Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergence of spin singlets with inhomogeneous gaps in the kagome lattice Heisenberg antiferromagnets Zn-barlowite and herbertsmithite

Abstract

The kagome Heisenberg antiferromagnet formed by frustrated spins arranged in a lattice of corner-sharing triangles is a prime candidate for hosting a quantum spin liquid (QSL) ground state consisting of entangled spin singlets1. However, the existence of various competing states makes a convincing theoretical prediction of the QSL ground state difficult2, calling for experimental clues from model materials. The kagome lattice materials Zn-barlowite (ZnCu3(OD)6FBr)3,4,5 and herbertsmithite (ZnCu3(OD)6Cl2)6,7,8,9,10 do not exhibit long-range order and are considered the best realizations of the kagome Heisenberg antiferromagnet known so far. Here we use 63Cu nuclear quadrupole resonance combined with the inverse Laplace transform11,12,13 to locally probe the inhomogeneity of delicate quantum ground states affected by disorder14,15,16,17. We present direct evidence for the gradual emergence of spin singlets with spatially varying excitation gaps, but even at temperatures far below the super-exchange energy scale their fraction is limited to ~60% of the total spins. Theoretical models18,19 need to incorporate the role of disorder to account for the observed inhomogeneously gapped behaviour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spin singlets in the kagome lattice.
Fig. 2: 1/T1 and its distribution P(1/T1).
Fig. 3: Distribution of the Cu spin environment.
Fig. 4: Singlet fraction.

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article  Google Scholar 

  3. 3.

    Feng, Z. et al. Gapped spin-1/2 spinon excitations in a new kagome quantum spin liquid compond Cu3Zn(OH)6FBr. Chin. Phys. Lett. 34, 077502 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Smaha, R. W. et al. Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquids, spin ordered and valence bond crystal states. npj Quantum Mater. 5, 23 (2020).

    ADS  Article  Google Scholar 

  5. 5.

    Tustain, K. et al. From magnetic order to quantum disorder: a μSR study of the Zn-barlowite series of S = 1/2 kagomé antiferromagnets, ZnxCu4 − x(OH)6FBr. Nature Commun. 5, 74 (2020).

    Google Scholar 

  6. 6.

    Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).

    Article  Google Scholar 

  7. 7.

    Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).

    ADS  Article  Google Scholar 

  8. 8.

    Han, T.-H. et al. Fractionalized excitations in the spin–liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin–liquid ground state in a kagome Heisenberg anitiferromagnet. Science 350, 655 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Khunita, P. et al. Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Nat. Phys. 16, 469–474 (2020).

    Article  Google Scholar 

  11. 11.

    Song, Y. Q. et al. T1T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Res. 154, 261–268 (2002).

    ADS  Article  Google Scholar 

  12. 12.

    Singer, P. M., Arsenault, A., Imai, T. & Fujita, M. 139La NMR investigation of the interplay between lattice, charge, and spin dynamics in the charge-ordered high-Tc cuprate La1.875Ba0.125CuO4. Phys. Rev. B 101, 174508 (2020).

    ADS  Article  Google Scholar 

  13. 13.

    Papawassiliou, W., Jaworski, A., Pell, J. & Jang, J. H. Resolving Dirac electrons with broadband high-resolution NMR. Nat. Commun. 11, 1285 (2020).

    ADS  Article  Google Scholar 

  14. 14.

    Singh, R. R. P. Valence bond glass phase in dilute kagome antiferromagnets. Phys. Rev. Lett. 104, 177203 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Shimokawa, T., Watanabe, K. & Kawamura, H. Static and dynamical spin correlations of the \(S=\frac{1}{2}\) random-bond antiferromagnetic Heisenberg model on the triangular and kagome lattices. Phys. Rev. B 92, 134407 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Kimchi, I., Sheckelton, J. P., McQueen, T. M. & Lee, P. Scaling and data collapse from local moments in frustrated disordered quantum spin systems. Nat. Commun. 9, 4367 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Kawamura, H. & Uematsu, K. Nature of the randomness-induced quantum spin liquids in two dimensions. J. Phys. Cond. Matter 31, 504003 (2019).

    Article  Google Scholar 

  18. 18.

    Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Liao, H. J. et al. Gapless spin–liquid ground state in the S = 1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Hiroi, Z. et al. Spin-1/2 kagomé-like lattice in volborthite Cu3V2O7 2H2O. J. Phys. Soc. Jpn 70, 3377 (2001).

    ADS  Article  Google Scholar 

  21. 21.

    Matan, K. et al. Pinwheel valence-bond solid and triplet excitations in the two-dimensional deformed kagome lattice. Nat. Phys. 6, 865–869 (2010).

    Article  Google Scholar 

  22. 22.

    Ranjith, K. M. et al. Magnetic resonance as a local probe for kagomé magnetism in Barlowite Cu4(OH)6FBr. Sci. Rep. 8, 10851 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Klanjsek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).

    Article  Google Scholar 

  24. 24.

    Smaha, R. W. et al. Site-specific structure at multiple length scales in kagome quantum spin liquid candidates. Phys. Rev. Mater. 4, 124406 (2020).

    Article  Google Scholar 

  25. 25.

    Freedman, D. E. et al. Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu3(OH)6Cl2. J. Am. Chem. Soc. 132, 16185–16190 (2010).

    Article  Google Scholar 

  26. 26.

    Imai, T., Fu, M., Han, T. H. & Lee, Y. S. Local spin susceptibility of the \(S=\frac{1}{2}\) kagome lattice in ZnCu3(OD)6Cl2. Phys. Rev. B 84, 020411 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Helton, J. S. et al. Dynamic scaling in the susceptibility of the spin-\(\frac{1}{2}\) kagome lattice antiferromagnet herbertsmithite. Phys. Rev. Lett. 104, 147201 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Bhatt, R. N. & Lee, P. A. Scaling studies of highly disordered spin-\(\frac{1}{2}\) antiferromagnetic systems. Phys. Rev. Lett. 48, 344–347 (1982).

    ADS  Article  Google Scholar 

  29. 29.

    Moriya, T. Nuclear magnetic relaxation in antiferromagnetics II. Prog. Theor. Phys. 16, 641–657 (1956).

    ADS  Article  Google Scholar 

  30. 30.

    Itoh, Y. et al. Nuclear quadrupole resonance of Cu in the paramagnetic state of CuO. J. Phys. Soc. Jpn 59, 1143–1146 (1990).

    ADS  Article  Google Scholar 

  31. 31.

    Azuma, M., Hiroi, Z., Takano, M., Ishida, K. & Kitaoka, Y. Observation of a spin gap in SrCu2O3 comprising spin-1/2 quasi-1D two-leg ladders. Phys. Rev. Lett. 73, 3463–3466 (1994).

    ADS  Article  Google Scholar 

  32. 32.

    Kikuchi, J., Yasuoka, H., Hase, M., Sasago, Y. & Uchinokura, K. Cu nuclear quadrupole resonance study of CuGeO3. J. Phys. Soc. Jpn 63, 872–875 (1994).

    ADS  Article  Google Scholar 

  33. 33.

    Kageyama, H. et al. Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2. Phys. Rev. Lett. 82, 3168–3171 (1999).

    ADS  Article  Google Scholar 

  34. 34.

    Imai, T., Nytko, E. A., Bartlett, B. M., Shores, M. P. & Nocera, D. G. 63Cu, 35Cl and 1H NMR in the \(S=\frac{1}{2}\) kagome lattice ZnCu3(OH)6Cl2. Phys. Rev. Lett. 100, 077203 (2008).

    ADS  Article  Google Scholar 

  35. 35.

    Zorko, A. et al. Symmetry reduction in the quantum kagome antiferromagnet herbertsmithite. Phys. Rev. Lett. 118, 017202 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Ran, Y., Hermele, M., Lee, P. A. & Wen, X.-G. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

T.I. thanks T. Sakai, K. Uematsu, R. R. P. Singh, I. Kimchi, P. A. Lee and S. Sachdev for helpful communications, and P. Dube and R. Giannetta for technical assistance. The work at McMaster was supported by NSERC (T.I.). P.M.S. was supported by the Rice University Consortium for Processes in Porous Media. The work at Stanford and SLAC (sample synthesis and characterization) was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-76SF00515 (Y.S.L. and J. Wen). R.W.S. was supported by the US Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program as well as an NSF Graduate Research Fellowship (DGE-1656518).

Author information

Affiliations

Authors

Contributions

T.I. and Y.S.L. conceived the project. R.W.S., W.H., J. Wen and Y.S.L. synthesized and characterized the samples. J. Wang, W.Y., P.M.S. and T.I. carried out the NMR measurements and data analysis. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Takashi Imai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Martin Klanjsek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Discussion and Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yuan, W., Singer, P.M. et al. Emergence of spin singlets with inhomogeneous gaps in the kagome lattice Heisenberg antiferromagnets Zn-barlowite and herbertsmithite. Nat. Phys. 17, 1109–1113 (2021). https://doi.org/10.1038/s41567-021-01310-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing