Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing quantum information propagation with out-of-time-ordered correlators

Abstract

Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are analytically challenging and exponentially hard to simulate on classical computers. Small-scale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally difficult, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here we demonstrate the measurement of out-of-time-ordered correlators—one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3 × 3 two-dimensional hard-core Bose–Hubbard lattice with a superconducting circuit, study its time reversibility by performing a Loschmidt echo, and measure out-of-time-ordered correlators that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which was achieved with a digital–analogue simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present—a possible signature of many-body localization in two dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental concept.
Fig. 2: Loschmidt echo in the degenerate lattice.
Fig. 3: Quantum random walk and information propagation via OTOC measurements.
Fig. 4: OTOC measurements in disordered lattices.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used for numerical simulations and data analyses is available from the corresponding author upon reasonable request.

References

  1. Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).

    Article  ADS  Google Scholar 

  2. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).

    Article  ADS  Google Scholar 

  3. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article  ADS  Google Scholar 

  4. Neill, C. et al. Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 12, 1037–1041 (2016).

    Article  Google Scholar 

  5. Blok, M. et al. Quantum information scrambling on a superconducting qutrit processor. Phys. Rev. X 11, 021010 (2021).

    Google Scholar 

  6. Mi, X. et al. Information scrambling in quantum circuits. Science https://doi.org/10.1126/science.abg5029 (2021).

  7. Landsman, K. A. et al. Verified quantum information scrambling. Nature 567, 61–65 (2019).

    Article  ADS  Google Scholar 

  8. Joshi, M. K. et al. Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions. Phys. Rev. Lett. 124, 240505 (2020).

    Article  ADS  Google Scholar 

  9. Peres, A. Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610–1615 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  10. Yan, B. & Sinitsyn, N. A. Recovery of damaged information and the out-of-time-ordered correlators. Phys. Rev. Lett. 125, 040605 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  11. Swingle, B. Unscrambling the physics of out-of-time-order correlators. Nat. Phys. 14, 988–990 (2018).

    Article  Google Scholar 

  12. Campisi, M. & Goold, J. Thermodynamics of quantum information scrambling. Phys. Rev. E 95, 062127 (2017).

    Article  ADS  Google Scholar 

  13. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article  Google Scholar 

  14. Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).

    Article  Google Scholar 

  15. Li, J. et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X 7, 031011 (2017).

    Google Scholar 

  16. Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring localization in nuclear spin chains. Phys. Rev. Lett. 120, 070501 (2018).

    Article  ADS  Google Scholar 

  17. Niknam, M., Santos, L. F. & Cory, D. G. Sensitivity of quantum information to environment perturbations measured with a nonlocal out-of-time-order correlation function. Phys. Rev. Res. 2, 013200 (2020).

    Article  Google Scholar 

  18. Lamata, L., Parra-Rodriguez, A., Sanz, M. & Solano, E. Digital-analog quantum simulations with superconducting circuits. Adv. Phys. X 3, 1457981 (2018).

    Google Scholar 

  19. Palmer, R. Broken ergodicity. Adv. Phys. 31, 669–735 (1982).

    Article  ADS  Google Scholar 

  20. Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

    Article  ADS  Google Scholar 

  21. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article  ADS  Google Scholar 

  22. Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. Altman, E. Many-body localization and quantum thermalization. Nat. Phys. 14, 979–983 (2018).

    Article  Google Scholar 

  24. Alet, F. & Laflorencie, N. Many-body localization: an introduction and selected topics. C. R. Phys. 19, 498–525 (2018).

    Article  ADS  Google Scholar 

  25. Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).

    Article  ADS  Google Scholar 

  26. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  27. Chiaro, B. et al. Direct measurement of non-local interactions in the many-body localized phase. Preprint available at https://arxiv.org/abs/1910.06024 (2020).

  28. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  29. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  30. Yanay, Y., Braumüller, J., Gustavsson, S., Oliver, W. D. & Tahan, C. Two-dimensional hard-core Bose–Hubbard model with superconducting qubits. npj Quantum Inf. 6, 58 (2020).

    Article  ADS  Google Scholar 

  31. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  32. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  33. Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  34. Sánchez, C. et al. Perturbation independent decay of the Loschmidt echo in a many-body system. Phys. Rev. Lett. 124, 030601 (2020).

    Article  ADS  Google Scholar 

  35. Lorenz, E. The Essence of Chaos (Univ. of Washington Press, 1993).

  36. Prosen, T., Seligman, T. H. & Žnidarič, M. Theory of quantum Loschmidt echoes. Prog. Theor. Phys. Supp. 150, 200–228 (2003).

    Article  ADS  Google Scholar 

  37. McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Efficient Z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).

    Article  ADS  Google Scholar 

  38. Hill, S. & Wootters, W. K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997).

    Article  ADS  Google Scholar 

  39. Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article  ADS  Google Scholar 

  40. Yan, Z. et al. Strongly correlated quantum walks with a 12-qubit superconducting processor. Science 364, 753–756 (2019).

    Article  ADS  Google Scholar 

  41. Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).

  42. Karamlou, A. H. et al. Quantum transport and localization in 1D and 2D tight-binding lattices. Preprint available at https://arxiv.org/abs/2107.05035 (2021).

  43. Campbell, D. L. et al. Universal nonadiabatic control of small-gap superconducting qubits. Phys. Rev. X 10, 041051 (2020).

    Google Scholar 

  44. Wigner, E. & Jordan, P. Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 (1928).

    Article  ADS  Google Scholar 

  45. Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energ. Phys. 2014, 67 (2014).

    Article  MathSciNet  Google Scholar 

  46. Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energ. Phys. 2007, 120 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to P. M. Harrington, A. D. Paolo, S. Muschinske and B. Swingle for insightful discussions, and M. Pulido and C. Watanabe for administrative assistance. M.K. acknowledges support from the Carlsberg Foundation during part of this work. A.H.K. acknowledges support from the NSF Graduate Research Fellowships Program. This research was funded in part by the US Army Research Office Grant W911NF-18-1-0411 and the Assistant Secretary of Defense for Research & Engineering under Air Force contract no. FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the US government.

Author information

Authors and Affiliations

Authors

Contributions

J.B., A.H.K., Y.Y., C.T. and W.D.O. conceived the experiment. Y.Y. developed the pulse sequences for rewinding time and extracting OTOCs and generated the numerical simulations of the OTOCs. J.B. and A.H.K. performed the experiments with theoretical support from Y.Y. J.B., A.H.K., B.K., M.K., Y.S., A.V., R.W. and S.G. developed the experiment control tools used in this work. D.K., A.M., B.N. and J.Y. fabricated the 3 × 3 qubit array. T.P.O., S.G., C.T. and W.D.O. provided experimental oversight and support. All the authors contributed to the discussions of the results and to the development of the manuscript.

Corresponding author

Correspondence to Jochen Braumüller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Arghavan Safavi-Naini, Lea Santos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10, Figs. 1–12 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braumüller, J., Karamlou, A.H., Yanay, Y. et al. Probing quantum information propagation with out-of-time-ordered correlators. Nat. Phys. 18, 172–178 (2022). https://doi.org/10.1038/s41567-021-01430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01430-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing