Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatio-temporal characterization of attosecond pulses from plasma mirrors

Abstract

Reaching light intensities above 1025 W cm−2 and up to the Schwinger limit of order 1029 W cm−2 would enable the testing of fundamental predictions of quantum electrodynamics. A promising—yet challenging—approach to achieve such extreme fields consists in reflecting a high-power femtosecond laser pulse off a curved relativistic mirror. This enhances the intensity of the reflected beam by simultaneously compressing it in time down to the attosecond range, and focusing it to submicrometre focal spots. Here we show that such curved relativistic mirrors can be produced when an ultra-intense laser pulse ionizes a solid target and creates a dense plasma that specularly reflects the incident light. This is evidenced by measuring the temporal and spatial effects induced on the reflected beam by this so-called plasma mirror. The all-optical measurement technique demonstrated here will be instrumental for the use of relativistic plasma mirrors with the upcoming generation of petawatt lasers that recently reached intensities of 5 × 1022 W cm−2, and therefore constitutes a viable experimental path to the Schwinger limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of dynamical ptychography.
Fig. 2: Applications of dynamical ptychography to attosecond pulses generated on plasma mirrors.
Fig. 3: Temporal reconstruction of attosecond pulses from plasma mirrors.
Fig. 4: Spatio-temporal field of an attosecond pulse produced by a relativistic plasma mirror.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Marklund, M. & Shukla, P. K. Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev. Mod. Phys. 78, 591–640 (2006).

    Article  ADS  Google Scholar 

  2. Di Piazza, A., Müller, C., Hatsagortsyan, K. & Keitel, C. H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012).

    Article  ADS  Google Scholar 

  3. Mourou, G. A., Tajima, T. & Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006).

    Article  ADS  Google Scholar 

  4. Sauter, F. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der Relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931).

    Article  ADS  MATH  Google Scholar 

  5. Heisenberg, W. & Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714–732 (1936).

    Article  ADS  MATH  Google Scholar 

  6. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ringwald, A. Pair production from vacuum at the focus of an X-ray free electron laser. Phys. Lett. B 510, 107–116 (2001).

    Article  ADS  Google Scholar 

  8. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).

    Article  ADS  Google Scholar 

  9. Bahk, S.-W. et al. Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29, 2837–2839 (2004).

    Article  ADS  Google Scholar 

  10. Gerstner, E. Extreme light. Nature 446, 16–18 (2007).

    Article  ADS  Google Scholar 

  11. Yoon, J. W. et al. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express 27, 20412–20420 (2019).

    Article  ADS  Google Scholar 

  12. Landecker, K. Possibility of frequency multiplication and wave amplification by means of some relativistic effects. Phys. Rev. 86, 852–855 (1952).

    Article  ADS  Google Scholar 

  13. Bulanov, S. V., Esirkepov, T. & Tajima, T. Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001 (2003).

    Article  ADS  Google Scholar 

  14. Gordienko, S., Pukhov, A., Shorokhov, O. & Baeva, T. Coherent focusing of high harmonics: a new way towards the extreme intensities. Phys. Rev. Lett. 94, 103903 (2005).

    Article  ADS  Google Scholar 

  15. Gonoskov, A. A., Korzhimanov, A. V., Kim, A. V., Marklund, M. & Sergeev, A. M. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E 84, 046403 (2011).

    Article  ADS  Google Scholar 

  16. Vincenti, H. Achieving extreme light intensities using optically curved relativistic plasma mirrors. Phys. Rev. Lett. 123, 105001 (2019).

    Article  ADS  Google Scholar 

  17. Solodov, A., Malkin, V. & Fisch, N. Limits for light intensification by reflection from relativistic plasma mirrors. Phys. Plasmas 13, 093102 (2006).

    Article  ADS  Google Scholar 

  18. Kapteyn, H. C., Murnane, M. M., Szoke, A. & Falcone, R. W. Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490–492 (1991).

    Article  ADS  Google Scholar 

  19. Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424–429 (2007).

    Article  Google Scholar 

  20. Lichters, R., Meyer-ter Vehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).

    Article  ADS  Google Scholar 

  21. Thaury, C. & Quéré, F. High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms. J. Phys. B 43, 213001 (2010).

    Article  ADS  Google Scholar 

  22. Baeva, T., Gordienko, S. & Pukhov, A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006).

    Article  ADS  Google Scholar 

  23. Dromey, B. et al. High harmonic generation in the relativistic limit. Nat. Phys. 2, 456–459 (2006).

    Article  Google Scholar 

  24. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  25. Quéré, F., Mairesse, Y. & Itatani, J. Temporal characterization of attosecond XUV fields. J. Mod. Opt. 52, 339–360 (2005).

    Article  ADS  Google Scholar 

  26. Orfanos, I. et al. Attosecond pulse metrology. APL Photon. 4, 080901 (2019).

    Article  ADS  Google Scholar 

  27. Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nat. Phys. 5, 124–128 (2009).

    Article  Google Scholar 

  28. Quéré, F. Attosecond plasma optics. Nat. Phys. 5, 93–94 (2009).

    Article  Google Scholar 

  29. Rodenburg, J. M. Ptychography and related diffractive imaging methods. Adv. Imaging Electron Phys. 150, 87–184 (2008).

    Article  Google Scholar 

  30. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  ADS  Google Scholar 

  31. Kahaly, S. et al. Direct observation of density-gradient effects in harmonic generation from plasma mirrors. Phys. Rev. Lett. 110, 175001 (2013).

    Article  ADS  Google Scholar 

  32. Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    Article  ADS  Google Scholar 

  33. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys. 2, 781–786 (2006).

    Article  Google Scholar 

  34. Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nat. Phys. 9, 159–163 (2013).

    Article  Google Scholar 

  35. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  ADS  Google Scholar 

  36. Quéré, F. et al. Phase properties of laser high-order harmonics generated on plasma mirrors. Phys. Rev. Lett. 100, 095004 (2008).

    Article  ADS  Google Scholar 

  37. Dromey, B. et al. Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. 5, 146–152 (2009).

    Article  Google Scholar 

  38. Vincenti, H. et al. Optical properties of relativistic plasma mirrors. Nat. Commun. 5, 3403 (2014).

    Article  ADS  Google Scholar 

  39. Malvache, A., Borot, A., Quéré, F. & Lopez-Martens, R. Coherent wake emission spectroscopy as a probe of steep plasma density profiles. Phys. Rev. E 87, 035101 (2013).

    Article  ADS  Google Scholar 

  40. Leblanc, A., Monchocé, S., Bourassin-Bouchet, C., Kahaly, S. & Quéré, F. Ptychographic measurements of ultrahigh-intensity laser–plasma interactions. Nat. Phys. 12, 301–305 (2016).

    Article  Google Scholar 

  41. Leblanc, A. et al. Spatial properties of high-order harmonic beams from plasma mirrors: a ptychographic study. Phys. Rev. Lett. 119, 155001 (2017).

    Article  ADS  Google Scholar 

  42. Thaury, C. et al. Coherent dynamics of plasma mirrors. Nat. Phys. 4, 631–634 (2008).

    Article  Google Scholar 

  43. Wheeler, J. A. et al. Attosecond lighthouses from plasma mirrors. Nat. Photon. 6, 829–833 (2012).

    Article  ADS  Google Scholar 

  44. Monchocé, S. et al. Optically controlled solid-density transient plasma gratings. Phys. Rev. Lett. 112, 145008 (2014).

    Article  ADS  Google Scholar 

  45. Leblanc, A. et al. Plasma holograms for ultrahigh-intensity optics. Nat. Phys. 13, 440–443 (2017).

    Article  Google Scholar 

  46. Denoeud, A., Chopineau, L., Leblanc, A. & Quéré, F. Interaction of ultraintense laser vortices with plasma mirrors. Phys. Rev. Lett. 118, 033902 (2017).

    Article  ADS  Google Scholar 

  47. Yeung, M. et al. Experimental observation of attosecond control over relativistic electron bunches with two-colour fields. Nat. Photon. 11, 32–35 (2017).

    Article  ADS  Google Scholar 

  48. Gao, J. et al. Divergence control of relativistic harmonics by an optically shaped plasma surface. Phys. Rev. E 101, 033202 (2020).

    Article  ADS  Google Scholar 

  49. Quéré, F. & Vincenti, H. Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit. High Power Laser Sci. Eng. 9, e6 (2021).

    Article  Google Scholar 

  50. Quintard, L. et al. Optics-less focusing of XUV high-order harmonics. Sci. Adv. 5, eaau7175 (2019).

    Article  ADS  Google Scholar 

  51. Maroju, P. K. et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 578, 386–391 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Réau, C. Pothier and D. Garzella for operating the UHI100 laser. The research received financial support from the European Research Council, LASERLAB-EUROPE and CREMLINplus (grants 694596, 871124 and 871072, European Union Horizon 2020 Research and Innovation Programme), from Investissements d’Avenir LabEx PALM (ANR-10-LABX-0039-PALM) and from Agence Nationale de la Recherche (ANR-18-ERC2-0002). An award of computer time was provided by the INCITE programme (project ‘PlasmInSilico’). This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-AC02-06CH11357. We also acknowledge the financial support of the Cross-Disciplinary Program on Numerical Simulation of CEA (Commissariat à l’Energie Atomique et aux énergies alternatives).

Author information

Authors and Affiliations

Authors

Contributions

F.Q. conceived the experiment, and F.Q. and A.D. conceived the experimental set-up. A.D. and L.C. performed the experiment with the help of E.P. The data analysis was carried out by L.C. with the help of A.L. H.V. performed all numerical simulations. F.Q. was in charge of the manuscript, to which all authors contributed.

Corresponding authors

Correspondence to Henri Vincenti or Fabien Quéré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Zhengming Sheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4 and Figs. 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopineau, L., Denoeud, A., Leblanc, A. et al. Spatio-temporal characterization of attosecond pulses from plasma mirrors. Nat. Phys. 17, 968–973 (2021). https://doi.org/10.1038/s41567-021-01253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01253-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing