Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure and properties of two superionic ice phases

Abstract

In the phase diagram of water, superionic ices with highly mobile protons within the stable oxygen sublattice have been predicted at high pressures. However, the existence of superionic ices and the location of the melting line have been challenging to determine from both theory and experiments, yielding contradictory results depending on the employed techniques and the interpretation of the data. Here we report high-pressure and high-temperature synchrotron X-ray diffraction and optical spectroscopy measurements of water in a laser-heated diamond anvil cell and reveal first-order phase transitions to ices with body-centred and face-centred cubic oxygen lattices. Based on the distinct density, increased optical conductivity and the greatly decreased fusion enthalpies, we assign these observed structures to the theoretically predicted superionic ice phases. Our measurements determine the pressure–temperature stability fields of superionic ice phases and the melting line, suggesting the presence of face-centred cubic superionic ice in water-rich giant planets, such as Neptune and Uranus. The melting line determined here is at higher temperatures than previously determined in static compression experiments, but it is in agreement with theoretical calculations and data from shock-wave experiments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Phase diagram of water at extreme PT conditions.
Fig. 2: XRD patterns measured on laser heating (LH).
Fig. 3: Density versus P for 300 K ices, superionic phases and fluid water.
Fig. 4: Optical spectroscopy data of SI phases and fluid water.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Goncharov, A. F., Struzhkin, V. V., Somayazulu, M. S., Hemley, R. J. & Mao, H. K. Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science 273, 218–220 (1996).

    ADS  Google Scholar 

  2. Benoit, M., Marx, D. & Parrinello, M. Tunnelling and zero-point motion in high-pressure ice. Nature 392, 258–261 (1998).

    ADS  Google Scholar 

  3. Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    ADS  Google Scholar 

  4. Benoit, M., Romero, A. H. & Marx, D. Reassigning hydrogen-bond centering in dense ice Phys. Rev. Lett. 89, 145501 (2002).

    ADS  Google Scholar 

  5. Goncharov, A. F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).

    ADS  Google Scholar 

  6. Goncharov, A. F. & Crowhurst, J. Proton delocalization under extreme conditions of high pressure and temperature. Phase Transit. 80, 1051–1072 (2007).

    Google Scholar 

  7. Holzapfel, W. B. Symmetry of hydrogen bonds in ice VII. J. Chem. Phys. 56, 712–715 (1972).

    ADS  Google Scholar 

  8. Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011).

    ADS  Google Scholar 

  9. Stanley, S. & Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004).

    ADS  Google Scholar 

  10. Schwager, B., Chudinovskikh, L., Gavriliuk, A. & Boehler, R. Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. J. Phys. Condens. Matter 16, S1177–S1177 (2004).

    ADS  Google Scholar 

  11. Lin, J.-F. et al. High pressure-temperature Raman measurements of H2O melting to 22 GPa and 900 K. J. Chem. Phys. 121, 8423–8427 (2004).

    ADS  Google Scholar 

  12. Schwager, B. & Boehler, R. H2O: another ice phase and its melting curve. High. Press. Res. 28, 431–433 (2008).

    ADS  Google Scholar 

  13. Ahart, M., Karandikar, A., Gramsch, S., Boehler, R. & Hemley, R. J. High PT Brillouin scattering study of H2O melting to 26 GPa. High. Press. Res. 34, 327–336 (2014).

    ADS  Google Scholar 

  14. Frank, M. R., Fei, Y. & Hu, J. Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of Ice VII. Geochim. Cosmochim. Acta 68, 2781–2790 (2004).

    ADS  Google Scholar 

  15. Dubrovinsky, L. & Dubrovinskaia, N. in Advances in High-Pressure Mineralogy (ed. Ohtani, E.) 105–113 (Geological Society of America, 2007).

  16. Datchi, F., Loubeyre, P. & LeToullec, R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys. Rev. B 61, 6535–6546 (2000).

    ADS  Google Scholar 

  17. Lin, J.-F. et al. Melting behavior of H2O at high pressures and temperatures. Geophys. Res. Lett. 32, L11306 (2005).

    ADS  Google Scholar 

  18. Kimura, T., Kuwayama, Y. & Yagi, T. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique. J. Chem. Phys. 140, 074501 (2014).

    ADS  Google Scholar 

  19. Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).

    Google Scholar 

  20. Méndez, A. S. J. et al. Bulk modulus of H2O across the ice VII–ice X transition measured by time-resolved x-ray diffraction in dynamic diamond anvil cell experiments. Phys. Rev. B 103, 064104 (2021).

    ADS  Google Scholar 

  21. Schwegler, E., Sharma, M., Gygi, F. & Galli, G. Melting of ice under pressure. Proc. Natl Acad. Sci. USA 105, 14779–14783 (2008).

    ADS  Google Scholar 

  22. Goncharov, A. F. et al. Dissociative melting of ice VII at high pressure. J. Chem. Phys. 130, 124514 (2009).

    ADS  Google Scholar 

  23. Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012).

    ADS  Google Scholar 

  24. Aragones, J. L. & Vega, C. Plastic crystal phases of simple water models. J. Chem. Phys. 130, 244504 (2009).

    ADS  Google Scholar 

  25. Hernandez, J.-A. & Caracas, R. Superionic-superionic phase transitions in body-centered cubic H2O ice. Phys. Rev. Lett. 117, 135503 (2016).

    ADS  Google Scholar 

  26. Hernandez, J.-A. & Caracas, R. Proton dynamics and the phase diagram of dense water ice. J. Chem. Phys. 148, 214501 (2018).

    ADS  Google Scholar 

  27. French, M., Mattsson, T. R., Nettelmann, N. & Redmer, R. Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 79, 054107 (2009).

    ADS  Google Scholar 

  28. Goldman, N., Fried, L. E., Kuo, I. F. W. & Mundy, C. J. Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005).

    ADS  Google Scholar 

  29. Mattsson, T. R. & Desjarlais, M. P. Phase diagram and electrical conductivity of high energy-density water from density functional theory. Phys. Rev. Lett. 97, 017801 (2006).

    ADS  Google Scholar 

  30. French, M., Desjarlais, M. P. & Redmer, R. Ab initio calculation of thermodynamic potentials and entropies for superionic water. Phys. Rev. E 93, 022140 (2016).

    ADS  Google Scholar 

  31. Wilson, H. F., Wong, M. L. & Militzer, B. Superionic to superionic phase change in water: consequences for the interiors of Uranus and Neptune. Phys. Rev. Lett. 110, 151102 (2013).

    ADS  Google Scholar 

  32. Sun, J., Clark, B. K., Torquato, S. & Car, R. The phase diagram of high-pressure superionic ice. Nat. Commun. 6, 8156 (2015).

    ADS  Google Scholar 

  33. Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    ADS  Google Scholar 

  34. Queyroux, J. A. et al. Melting curve and isostructural solid transition in superionic ice. Phys. Rev. Lett. 125, 195501 (2020).

    ADS  Google Scholar 

  35. Ninet, S., Datchi, F. & Saitta, A. M. Proton disorder and superionicity in hot dense ammonia Ice. Phys. Rev. Lett. 108, 165702 (2012).

    ADS  Google Scholar 

  36. Rozsa, V., Pan, D., Giberti, F. & Galli, G. Ab initio spectroscopy and ionic conductivity of water under Earth mantle conditions. Proc. Natl Acad. Sci. USA 115, 6952–6957 (2018).

    Google Scholar 

  37. McWilliams, R. S., Dalton, D. A., Mahmood, M. F. & Goncharov, A. F. Optical properties of fluid hydrogen at the transition to a conducting state. Phys. Rev. Lett. 116, 255501 (2016).

    ADS  Google Scholar 

  38. Jiang, S. et al. Metallization and molecular dissociation of dense fluid nitrogen. Nat. Commun. 9, 2624 (2018).

    ADS  Google Scholar 

  39. Zhang, M., Putnis, A. & Salje, E. K. H. Infrared spectroscopy of superionic conductor LiNaSO4: vibrational modes and thermodynamics. Solid State Ion. 177, 37–43 (2006).

    Google Scholar 

  40. Li, J. et al. Electronic bandgap of water in the superionic and plasma phases. Phys. Plasmas 26, 092703 (2019).

    ADS  Google Scholar 

  41. Sun, J. High Pressure Superionic Ice Phase Diagram. PhD thesis, Princeton Univ. (2019).

  42. French, M., Mattsson, T. R. & Redmer, R. Diffusion and electrical conductivity in water at ultrahigh pressures. Phys. Rev. B 82, 174108 (2010).

    ADS  Google Scholar 

  43. Mitchell, A. C. & Nellis, W. J. Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. J. Chem. Phys. 76, 6273–6281 (1982).

    ADS  Google Scholar 

  44. Yakushev, V. V., Postnov, V. I., Fortov, V. E. & Yakysheva, T. I. Electrical conductivity of water during quasi-isentropic compression to 130 GPa. J. Exp. Theor. Phys. 90, 617–622 (2000).

    ADS  Google Scholar 

  45. Chau, R., Mitchell, A. C., Minich, R. W. & Nellis, W. J. Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar). J. Chem. Phys. 114, 1361–1365 (2001).

    ADS  Google Scholar 

  46. Lee, K. K. M. et al. Laser-driven shock experiments on precompressed water: Implications for ‘icy’ giant planets. J. Chem. Phys. 125, 014701 (2006).

    ADS  Google Scholar 

  47. McWilliams, R. S., Dalton, D. A., Konôpková, Z., Mahmood, M. F. & Goncharov, A. F. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors. Proc. Natl Acad. Sci. USA 112, 7925–7930 (2015).

    ADS  Google Scholar 

  48. Duffy, T. S. & Smith, R. F. Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci. 7, 1–20 (2019).

    Google Scholar 

  49. Gómez-Pérez, N. & Heimpel, M. Numerical models of zonal flow dynamos: an application to the ice giants. Geophys. Astrophys. Fluid Dyn. 101, 371–388 (2007).

    ADS  Google Scholar 

  50. Helled, R., Anderson, J. D., Podolak, M. & Schubert, G. Interior models of Uranus and Neptune. Astrophys. J. 726, 15 (2010).

    ADS  Google Scholar 

  51. Kantor, I. et al. BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Instrum. 83, 125102 (2012).

    ADS  Google Scholar 

  52. Duan, Y. et al. Phase stability and thermal equation of state of δ-AlOOH: Implication for water transportation to the Deep Lower Mantle. Earth Planet. Sci. Lett. 494, 92–98 (2018).

    ADS  Google Scholar 

  53. Nisr, C. et al. Large H2O solubility in dense silica and its implications for the interiors of water-rich planets. Proc. Natl Acad. Sci. USA 117, 9747–9754 (2020).

    Google Scholar 

  54. Prakapenka, V. B. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High. Press. Res. 28, 225–235 (2008).

    ADS  Google Scholar 

  55. Shen, G., Rivers, M. L., Wang, Y. & Sutton, S. R. Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature. Rev. Sci. Instrum. 72, 1273–1282 (2001).

    ADS  Google Scholar 

  56. Benedetti, L. R. & Loubeyre, P. Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell. High. Press. Res. 24, 423–445 (2004).

    ADS  Google Scholar 

  57. Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High. Press. Res. 35, 223–230 (2015).

    ADS  Google Scholar 

  58. Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B. & Goncharov, A. F. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High. Press. Res. 39, 457–470 (2019).

    ADS  Google Scholar 

  59. Lightfield 5.0 (Teledyne Princeton Instruments, 2016); https://www.princetoninstruments.com/products/software-family/lightfield

  60. Jade 7 (Materials Data, 2008); https://materialsdata.com/prodjd.html

  61. Montoya, J. A. & Goncharov, A. F. Finite element calculations of the time dependent thermal fluxes in the laser-heated diamond anvil cell. J. Appl. Phys. 111, 112617 (2012).

    ADS  Google Scholar 

  62. Panero, W. R. & Jeanloz, R. X-ray diffraction patterns from samples in the laser-heated diamond anvil cell. J. Appl. Phys. 91, 2769–2778 (2002).

    ADS  Google Scholar 

  63. Deng, J., Du, Z., Benedetti, L. R. & Lee, K. K. M. The influence of wavelength-dependent absorption and temperature gradients on temperature determination in laser-heated diamond-anvil cells. J. Appl. Phys. 121, 025901 (2017).

    ADS  Google Scholar 

  64. Lobanov, S. S. & Speziale, S. Radiometric temperature measurements in nongray ferropericlase with pressure- spin- and temperature-dependent optical properties. J. Geophys. Res. Solid Earth 124, 12825–12836 (2019).

    ADS  Google Scholar 

  65. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 100, 043516 (2006).

    ADS  Google Scholar 

  66. Fei, Y. et al. Toward an internally consistent pressure scale. Proc. Natl Acad. Sci. USA 104, 9182–9186 (2007).

    ADS  Google Scholar 

  67. Fischer, R. A. et al. Equations of state and phase boundary for stishovite and CaCl2-type SiO2. Am. Mineral. 103, 792–802 (2018).

    ADS  Google Scholar 

  68. Dewaele, A. & Torrent, M. Equation of state of Al2O3. Phys. Rev. B 88, 064107 (2013).

    ADS  Google Scholar 

  69. Yen, C. E., Williams, Q. & Kunz, M. Thermal pressure in the laser-heated diamond anvil cell: a quantitative study and implications for the density versus mineralogy correlation of the mantle. J. Geophys. Res. Solid Earth 125, e2020JB020006 (2020).

    ADS  Google Scholar 

  70. Anzellini, S. & Boccato, S. A practical review of the laser-heated diamond anvil cell for university laboratories and synchrotron applications. Crystals 10, 459 (2020).

    Google Scholar 

  71. Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond–anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998).

    ADS  Google Scholar 

  72. Jiang, S. et al. A spectroscopic study of the insulator–metal transition in liquid hydrogen and deuterium. Adv. Sci. 7, 1901668 (2020).

    Google Scholar 

  73. Zha, C.-S., Hemley, R. J., Gramsch, S. A., Mao, H.-K. & Bassett, W. A. Optical study of H2O ice to 120 GPa: Dielectric function, molecular polarizability, and equation of state. J. Chem. Phys. 126, 074506 (2007).

    ADS  Google Scholar 

Download references

Acknowledgements

Porous carbon samples were received from M. E. Fortunato and K. S. Suslick, University of Illinois at Urbana-Champaign. We thank Z. Geballe for useful comments on the manuscript. This work was performed at GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1634415) and the Department of Energy-GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The work at Carnegie was supported by the NSF (Grant Nos. DMR-1039807, EAR/IF-1128867 and EAR-1763287), the Army Research Office (Grant Nos. 56122-CH-H and W911NF1920172), the Deep Carbon Observatory and the Carnegie Institution of Washington. S.S.L. acknowledges the support of the Helmholtz Young Investigators Group CLEAR (VH-NG-1325).

Author information

Authors and Affiliations

Authors

Contributions

V.B.P. and A.F.G. conceived the experiments, V.B.P., N.H., S.S.L. and A.F.G. designed the experiments and V.B.P., N.H. and S.S.L. performed the experiments. V.B.P., N.H. and A.F.G. analysed the data. A.F.G. and V.B.P. wrote the manuscript and all authors reviewed and discussed the manuscript during preparation.

Corresponding authors

Correspondence to Vitali B. Prakapenka or Alexander F. Goncharov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Toshimori Sekine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Tables 1–4, Figs. 1–18 and refs. 1–29.

Source data

Source Data Fig. 1

Uncompressed ASCII data.

Source Data Fig. 2

Uncompressed ASCII data.

Source Data Fig. 3

Uncompressed ASCII data.

Source Data Fig. 4

Uncompressed ASCII data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prakapenka, V.B., Holtgrewe, N., Lobanov, S.S. et al. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233–1238 (2021). https://doi.org/10.1038/s41567-021-01351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01351-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing