High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice

Abstract

The quantum anomalous Hall effect1,2 is a fundamental transport response of a topological insulator in zero magnetic field. Its physical origin is a result of an intrinsically inverted electronic band structure and ferromagnetism3, and its most important manifestation is the dissipationless flow of chiral charge currents at the edges of the system4, a property that has the potential to transform future quantum electronics5,6. Here, we report a Berry-curvature-driven4,7 anomalous Hall regime at temperatures of several Kelvin in the magnetic topological bulk crystals in which Mn ions self-organize into a period-ordered MnBi2Te4/Bi2Te3 superlattice. Robust ferromagnetism of the MnBi2Te4 monolayers opens a surface gap8,9,10, and when the Fermi level is tuned to be within this gap, the anomalous Hall conductance reaches an e2/h quantization plateau, which is a clear indication of chiral transport through the edge states. The quantization in this regime is not obstructed by the bulk conduction channels and therefore should be present in a broad family of topological magnets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantized Hall conductance in a magnetic superlattice MnBi2Te4/Bi2Te3.
Fig. 2: Tuning MnBi2Te4/Bi2Te3 superlattice to quantization.
Fig. 3: Quantization window for a finite n-type Gxx.
Fig. 4: Gating dependence of Berry-curvature-driven QAH.

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Liu, C. -X., Zhang, S. -C. & Qi, X. -L. The quantum anomalous Hall effect: theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Zhang, J., Zhao, B., Zhou, T. & Yang, Z. Quantum anomalous Hall effect in real materials. Chin. Phys. B 25, 117308 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effects. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    Qi, X. -L., Hughes, T. & Zhang, S. -C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B. 82, 184516 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Smejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  Google Scholar 

  7. 7.

    Xiao, D., Chang, M. -C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Rienks, E. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructure. Nature 576, 423–431 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Otrokov, M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020).

    ADS  Article  Google Scholar 

  11. 11.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  Article  Google Scholar 

  12. 12.

    Haldane, D. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Qi, X. -L. & Zhang, S. -C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Chang, C. -Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Chen, Y. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Feng, X. et al. Thickness dependence of the quantum anomalous Hall effect in magnetic topological insulator films. Adv. Mater. 28, 6386–6390 (2016).

    Article  Google Scholar 

  17. 17.

    Wang, W. et al. Direct evidence of ferromagnetism in a quantum anomalous Hall system. Nat. Phys. 14, 791–795 (2018).

    Article  Google Scholar 

  18. 18.

    Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Zhang, J., Zhao, B., Zhou, T. & Yang, Z. Quantum anomalous Hall effect in real materials. Chin. Phys. B 25, 117308 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. 6, 8474 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Burkov, A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Scanlon, D. et al. Controlling bulk conductivity in topological insulators: key role of anti-site defects. Adv. Mater. 24, 2154–2158 (2012).

    Article  Google Scholar 

  24. 24.

    Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Lee, D. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. Cryst. Eng. Comm. 15, 5532 (2013).

    Article  Google Scholar 

  26. 26.

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  Google Scholar 

  27. 27.

    Otrokov, M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

    Article  Google Scholar 

  28. 28.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS  Article  Google Scholar 

  29. 29.

    Zhao, L. et al. Stable topological insulators achieved using high energy electron beams. Nat. Commun. 7, 10957 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Hu, S. M. Atomic Diffusion in Semiconductors (ed. Shaw, D.) 217 (Springer, 1973).

  31. 31.

    Bahramy, M. S. et al. Emergent quantum confinement at topological insulator surfaces. Nat. Commun. 3, 1159 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Checkelsky, J. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article  Google Scholar 

  33. 33.

    Xu, Y., Miotkowski, I. & Chen, Y. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 7, 11434 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Chen, T. et al. High-mobility Sm-doped Bi2Se3 ferromagnetic topological insulators and robust exchange coupling. Adv. Mater. 27, 4823–4829 (2015).

    Article  Google Scholar 

  35. 35.

    Yue, C. et al. Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator Bi2−xSmxSe3. Nat. Phys. 15, 577–581 (2019).

    Article  Google Scholar 

  36. 36.

    Hor, Y. et al. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3. Phys. Rev. B 81, 195203 (2010).

    ADS  Article  Google Scholar 

  37. 37.

    Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-fermion mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge A. Millis for helpful insights and J. Hone for critical reading of the manuscript. This work was supported by the US National Science Foundation grants DMR-1420634 (Columbia-CCNY MRSEC) and HRD-1547830, and by the Polish National Science Center grant 2016/21/B/ST3/02565. Irradiations on SIRIUS platform were supported by EMIR&A under project 18-9136. Computational support was provided by Virginia Tech Advanced Research for Computing and the San Diego Supercomputer Center under DMR-060009N.

Author information

Affiliations

Authors

Contributions

Experiments were designed by L.K.-E. and H.D. Device fabrication and the transport and magnetic measurements were performed by H.D. Structural and elemental characterization of the crystals grown by I.V.F. was done by K.S. and J.B. A.W. and J.S. characterized samples by ferromagnetic resonance. Electron irradiations were conducted by M.K. with the assistance of Z.C. and H.D. ARPES studies were performed by T.H. and L.P. K.P. calculated the DFT band structure. A.B.G. and J.C. calculated AHE conductance from the Berry curvature. Data analysis was done by H.D. and L.K.-E. L.K.-E. wrote the manuscript with the input from H.D.

Corresponding author

Correspondence to Lia Krusin-Elbaum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Supplementary Figures 1–14

Source data

Source Data Fig. 1

Source data for Figure 1.

Source Data Fig. 2

Source data for Figure 2.

Source Data Fig. 3

Source data for Figure 3.

Source Data Fig. 4

Source data for Figure 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Chen, Z., Wołoś, A. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-0998-2

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing