Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Weak-to-strong transition of quantum measurement in a trapped-ion system

Abstract

Quantum measurement remains a puzzle through its stormy history from the birth of quantum mechanics to state-of-the-art quantum technologies. Two complementary measurement schemes have been widely investigated in a variety of quantum systems: von Neumann’s projective ‘strong’ measurement and Aharonov’s weak measurement. Here, we report the observation of a weak-to-strong measurement transition in a single trapped 40Ca+ ion system. The transition is realized by tuning the interaction strength between the ion’s internal electronic state and its vibrational motion, which play the roles of the measured system and the measuring pointer, respectively. By pre- and post-selecting the internal state, a pointer state composed of two of the ion’s motional wavepackets is obtained, and its central-position shift, which corresponds to the measurement outcome, demonstrates the transition from the weak-value asymptotes to the expectation-value asymptotes. Quantitatively, the weak-to-strong measurement transition is characterized by a universal transition factor \({e}^{-{\varGamma }^{2}/2}\), where Γ is a dimensionless parameter related to the system–apparatus coupling. This transition, which continuously connects weak measurements and strong measurements, may open new experimental possibilities to test quantum foundations and prompt us to re-examine and improve the measurement schemes of related quantum technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The weak-to-strong quantum measurement set-up in a trapped-ion system and its weak-value to expectation-value transition.
Fig. 2: The weak-to-strong measurement transition is exactly characterized by the overlapping extent of the motional cat state’s superposed wavepackets \(\langle \phi (z+{\gamma }_{0}t)| \phi (z-{\gamma }_{0}t)\rangle ={e}^{-{\varGamma }^{2}/2}\).
Fig. 3: The measurement regimes of 〈δzθ/(γ0t) in the full parameter space (Γ, θ).

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. 1.

    Von Neumann, J. Mathematical Foundations of Quantum Mechanics: New Edition (Princeton University Press, 2018).

  2. 2.

    Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

    ADS  Article  Google Scholar 

  3. 3.

    Berry, M. V. & Shukla, P. Typical weak and superweak values. J. Phys. A 43, 354024 (2010).

    MathSciNet  Article  Google Scholar 

  4. 4.

    Hosoya, A. & Shikano, Y. Strange weak values. J. Phys. A 43, 385307 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Pusey, M. F. Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113, 200401 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Piacentini, F. Experiment investigating the connection between weak values and contextuality. Phys. Rev. Lett. 116, 180401 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Avella, A. Anomalous weak values and the violation of a multiple-measurement Leggett-Garg inequality. Phys. Rev. A 96, 052123 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Aharonov, Y., Cohen, E., Carmi, A. & Elitzur, A. C. Extraordinary interactions between light and matter determined by anomalous weak values. Proc. R. Soc. A 474, 20180030 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    ADS  Article  Google Scholar 

  10. 10.

    Dixon, P. B., Starling, D. J., Jordan, A. N. & Howell, J. C. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Jordan, A. N., Rincón, J. M. & Howell, J. C. Technical advantages for weak-value amplification: when less is more. Phys. Rev. X 4, 011031 (2014).

    Google Scholar 

  12. 12.

    Aharonov, Y., Botero, A., Popescu, S., Reznik, B. & Tollaksen, J. Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A 301, 130–138 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Lundeen, J. S. & Steinberg, A. M. Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett. 102, 020404 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Kocsis, S. et al. Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Aharonov, Y. & Rohrlich, D. Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, 2005).

  16. 16.

    Chen, M.-C. et al. Experimental demonstration of quantum pigeonhole paradox. Proc. Natl Acad. Sci. USA 116, 1549–1552 (2019).

    Article  Google Scholar 

  17. 17.

    Denkmayr, T. et al. Observation of a quantum Cheshire Cat in a matter–wave interferometer experiment. Nat. Commun. 5, 4492 (2004).

    ADS  Article  Google Scholar 

  18. 18.

    Dressel, J., Broadbent, C. J., Howell, J. C. & Jordan, A. N. Experimental violation of two-party Leggett-Garg inequalities with semiweak measurements. Phys. Rev. Lett. 106, 040402 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Dziewior, J. et al. Universality of local weak interactions and its application for interferometric alignment. Proc. Natl. Acad. Sci. USA 116, 2881–2890 (2019).

    ADS  Article  Google Scholar 

  20. 20.

    Vaidman, L. et al. Weak value beyond conditional expectation value of the pointer readings. Phys. Rev. A 96, 032114 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Duck, I. M., Stevenson, P. M. & Sudarshan, E. C. G. The sense in which a ‘weak measurement’ of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D 40, 2112–2117 (1989).

    ADS  Article  Google Scholar 

  22. 22.

    Kofman, A. G., Ashhab, S. & Nori, F. Nonperturbative theory of weak pre- and post-selected measurements. Phys. Rep. 520, 43–133 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Tamir, B., Cohen, E. & Priel, A. On the power of weak measurements in separating quantum states. Quant. Stud. Math. Found. 2, 37–49 (2015).

    MathSciNet  Article  Google Scholar 

  24. 24.

    Piacentini, F. et al. Investigating the effects of the interaction intensity in a weak measurement. Sci. Rep. 8, 6959 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  Article  Google Scholar 

  26. 26.

    Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Schindler, P. et al. A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Wu, C. W. et al. Scheme and experimental demonstration of fully atomic weak-value amplification. Phys. Rev. A 100, 062111 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Harris, J., Boyd, R. W. & Lundeen, J. S. Weak value amplification can outperform conventional measurement in the presence of detector saturation. Phys. Rev. Lett. 118, 070802 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Magaña-Loaiza, O. S. et al. Weak-value measurements can outperform conventional measurements. Phys. Scripta 92, 023001 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Di Lorenzo, A. & Egues, J. C. Weak measurement: effect of the detector dynamics. Phys. Rev. A 77, 042108 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Pan, A. K. & Matzkin, A. Weak values in nonideal spin measurements: an exact treatment beyond the asymptotic regime. Phys. Rev. A 85, 022122 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    Palacios-Laloy, A. et al. Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442–447 (2010).

    Article  Google Scholar 

  34. 34.

    Pang, S., Brun, T. A., Wu, S. & Chen, Z. B. Amplification limit of weak measurements: a variational approach. Phys. Rev. Lett. 90, 012108 (2014).

    ADS  Google Scholar 

  35. 35.

    Silva, R., Gisin, N., Guryanova, Y. & Popescu, S. Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Susa, Y., Shikano, Y. & Hosoya, A. Optimal probe wave function of weak-value amplification. Phys. Rev. A 85, 052110 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Shomroni, I. et al. Demonstration of weak measurement based on atomic spontaneous emission. Phys. Rev. Lett. 111, 023604 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. A. ‘Schrödinger Cat’ superposition state of an atom. Science 272, 1131–1136 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    Pan, Y. et al. Weak measurement, projective measurement and quantum-to-classical transitions in electron–photon interactions. Preprint at https://arxiv.org/abs/1910.11685 (2019).

Download references

Acknowledgements

This work was supported in part by DIP (German–Israeli Project Cooperation) and by the I-CORE Israel Center of Research Excellence programme of the ISF and by the Crown Photonics Center, and was also supported by the National Basic Research Program of China under grant no. 2016YFA0301903 and the National Natural Science Foundation of China under grant nos. 61632021 and 11574398. E.C. acknowledges support from the Israeli Innovation Authority under project no. 70002 and from the Quantum Science and Technology Program of the Israeli Council of Higher Education.

Author information

Affiliations

Authors

Contributions

Y.P. and E.C. proposed the concept and the modelling. Y.P., J.Z., C.W. and P.C. contributed to the theoretical analysis, design and setting up of the experiments. J.Z. and C.W. performed the atom experiment, and analysed the data together with Y.P. and E.C. All authors contributed to the writing and revision of the manuscript.

Corresponding authors

Correspondence to Yiming Pan or Chun-wang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. A1–A3, experimental set-up details and data analysis method.

Supplementary Data 1

Source data for Supplementary Fig. 2. Probability distribution of motional wavepacket with Γ = 2.9, θ = 0.02.

Supplementary Data 2

Source data for Supplementary Fig. 3. Fitting method for extracting the averaged position of the motional wavepacket with the parameters Γ = 0.4, θ = 0.2.

Source data

Source Data Fig. 2

Data for characterizing the overlapping extent of the cat state’s superposed wavepackets.

Source Data Fig. 3

The measurement regimes in the full parameter space (Γ, θ).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Zhang, J., Cohen, E. et al. Weak-to-strong transition of quantum measurement in a trapped-ion system. Nat. Phys. 16, 1206–1210 (2020). https://doi.org/10.1038/s41567-020-0973-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing