at ν = 1, but decrease at ν = 2. These observations are consistent with 

the cascade of Dirac revival picture in ref. 25, where the emergence of 
flavoured symmetry breaking in MATBLG with a polarized ground 
state at ν = 1 strengthens the transition and thus makes a more par-
ticle–hole-asymmetric density of states resulting in higher S. At 
ν = 2 the value of S also decreases with B⊥, as shown as a function of 
T in Fig. 3f (see also Supplementary Section 16). It can be seen that 
the peak position of S is shifted to lower temperatures around 0.6 K 
at B⊥ = 3.5 T with a value of around 70 μV K−1. It should be noted 
that the S of the dispersive band and non magic-angle TBLG devices 
remain insensitive to B∥ (Supplementary Section 16). Note that in 
Supplementary Section 13 we have also discussed the accuracy of 
our thermopower measurement.

Anomalous thermopower response around the 
superconducting dome
As shown in Fig. 3b, there are no thermopower peaks for the valence 
flat band of the MATBLG device in the temperature range 2–10 K. 
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This is consistent with the weaker cascaded transitions observed for 
the hole side in ref. 25. It was shown that a larger twist angle close 
to 1.1° is required to observe the sawtooth behaviour in the den-
sity of states for the hole side. However, for the MATBLG device, 
some peak-like features are developed within ν ≈ −2 to −3.5 below 
2 K. The number of peaks and their positions in filling change 
with decreasing temperature; one weak negative peak is seen at 
2 K, whereas three prominent negative peaks are observed at 0.2 K. 
Figure 4a shows the two-dimensional (2D) colour map of the resis-
tance with temperature and filling. The darker blue region corre-
sponds to the superconducting phase seen close to a weak resistance 
peak at n/ns ≈ −0.55 (details in Supplementary Section 14). The 
open circles denote superconducting transition temperature Tc as 
a function of filling, obtained from critical current measurements 
shown in Fig. 2e and Supplementary Section 14.

Figure 4b shows the corresponding 2D colour map of S at zero 
magnetic field. Here the darker blue shaded ribbons enclosing 
dome-like structures correspond to negative thermopower peaks. 
A closer view shows two inter-penetrating dome-like structures 
marked by dashed white lines and labelled as I and II in Fig. 4b. 
The dashed white line enclosing region II is the trace of Tc as shown 

in Fig. 4a, whereas the white dashed line enclosing region I is a 
guide to the eye to follow the locus of the broad negative thermo-
power peaks. As evident from Fig. 4a,b, there are clear resemblances 
between the peak position in S enclosing region II and the Tc(n) 
dome. This can be further ascertained from Fig. 4d, where S from 
Fig. 4b and dR/dT for Fig. 4a are plotted as a function of T for fixed 
fillings, n/ns = −0.56 and −0.65. Both S and dR/dT exhibit promi-
nent peaks around Tc. However, the peak in S enclosing region I 
in Fig. 4b has hardly any direct correspondence to the resistance 
data in Fig. 4a, as can be seen in Fig. 4d, where S(T) exhibits broad 
peaks at n/ns = −0.74 and −0.80, but dR/dT does not show any such 
feature around the same temperature.

Apart from the correlation between the locus of the thermopower 
peak in the n–T plane and Tc(n) over a large part of the supercon-
ducting dome, a clue to the possible origin of the unusual thermo-
power peak is obtained by applying a B⊥. As shown in Fig. 4c, the 
peak in S around region II completely disappears with the applica-
tion of a tiny B⊥ = 0.1 T. This is demonstrated in Fig. 4e by plotting 
S(T) for n/ns = −0.65 and −0.8, together with the corresponding 
dR/dT. These observations suggest that the anomalous peak in S 
in Fig. 4b, particularly enclosing region II, may have a connection 
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to the superconductivity of MATBLG. The observed anomalous 
thermopower peak around Tc is quite striking. Anomalously large 
thermopower response around Tc, and even extending far above 
Tc, has been reported in the transverse thermoelectric coefficient, 
that is the Nernst coefficient26, for high-Tc cuprate superconductors. 
However, experimental observations of peaks in the longitudinal 
component of S are scarce41. Such thermopower peaks have been 
theoretically predicted41,42 to exist above, albeit close to, Tc from 
superconducting fluctuations under certain situations, for example 
for a superconductor in the dirty limit41,42. The observed thermo-
power in our MATBLG device may have a similar origin, as disor-
der due to twist-angle inhomogeneity25,43 is naturally present in the 
system. In Supplementary Section 14, we have discussed the various 
plausible origins for observing the anomalous peaks around Tc. At 
present, the superconducting fluctuations at the dirty limit are the 
most plausible explanation. However, future studies, for example on 
the Nernst effect, will be important to unravel the actual mechanism 
in MATBLG. The origin of the broader peak enclosing region I 
remains unclear and will be an exciting direction for future studies.

emergent low-energy particle–hole asymmetry and giant 
thermopower peaks
As already mentioned, the thermopower peaks suggest strong emer-
gent low-energy particle–hole asymmetry of the putative correlated 
states at integer fillings, at least, within the effective single-particle or 
HF descriptions of various possible symmetry-broken states44–46. As 
discussed in Methods and Supplementary Section SI, we use a sim-
ple minimal model25 with four fermionic flavours, corresponding 
to the spin and valley degrees of freedom, each described in terms 
of a single-particle density of states1,25,47 and interacting via a local 
Coulomb interaction. We treat the latter using the self-consistent HF 
approximation and use the resulting HF density of states to calculate 
the resistivity and thermopower as a function of filling and tempera-
ture, using the Kubo formulae (Supplementary Section 19). We have 
used different non-interacting densities of states, obtained from 
both effective continuum models1,47, with and without lattice relax-
ation effects47, as well as a tight-binding model48 (Supplementary 
Section 19). The main results are summarized in Fig. 5, where the 
peak value of S reaches around 50–100 μV K−1 for ν ≃ 2 and 3 at T ≃ 
0.1W, consistent with our experimental observations (Fig. 3b). The 
temperature range T ≃ 0.005–0.27W corresponds to 200 mK–13 K, 
for a bandwidth 2W ≃ 10 meV. For comparison, in Fig. 5c (solid 
blue lines), we have shown S0 for the non-interacting case (see Fig. 
5c caption for details). We find the thermopower peak around an 
integer filling to be a robust feature whenever the Dirac revival is 
stabilized within the HF approximation. This result supports the 
simultaneous presence of thermopower (Fig. 3b) and resistance 
(Fig. 2b) peaks, as well as the non-monotonic temperature depen-
dence of S (Fig. 3c) in our experiment.

Discussion
Our theory qualitatively captures the thermopower peaks, 
but S(n) follows an overall ‘background’ profile dictated by 
the non-interacting S0(n) (Fig. 5c) and its sign change around 
half-filling. There could be several reasons behind the deviation 
of S obtained from the HF approximation compared to the experi-
mental one. For example, effects of more complex and realistic 
single-particle density of states for MATBLG than the used con-
tinuum model1,25,47, twist angle inhomogeneity25,43 and strong cor-
relations in the strange metal state49 (see Supplementary Section 19 
for a detailed discussion). Moreover, we should note that there are 
theoretical models44–46 which lead to a small gap (Δ) at the Dirac 
revivals. This will be consistent with the simultaneous presence 
of thermopower and resistance peaks at integer fillings provided 
kBT ≳ Δ. At much lower temperatures, S is expected to change sign 
across the position of the resistance peak. Thus, our thermopower 

results put a tighter upper bound, Δ ≈ 0.1–0.2 meV (activation gap 
in Supplementary Section 12), on the correlation-induced gap at 
integer fillings. In Supplementary Section 19, we also discuss the 
expected thermopower from various other kinds of ground state, 
such as Chern insulators50, the isospin Pomeranchuk effect19,20 and 
phonon drag27, in detail. Although Chern insulators with a large 
gap cannot give rise to thermopower peaks at low temperature, the 
Pomeranchuk effect can lead to extra entropy and thus can enhance 
the thermopower at integer fillings. The phonon drag is expected to 
be negligible below 10 K, which has been previously seen for mono-
layer and bilayer graphene27.
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Methods
Device fabrication and measurement scheme. The devices consist of hBN 
encapsulated TBLG on a Si/SiO2 substrate. The typical length and width of the 
devices are 6 μm and 2 μm, respectively. The usual ‘tear and stack’ technique2,3 is 
used to fabricate the devices and is described in detail in Supplementary Section 
1. For the resistance measurement, we employ the low-frequency (13 Hz) lock-in 
technique (Supplementary Section 3). For the thermopower measurement, an 
isolated gold line, as shown in Fig. 2a, is placed parallel to one side of the TBLG at a 
separation of 3 μm. Passing a current (Ih) through the heater creates a temperature 
gradient across the length of the TBLG as depicted by the colour gradient (red 
to blue) in Fig. 2a. As a result, the contact near to the heater will be hotter (Th) 
compared with the far contact (Tc). The temperature of the far contact (Tc) is 
maintained at the bath temperature of the cryo-free dilution fridge by directly 
anchoring it to the cold finger attached to the mixing chamber plate, which we call 
a cold ground (c.g.). To measure ΔT, we have utilized Johnson noise thermometry. 
As shown in Fig. 2a, the thermometry circuit consists of an LC resonant 
(fr ≈ 720 kHz) tank circuit, followed by a cryogenic amplifier (c.a.). The relay sitting 
at the mixing chamber plate (Fig. 2a) is used to switch between the thermoelectric 
voltage and temperature measurement.

Activation gaps, bandwidth and superconducting transition temperature of 
MATBLG. The value of the resistance at full filling (ν = ± 4) continuously decreases 
with increasing temperature up to much higher T ~ 100 K. On the other hand, 
the value of the resistance at ν = 0 and 2 decreases with increasing temperature 
up to ≈10 K and then increases linearly, showing metallic nature (Supplementary 
Section 11). These observations are consistent with earlier reports for MATBLG2–9. 
The gaps (Δ) determined from the activated plot for ν = 0, 2 and ± 4 are, respectively, 
around 0.05, 0.25, 11.5 and 9.25 meV as shown in Supplementary Sections 11 and 
12. Furthermore, it can be seen (Supplementary Section 11) that there is a crossover 
from metallic nature to insulating nature at a higher temperature due to interband 
excitation of the carriers between the flat and dispersive bands. From the crossover 
temperature, at around 150 K (around the Dirac point), one can estimate the 
bandwidth (2W) and this was found to be of the order of 10 meV for MATBLG. 
In Fig. 2e,f, we have shown the differential resistance versus bias current with 
temperature and perpendicular magnetic field around the superconducting dome. 
To extract the transition temperature at a given filling, we compare the experimental 
data with the theoretically generated critical current versus temperature using 
Bardeen–Cooper–Schreiffer (BCS) theory, Ic(T) = Ic(0)(1 − T/Tc)

2, where Ic(0) 
is the experimentally measured critical current at T = 20 mK, and vary Tc such that 
the theoretically generated Ic(T) traces the experimentally measured Ic in Fig. 2e. 
This was repeated for other carrier densities and is shown in Supplementary Section 
14. The extracted critical temperature was found to be around 500 mK at ν ≈ −2.5 
(Supplementary Section 14). The measured value of Tc and critical field (Bc ≈ 100 mT) 
of our device matches reasonably well with the available data for MATBLG3,4,6–9. 
Note that the Fraunhofer-like pattern in Fig. 2f can be explained by the interference 
between percolating superconducting paths separated by the normal islands, which is 
a generic feature in MATBLG due to twist-angle inhomogeneity9,25,43. These patterns 
further establish the existence of the superconductivity in our device, although the 
measurement was carried out in two-probe geometry.

Theory. As discussed in detail in Supplementary Section 19, we compute 
the thermopower and resistivity as a function of filling and temperature for 
the model of ref. 25 using the HF approximation. The model consists of four 
spin-valley flavours, interacting with local Coulomb interaction U. For the 
results reported in the main text, we have taken U = 1.2W, where W is the band 
width of the conduction (valence) band. The HF self-consistency equations 
depend on the non-interacting density of states of the moiré flat bands. We 
use various non-interacting densities of states, for example densities of states 
obtained from the continuum Bistritzer–MacDonald model1 in ref. 25 and the 
density of states generated from the continuum model of ref. 47, which includes 
lattice relaxation effects. The self-consistent HF density of states is then used 
to compute thermopower and resistivity using the Kubo formulae, neglecting 
vertex corrections. We assume a constant band velocity and use a small impurity 
scattering rate Γ0 = 0.001W in the Kubo formulae.
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