Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunnelling dynamics between superconducting bound states at the atomic limit

Abstract

There is a limit to the miniaturization of every process, and for charge transport this is realized by the coupling of two single discrete energy levels at the atomic scale. In superconductors, Yu–Shiba–Rusinov (YSR) states are such levels. Here, we place a magnetic impurity on the tip of a scanning tunnelling microscope (YSR-STM) and use it to demonstrate sequential tunnelling of electrons between parity-protected YSR states on the tip and in the sample. Using this Shiba–Shiba tunnelling technique we probe the YSR lifetime, which we can enhance by reducing the relaxation of the excited YSR state to the intrinsic channel. Our work offers a way to characterize and manipulate coupled superconducting bound states, such as Andreev levels, YSR states or Majorana bound states at the atomic limit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tunnelling between YSR states.
Fig. 2: Direct versus thermal Shiba–Shiba tunnelling.
Fig. 3: Relaxation channels and regimes.
Fig. 4: Tunnelling dynamics.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Pillet, J. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nat. Phys. 6, 965–969 (2010).

    Article  Google Scholar 

  2. 2.

    Bretheau, L., Girit, C., Pothier, H., Esteve, D. & Urbina, C. Exciting Andreev pairs in a superconducting atomic contact. Nature 499, 312–315 (2013).

    ADS  Article  Google Scholar 

  3. 3.

    Janvier, C. et al. Coherent manipulation of Andreev states in superconducting atomic contacts. Science 349, 1199–1202 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Hassler, F., Akhmerov, A. & Beenakker, C. The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation. New J. Phys. 13, 095004 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    Beenakker, C. & Kouwenhoven, L. A road to reality with topological superconductors. Nat. Phys. 12, 618–621 (2016).

    Article  Google Scholar 

  6. 6.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Yu, L. Bound state in superconductors with paramagnetic impurities. Acta Phys. Sin. 21, 75–91 (1965).

    Google Scholar 

  10. 10.

    Shiba, H. Classical spins in superconductors. Prog. Theor. Phys. 40, 435–451 (1968).

    ADS  Article  Google Scholar 

  11. 11.

    Rusinov, A. I. Superconductivity near a paramagnetic impurity. JETP Lett. 9, 85–87 (1969).

    ADS  Google Scholar 

  12. 12.

    Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

    Article  Google Scholar 

  13. 13.

    Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Cornils, L. et al. Spin-resolved spectroscopy of the Yu–Shiba–Rusinov states of individual atoms. Phys. Rev. Lett. 119, 197002 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Senkpiel, J. et al. Robustness of Yu–Shiba–Rusinov resonances in presence of a complex superconducting order parameter. Phys. Rev. B 100, 014502 (2019).

    ADS  Article  Google Scholar 

  16. 16.

    Heinrich, B. W., Pascual, J. I. & Franke, K. J. Single magnetic adsorbates on s-wave superconductors. Prog. Surf. Sci. 93, 1–19 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Van der Vaart, N. C. et al. Resonant tunneling through two discrete energy states. Phys. Rev. Lett. 74, 4702–4705 (1995).

    ADS  Article  Google Scholar 

  18. 18.

    Fujisawa, T. et al. Spontaneous emission spectrum in double quantum dot devices. Science 282, 932–935 (1998).

    ADS  Article  Google Scholar 

  19. 19.

    Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    ADS  Article  Google Scholar 

  20. 20.

    Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    Meier, F., Zhou, L. H., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    ADS  Article  Google Scholar 

  22. 22.

    Natterer, F. D. et al. Reading and writing single-atom magnets. Nature 543, 226–228 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Senkpiel, J.et al. Single channel Josephson effect in a high transmission atomic contact. Preprint at http://arXiv.org/abs/1810.10609 (2018).

  24. 24.

    Assig, M. et al. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields. Rev. Sci. Instrum. 84, 033903 (2013).

  25. 25.

    Ast, C. R. et al. Sensing the quantum limit in scanning tunnelling spectroscopy. Nat. Commun. 7, 13009 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Ruby, M. et al. Tunneling processes into localized subgap states in superconductors. Phys. Rev. Lett. 115, 087001 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Saldana, J. C. et al. Two-impurity Yu–Shiba–Rusinov states in coupled quantum dots. Preprint at http://arXiv.org/abs/1812.09303 (2018).

  28. 28.

    Devoret, M. H. et al. Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel-junctions. Phys. Rev. Lett. 64, 1824–1827 (1990).

    ADS  Article  Google Scholar 

  29. 29.

    Averin, D. V., Nazarov, Y. V. & Odintsov, A. A. Incoherent tunneling of the Cooper pairs and magnetic-flux quanta in ultrasmall Josephson-junctions. Physica B 165-166, 945–946 (1990).

    ADS  Article  Google Scholar 

  30. 30.

    Ingold, G. L. & Nazarov, Y. V. Charge tunneling rates in ultrasmall junctions. Single Charge Tunneling 294, 21–107 (1992).

    Article  Google Scholar 

  31. 31.

    Ingold, G. L., Grabert, H. & Eberhardt, U. Cooper-pair current through ultrasmall Josephson-junctions. Phys. Rev. B 50, 395–402 (1994).

    ADS  Article  Google Scholar 

  32. 32.

    Zgirski, M. et al. Evidence for long-lived quasiparticles trapped in superconducting point contacts. Phys. Rev. Lett. 106, 257003 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Olivares, D. G. et al. Dynamics of quasiparticle trapping in Andreev levels. Phys. Rev. B 89, 104504 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Kozorezov, A. G. et al. Inelastic scattering of quasiparticles in a superconductor with magnetic impurities. Phys. Rev. B 78, 174501 (2008).

    ADS  Article  Google Scholar 

  35. 35.

    Martin, I. & Mozyrsky, D. Nonequilibrium theory of tunneling into a localized state in a superconductor. Phys. Rev. B 90, 100508 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    ADS  Article  Google Scholar 

  37. 37.

    Salkola, M. I., Balatsky, A. V. & Schrieffer, J. R. Spectral properties of quasiparticle excitations induced by magnetic moments in superconductors. Phys. Rev. B 55, 12648–12661 (1997).

    ADS  Article  Google Scholar 

  38. 38.

    Flatte, M. E. & Byers, J. M. Local electronic structure of a single magnetic impurity in a superconductor. Phys. Rev. Lett. 78, 3761–3764 (1997).

    ADS  Article  Google Scholar 

  39. 39.

    Balatsky, A. V., Vekhter, I. & Zhu, J. X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    ADS  Article  Google Scholar 

  40. 40.

    Feldman, B. E. et al. High-resolution studies of the Majorana atomic chain platform. Nat. Phys. 13, 286–291 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the ERC Consolidator Grant AbsoluteSpin (grant no. 681164) and by the Center for Integrated Quantum Science and Technology (IQST). J.A. acknowledges funding from the DFG under grant number AN336/11-1. A.L.Y. and J.C.C. acknowledge funding from the Spanish MINECO (grant nos FIS2017-84057-P and FIS2017-84860-R) and from the ‘María de Maeztu’ Programme for Units of Excellence in R&D (MDM-2014-0377).

Author information

Affiliations

Authors

Contributions

H.H. did the experiments with support from J.S., R.D., K.K. and C.R.A. C.P., A.L.Y., J.C.C., B.K. and J.A. provided theory support. H.H., C.P. and C.R.A. modelled and analysed the data with support from all authors. All authors discussed the results. H.H. and C.R.A. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Christian R. Ast.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experiment, analysis and theory details and Supplementary Figs. 1–6.

Source data

Source Data Fig. 1

Data of the four dI/dV spectra in Fig. 1d (without cascade offset).

Source Data Fig. 2

Data of the two I(V) spectra in Fig. 2a (T = 10 mK) and Fig. 2b (T = 1 K).

Source Data Fig. 3

Data of the curves in Fig. 3d including: experiment, noise limit, fit 0.3 μeV, ref. 0.15 μeV and ref. 0.6 μeV.

Source Data Fig. 4

Data of the curves in Fig. 4b including: right Shiba–Shiba peak area, left Shiba–Shiba peak area, linear reference line, sublinear reference line (square root)—data of the four I(V) spectra in Fig. 4c: 76.9 GΩ, 330 GΩ, 3.45 TΩ, 15.1 TΩ.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Padurariu, C., Senkpiel, J. et al. Tunnelling dynamics between superconducting bound states at the atomic limit. Nat. Phys. 16, 1227–1231 (2020). https://doi.org/10.1038/s41567-020-0971-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing