Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Search for axion-like dark matter with ferromagnets

Abstract

Ultralight axion-like particles are well-motivated dark matter candidates, naturally emerging from theories of physics at ultrahigh energies. Here we report the results of a direct search for electromagnetic interactions of axion-like dark matter in the mass range that spans three decades from 12 peV to 12 neV. The detection scheme is based on a modification of Maxwell’s equations in the presence of axion-like dark matter that mixes with a static magnetic field to produce an oscillating magnetic field. The experiment makes use of toroidal magnets with ferromagnetic powder cores made of an iron–nickel alloy, which enhance the static magnetic field by a factor of 24. Using superconducting quantum interference devices, we achieve magnetic sensitivity of 150 \(\mathrm{aT}\, {\mathrm{Hz}}^{-1/2}\), which is at the level of the most sensitive magnetic field measurements demonstrated with any broadband sensor. We recorded 41 h of data and improved the best limits on the magnitude of electromagnetic coupling constant for axion-like dark matter over a part of our mass range, at 20 peV reaching 4.0 × 10−11 GeV−1 (95% confidence level). Our measurements begin to explore the coupling strengths and masses of axion-like particles, where their mixing with photons could explain the anomalous transparency of the Universe to TeV γ-rays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Magnetic properties of the toroids.
Fig. 3: Calibration and sensitivity of SQUID detection channels.
Fig. 4: Results of axion-like dark matter search.

Data availability

Source data are provided with this paper. All other data that support the plots in this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that supports the plots in this paper is available from the corresponding author upon reasonable request.

References

  1. 1.

    Spergel, D. N. The dark side of cosmology: dark matter and dark energy. Science 347, 1100–1102 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    Liu, J., Chen, X. & Ji, X. Current status of direct dark matter detection experiments. Nat. Phys. 13, 212–216 (2017).

    Article  Google Scholar 

  4. 4.

    Rajendran, S., Zobrist, N., Sushkov, A. O., Walsworth, R. & Lukin, M. A method for directional detection of dark matter using spectroscopy of crystal defects. Phys. Rev. D 96, 035009 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Preskill, J., Wise, M. B. & Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 120, 127–132 (1983).

    ADS  Article  Google Scholar 

  6. 6.

    Abbott, L. F. & Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 120, 133–136 (1983).

    ADS  Article  Google Scholar 

  7. 7.

    Dine, M. & Fischler, W. The not-so-harmless axion. Phys. Lett. B 120, 137–141 (1983).

    ADS  Article  Google Scholar 

  8. 8.

    Arias, P. et al. WISPy cold dark matter. J. Cosmol. Astropart. Phys. 1206, 013 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    DeMille, D., Doyle, J. M. & Sushkov, A. O. Probing the frontiers of particle physics with tabletop-scale experiments. Science 357, 990–994 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Irastorza, I. G. & Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 102, 89–159 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 0606, 051 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Payez, A. et al. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles. J. Cosmol. Astropart. Phys. 1502, 006 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Chang, J. H., Essig, R. & McDermott, S. D. Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. J. High Energy Phys. 1809, 051 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Matsuura, S. et al. New spectral evidence of an unaccounted component of the near-infrared extragalactic background light from the CIBER. Astrophys. J. 839, 7 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Kohri, K. & Kodama, H. Axion-like particles and recent observations of the cosmic infrared background radiation. Phys. Rev. D 96, 051701 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Graham, P. W. & Rajendran, S. New observables for direct detection of axion dark matter. Phys. Rev. D 88, 035023 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Budker, D., Graham, P. W., Ledbetter, M., Rajendran, S. & Sushkov, A. O. Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr). Phys. Rev. X 4, 021030 (2014).

    Google Scholar 

  18. 18.

    Arvanitaki, A. & Geraci, A. A. Resonantly detecting axion-mediated forces with nuclear magnetic resonance. Phys. Rev. Lett. 113, 161801 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Crescini, N. et al. Axion search with a quantum-limited ferromagnetic haloscope. Phys. Rev. Lett. 124, 171801 (2020).

    ADS  Article  Google Scholar 

  20. 20.

    Battesti, R. et al. High magnetic fields for fundamental physics. Phys. Rep. 765–766, 1–39 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Ehret, K. et al. New ALPS results on hidden-sector lightweights. Phys. Lett. B 689, 149–155 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Anastassopoulos, V. et al. New CAST limit on the axion–photon interaction. Nat. Phys. 13, 584–590 (2017).

    Article  Google Scholar 

  23. 23.

    Graham, P. W., Irastorza, I. G., Lamoreaux, S. K., Lindner, A. & van Bibber, K. A. Experimental searches for the axion and axion-like particles. Ann. Rev. Nucl. Part. Sci. 65, 485–514 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Du, N. et al. Search for invisible axion dark matter with the axion dark matter experiment. Phys. Rev. Lett. 120, 151301 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Brubaker, B. M. et al. First results from a microwave cavity axion search at 24 μeV.Phys. Rev. Lett. 118, 061302 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    McAllister, B. T. et al. The ORGAN experiment: an axion haloscope above 15 GHz. Phys. Dark Univ. 18, 67–72 (2017).

    Article  Google Scholar 

  27. 27.

    Melcón, A. Á. et al. Axion searches with microwave filters: the RADES project. J. Cosmol. Astropart. Phys. 1805, 040 (2018).

    Article  Google Scholar 

  28. 28.

    Alesini, D. et al. KLASH conceptual design report. Preprint at https://arxiv.org/abs/1911.02427 (2019).

  29. 29.

    Alesini, D. et al. Galactic axions search with a superconducting resonant cavity. Phys. Rev. D 99, 101101 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Lee, S., Ahn, S., Choi, J., Ko, B. R. & Semertzidis, Y. K. Axion dark matter search around 6.7 μeV. Phys. Rev. Lett. 124, 101802 (2020).

    ADS  Article  Google Scholar 

  31. 31.

    Sikivie, P., Sullivan, N. & Tanner, D. B. Proposal for axion dark matter detection using an LC circuit. Phys. Rev. Lett. 112, 131301 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Chaudhuri, S. et al. Radio for hidden-photon dark matter detection. Phys. Rev. D 92, 075012 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Kahn, Y., Safdi, B. R. & Thaler, J. Broadband and resonant approaches to axion dark matter detection. Phys. Rev. Lett. 117, 141801 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Chaudhuri, S., Irwin, K., Graham, P. W. & Mardon, J. Fundamental limits of electromagnetic axion and hidden-photon dark matter searches: part I—the quantum limit. Preprint at https://arxiv.org/abs/1803.01627 (2018).

  35. 35.

    Ouellet, J. L. et al. First results from ABRACADABRA-10 cm: a search for sub-μeV axion dark matter. Phys. Rev. Lett. 122, 121802 (2019).

    ADS  Article  Google Scholar 

  36. 36.

    Sikivie, P. Experimental tests of the “invisible” axion. Phys. Rev. Lett. 51, 1415–1417 (1983).

    ADS  Article  Google Scholar 

  37. 37.

    Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    ADS  Article  Google Scholar 

  38. 38.

    Storm, J.-H., Hömmen, P., Drung, D. & Körber, R. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device. Appl. Phys. Lett. 110, 072603 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Dang, H. B., Maloof, A. C. & Romalis, M. V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010).

    ADS  Article  Google Scholar 

  40. 40.

    Eckel, S., Sushkov, A. O. & Lamoreaux, S. K. Magnetic susceptibility and magnetization fluctuation measurements of mixed gadolinium-yttrium iron garnets. Phys. Rev. B 79, 014422 (2009).

    ADS  Article  Google Scholar 

  41. 41.

    Sushkov, A. O., Eckel, S. & Lamoreaux, S. K. Prospects for a new search for the electron electric-dipole moment in solid gadolinium-iron-garnet ceramics. Phys. Rev. A 79, 022118 (2009).

    ADS  Article  Google Scholar 

  42. 42.

    Turner, M. S. Periodic signatures for the detection of cosmic axions. Phys. Rev. D 42, 3572–3575 (1990).

    ADS  Article  Google Scholar 

  43. 43.

    Brubaker, B. M., Zhong, L., Lamoreaux, S. K., Lehnert, K. W. & van Bibber, K. A. HAYSTAC axion search analysis procedure. Phys. Rev. D 96, 123008 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Chaudhuri, S. The Dark Matter Radio: A Quantum-Enhanced Search for QCD Axion Dark Matter. PhD thesis, Stanford Univ. (2019).

  45. 45.

    Chaudhuri, S., Irwin, K. D., Graham, P. W. & Mardon, J. Optimal electromagnetic searches for axion and hidden-photon dark matter. Preprint at https://arxiv.org/abs/1904.05806 (2019).

  46. 46.

    Walck, C. Hand-book on Statistical Distributions for Experimentalists. Internal Report SUF-PFY/96-01 (Univ. Stockholm, 2007).

Download references

Acknowledgements

We thank B. Brubaker for valuable discussions about the data analysis. Data analysis calculations were performed on the Shared Computing Cluster, which is administered by Boston University’s Research Computing Services. We acknowledge support from the NSF grant no. 1806557, the Heising-Simons Foundation grant no. 2015-039, the Simons Foundation grant no. 641332 and the Alfred P. Sloan Foundation grant no. FG-2016-6728.

Author information

Affiliations

Authors

Contributions

A.O.S. conceived and supervised the research. A.V.G., A.O.S. and D.J. designed and built the experimental apparatus. D.A. developed the data acquisition system. D.J. performed the COMSOL simulations. A.V.G. and J.A. carried out the magnetic permeability measurements. A.O.S. and A.V.G. analyzed the data. All the authors contributed to data collection and writing the manuscript.

Corresponding author

Correspondence to Alexander O. Sushkov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Claudio Gatti, David Kaplan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–6 and Tables 1–6.

Source data

Source Data Fig. 2

Toroid permeability and azimuthal magnetic field versus applied current.

Source Data Fig. 3

Flux-to-voltage transfer function versus frequency, for channels A and B.

Source Data Fig. 4

95% confidence limits on the electromagnetic coupling strength of axion-like dark matter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gramolin, A.V., Aybas, D., Johnson, D. et al. Search for axion-like dark matter with ferromagnets. Nat. Phys. 17, 79–84 (2021). https://doi.org/10.1038/s41567-020-1006-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing