Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simulation of open quantum systems by automated compression of arbitrary environments

Abstract

Studies of the dynamics of open quantum systems are limited by the large Hilbert space of typical environments, which is too large to be treated exactly. In some cases, approximate descriptions of the system are possible, for example, when the environment has a short memory time or only interacts weakly with the system. Accurate numerical methods exist, but these are typically restricted to baths with Gaussian correlations, such as non-interacting bosons. Here we present a method for simulating open quantum systems with arbitrary environments that consist of a set of independent degrees of freedom. Our approach automatically reduces the large number of environmental degrees of freedom to those which are most relevant. Specifically, we show how the process tensor describing the effect of the environment can be iteratively constructed and compressed using matrix product state techniques. We demonstrate the power of this method by applying it to a range of open quantum systems, including bosonic, fermionic and spin environments. The versatility and efficiency of our automated compression of environments method provides a practical general-purpose tool for open quantum systems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Depiction of the ACE approach.
Fig. 2: Resonant-level model application of ACE, spanning small to infinite bath memory time.
Fig. 3: Dynamics of QDs embedded in (non-additive) photon and phonon environments.
Fig. 4: Central spin model for different degrees of spin bath polarization.
Fig. 5: Two-level system coupled to a bath of anharmonic modes.

Data availability

The data presented in the figures including the parameter files to generate them are available online in the ‘examples’ subdirectory of the Zenodo repository at https://doi.org/10.5281/zenodo.5214128.

Code availability

The C++ computer code including documentation is available online at https://doi.org/10.5281/zenodo.5214128.

References

  1. Breuer, H.-P. and Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  2. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    ADS  Google Scholar 

  3. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

    ADS  Google Scholar 

  4. Chin, A. W., Datta, A., Caruso, F., Huelga, S. F. & Plenio, M. B. Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J. Phys. 12, 065002 (2010).

    ADS  Google Scholar 

  5. Beige, A., Braun, D., Tregenna, B. & Knight, P. L. Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 85, 1762 (2000).

    ADS  Google Scholar 

  6. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009).

    Google Scholar 

  7. de Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).

    ADS  MathSciNet  Google Scholar 

  8. Tanimura, Y. Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn 75, 082001 (2006).

    ADS  Google Scholar 

  9. Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998).

    ADS  Google Scholar 

  10. Redfield, A. G. The theory of relaxation processes. in Advances in Magnetic Resonance, Advances in Magnetic and Optical Resonance Vol. 1 (ed Waugh, J. S.) 1–32 (Academic Press, 1965).

  11. Nazir, A. & McCutcheon, D. P. S. Modelling exciton–phonon interactions in optically driven quantum dots. J. Phys.: Condens. Matter 28, 103002 (2016).

    ADS  Google Scholar 

  12. Breuer, H.-P., Laine, E.-M., Piilo, J. & Vacchini, B. Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016).

    ADS  Google Scholar 

  13. Tanimura, Y. & Kubo, R. Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath. J. Phys. Soc. Jpn 58, 101–114 (1989).

    MathSciNet  Google Scholar 

  14. Tanimura, Y. Numerically ‘exact’ approach to open quantum dynamics: the hierarchical equations of motion (HEOM). J. Chem. Phys. 153, 020901 (2020).

    Google Scholar 

  15. Prior, J., Chin, A. W., Huelga, S. F. & Plenio, M. B. Efficient simulation of strong system-environment interactions. Phys. Rev. Lett. 105, 050404 (2010).

    ADS  Google Scholar 

  16. Somoza, A. D., Marty, O., Lim, J., Huelga, S. F. & Plenio, M. B. Dissipation-assisted matrix product factorization. Phys. Rev. Lett. 123, 100502 (2019).

    ADS  MathSciNet  Google Scholar 

  17. Nüßeler, A., Dhand, I., Huelga, S. F. & Plenio, M. B. Efficient simulation of open quantum systems coupled to a fermionic bath. Phys. Rev. B 101, 155134 (2020).

    ADS  Google Scholar 

  18. Feynman, R. & Vernon, F. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118 (1963).

    ADS  MathSciNet  Google Scholar 

  19. Makri, N. & Makarov, D. E. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 102, 4600 (1995).

    ADS  Google Scholar 

  20. Makri, N. & Makarov, D. E. Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 102, 4611 (1995).

    ADS  Google Scholar 

  21. Cygorek, M., Barth, A. M., Ungar, F., Vagov, A. & Axt, V. M. Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QED revealed by many-level real-time path-integral calculations. Phys. Rev. B 96, 201201 (2017).

    ADS  Google Scholar 

  22. Strathearn, A., Kirton, P., Kilda, D., Keeling, J. & Lovett, B. W. Efficient non-Markovian quantum dynamics using time-evolving matrix product operators. Nat. Commun. 9, 3322 (2018).

    ADS  Google Scholar 

  23. Cosacchi, M. et al. Path-integral approach for nonequilibrium multitime correlation functions of open quantum systems coupled to Markovian and non-Markovian environments. Phys. Rev. B 98, 125302 (2018).

    ADS  Google Scholar 

  24. Denning, E. V., Bundgaard-Nielsen, M. & Mørk, J. Optical signatures of electron-phonon decoupling due to strong light-matter interactions. Phys. Rev. B 102, 235303 (2020).

    ADS  Google Scholar 

  25. Cosacchi, M., Ungar, F., Cygorek, M., Vagov, A. & Axt, V. M. Emission-frequency separated high quality single-photon sources enabled by phonons. Phys. Rev. Lett. 123, 017403 (2019).

    ADS  Google Scholar 

  26. Seidelmann, T. et al. Phonon-induced enhancement of photon entanglement in quantum dot-cavity systems. Phys. Rev. Lett. 123, 137401 (2019).

    ADS  Google Scholar 

  27. Kaestle, O., Finsterhoelzl, R., Knorr, A. & Carmele, A. Continuous and time-discrete non-Markovian system-reservoir interactions: Dissipative coherent quantum feedback in Liouville space. Phys. Rev. Research 3, 023168 (2021).

    ADS  Google Scholar 

  28. Vagov, A., Croitoru, M. D., Glässl, M., Axt, V. M. & Kuhn, T. Real-time path integrals for quantum dots: quantum dissipative dynamics with superohmic environment coupling. Phys. Rev. B 83, 094303 (2011).

    ADS  Google Scholar 

  29. Quilter, J. H. et al. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys. Rev. Lett. 114, 137401 (2015).

    ADS  Google Scholar 

  30. Koong, Z. X. et al. Coherent dynamics in quantum emitters under dichromatic excitation. Phys. Rev. Lett. 126, 047403 (2021).

    ADS  Google Scholar 

  31. Palm, T. & Nalbach, P. Quasi-adiabatic path integral approach for quantum systems under the influence of multiple non-commuting fluctuations. J. Chem. Phys. 149, 214103 (2018).

    ADS  Google Scholar 

  32. Simine, L. & Segal, D. Path-integral simulations with fermionic and bosonic reservoirs: transport and dissipation in molecular electronic junctions. J. Chem. Phys. 138, 214111 (2013).

    ADS  Google Scholar 

  33. Rossi, F. & Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895 (2002).

    ADS  Google Scholar 

  34. Hsieh, C.-Y. & Cao, J. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations. J. Chem. Phys. 148, 014103 (2018).

    ADS  Google Scholar 

  35. Hsieh, C.-Y. & Cao, J. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths. J. Chem. Phys. 148, 014104 (2018).

    ADS  Google Scholar 

  36. Jørgensen, M. R. & Pollock, F. A. Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals. Phys. Rev. Lett. 123, 240602 (2019).

    ADS  MathSciNet  Google Scholar 

  37. Pollock, F. A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M. & Modi, K. Non-Markovian quantum processes: complete framework and efficient characterization. Phys. Rev. A 97, 012127 (2018).

    ADS  Google Scholar 

  38. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  39. Orús, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  40. Luchnikov, I. A., Vintskevich, S. V., Ouerdane, H. & Filippov, S. N. Simulation complexity of open quantum dynamics: connection with tensor networks. Phys. Rev. Lett. 122, 160401 (2019).

    ADS  Google Scholar 

  41. Brandes, T. & Kramer, B. Spontaneous emission of phonons by coupled quantum dots. Phys. Rev. Lett. 83, 3021 (1999).

    ADS  Google Scholar 

  42. Barth, A. M., Vagov, A. & Axt, V. M. Path-integral description of combined Hamiltonian and non-Hamiltonian dynamics in quantum dissipative systems. Phys. Rev. B 94, 125439 (2016).

    ADS  Google Scholar 

  43. Nagy, D., Szirmai, G. & Domokos, P. Critical exponent of a quantum-noise-driven phase transition: the open-system Dicke model. Phys. Rev. A 84, 043637 (2011).

    ADS  Google Scholar 

  44. Mitchison, M. T. & Plenio, M. B. Non-additive dissipation in open quantum networks out of equilibrium. New J. Phys. 20, 033005 (2018).

    ADS  Google Scholar 

  45. Maguire, H., Iles-Smith, J. & Nazir, A. Environmental nonadditivity and Franck-Condon physics in nonequilibrium quantum systems. Phys. Rev. Lett. 123, 093601 (2019).

    ADS  MathSciNet  Google Scholar 

  46. Gribben, D. et al. Exact dynamics of nonadditive environments in non-Markovian open quantum systems. PRX Quantum 3, 010321 (2022).

    ADS  Google Scholar 

  47. Krummheuer, B., Axt, V. M., Kuhn, T., D’Amico, I. & Rossi, F. Pure dephasing and phonon dynamics in GaAs- and GaN-based quantum dot structures: interplay between material parameters and geometry. Phys. Rev. B 71, 235329 (2005).

    ADS  Google Scholar 

  48. Roy-Choudhury, K. & Hughes, S. Spontaneous emission from a quantum dot in a structured photonic reservoir: phonon-mediated breakdown of Fermi’s golden rule. Optica 2, 434–437 (2015).

    Google Scholar 

  49. Hoeppe, U. et al. Direct observation of non-Markovian radiation dynamics in 3D bulk photonic crystals. Phys. Rev. Lett. 108, 043603 (2012).

    ADS  Google Scholar 

  50. Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Google Scholar 

  51. Scheuer, J. et al. Robust techniques for polarization and detection of nuclear spin ensembles. Phys. Rev. B 96, 174436 (2017).

    ADS  Google Scholar 

  52. Wang, H. & Thoss, M. Quantum dynamical simulation of electron-transfer reactions in an anharmonic environment. J. Phys. Chem. A 111, 10369 (2007).

    Google Scholar 

  53. Bramberger, M. & De Vega, I. Dephasing dynamics of an impurity coupled to an anharmonic environment. Phys. Rev. A 101, 012101 (2020).

    ADS  Google Scholar 

  54. Ye, E. & Chan, G. K.-L. Constructing tensor network influence functionals for general quantum dynamics. J. Chem. Phys. 155, 044104 (2021).

    ADS  Google Scholar 

  55. Bañuls, M. C., Hastings, M. B., Verstraete, F. & Cirac, J. I. Matrix product states for dynamical simulation of infinite chains. Phys. Rev. Lett. 102, 240603 (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

M. Cosacchi and V.M.A. are grateful for funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project no. 419036043. A.V. acknowledges support from the Russian Science Foundation under Project 18-12-00429 and from the Basic Research Program at the HSE University. M. Cygorek and E.M.G. acknowledge funding from EPSRC grant no. EP/T01377X/1. B.W.L. and J.K. were supported by EPSRC grant no. EP/T014032/1.

Author information

Authors and Affiliations

Authors

Contributions

M. Cygorek, M. Cosacchi, A.V., and V.M.A. developed the concept of explicitly constructing the PT to simulate open quantum systems with arbitrary system–environment couplings. M. Cygorek, B.W.L., J.K. and E.M.G. contributed the idea of using MPO representations for efficient storage and evaluation of the PT. M. Cygorek is responsible for the details of the algorithm, implementation in the form of C++ code and generation of data. All the authors analysed and discussed the results and contributed to writing the Article.

Corresponding authors

Correspondence to Moritz Cygorek or Erik M. Gauger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cygorek, M., Cosacchi, M., Vagov, A. et al. Simulation of open quantum systems by automated compression of arbitrary environments. Nat. Phys. 18, 662–668 (2022). https://doi.org/10.1038/s41567-022-01544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01544-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing