Berry curvature memory through electrically driven stacking transitions


In two-dimensional layered quantum materials, the stacking order of the layers determines both the crystalline symmetry and electronic properties such as the Berry curvature, topology and electron correlation1,2,3,4. Electrical stimuli can influence quasiparticle interactions and the free-energy landscape5,6, making it possible to dynamically modify the stacking order and reveal hidden structures that host different quantum properties. Here, we demonstrate electrically driven stacking transitions that can be applied to design non-volatile memory based on Berry curvature in few-layer WTe2. The interplay of out-of-plane electric fields and electrostatic doping controls in-plane interlayer sliding and creates multiple polar and centrosymmetric stacking orders. In situ nonlinear Hall transport reveals that such stacking rearrangements result in a layer-parity-selective Berry curvature memory in momentum space, where the sign reversal of the Berry curvature and its dipole only occurs in odd-layer crystals. Our findings open an avenue towards exploring coupling between topology, electron correlations and ferroelectricity in hidden stacking orders and demonstrate a new low-energy-cost, electrically controlled topological memory in the atomically thin limit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Signatures of two different electrically driven phase transitions in WTe2.
Fig. 2: Observation of transition between Td and 1T′ stackings as the origin for type I hysteresis.
Fig. 3: Td,↑ to Td,↓ stacking transitions with preserved crystal orientation in type II hysteresis.
Fig. 4: Layer-parity-selective Berry curvature memory behaviour in Td, to Td, stacking transition.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Article  Google Scholar 

  2. 2.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  Google Scholar 

  5. 5.

    Wang, J., Lian, B. & Zhang, S.-C. Electrically tunable magnetism in magnetic topological insulators. Phys. Rev. Lett. 115, 036805 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Li, Y., Duerloo, K.-A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Wang, H. & Qian, X. Ferroelectric nonlinear anomalous Hall effect in few-layer WTe2. npj Comput. Mater. 5, 119 (2019).

    ADS  Article  Google Scholar 

  12. 12.

    Kim, H.-J., Kang, S.-H., Hamada, I. & Son, Y.-W. Origins of the structural phase transitions in MoTe2 and WTe2. Phys. Rev. B 95, 180101 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  Google Scholar 

  14. 14.

    Lu, P. et al. Origin of superconductivity in the Weyl semimetal WTe2 under pressure. Phys. Rev. B 94, 224512 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article  Google Scholar 

  19. 19.

    Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    Article  Google Scholar 

  20. 20.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    You, J.-S., Fang, S., Xu, S.-Y., Kaxiras, E. & Low, T. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Shi, L. K. & Song, J. C. W. Symmetry, spin-texture, and tunable quantum geometry in a WTe2 monolayer. Phys. Rev. B 99, 035403 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Wang, Y., Xiao, J., Yang, S., Wang, Y. & Zhang, X. Second harmonic generation spectroscopy on two-dimensional materials. Opt. Mater. Express 9, 1136 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Beams, R. et al. Characterization of few-layer 1T′ MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 10, 9626–9636 (2016).

    Article  Google Scholar 

  29. 29.

    Kim, M. et al. Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy. 2D Mater. 3, 034004 (2016).

    Article  Google Scholar 

  30. 30.

    Chen, S.-Y., Goldstein, T., Venkataraman, D., Ramasubramaniam, A. & Yan, J. Activation of new Raman modes by inversion symmetry breaking in type II Weyl semimetal candidate T′-MoTe2. Nano Lett. 16, 5852–5860 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    ADS  Article  Google Scholar 

  32. 32.

    Varga, T. et al. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. Phys. Rev. Lett. 103, 047601 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    Article  Google Scholar 

  35. 35.

    Rehn, D. A., Li, Y., Pop, E. & Reed, E. J. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials. npj Comput. Mater. 4, 2 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  37. 37.

    Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-order topology, monopole nodal lines, and the origin of large Fermi arcs in transition metal dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).

    ADS  Article  Google Scholar 

  38. 38.

    Ezawa, M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Park, M. J., Kim, Y., Cho, G. Y. & Lee, S. Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett. 123, 216803 (2019).

    ADS  Article  Google Scholar 

  40. 40.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  41. 41.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  Article  Google Scholar 

  42. 42.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).

    ADS  Article  Google Scholar 

  43. 43.

    Qian, X. et al. Quasiatomic orbitals for ab initio tight-binding analysis. Phys. Rev. B 78, 245112 (2008).

    ADS  Article  Google Scholar 

  44. 44.

    Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    ADS  Article  Google Scholar 

  45. 45.

    Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    ADS  Article  Google Scholar 

Download references


This work is supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract number DE-AC02-76SF00515 (J.X., E.J.S., C.M.N., P.M., C.D.P., T.P.D., A.M.L.). E.J.S. acknowledges additional support from Stanford GLAM Postdoctoral Fellowship Program. C.M.N. acknowledges additional support from the National Science Foundation (NSF) through a Graduate Research Fellowship (DGE-114747). H.W. and X.Q. acknowledge support by the NSF under award number DMR-1753054. J.X., A.M.L. and C.D.P. acknowledge support for theory calculations through the Center for Non-Perturbative Studies of Functional Materials. Y.W., S.W. and X.Z. acknowledge support from the US DOE, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, within the van der Waals Heterostructures Program (KCWF16) under contract no. DE-AC02-05-CH11231 for electrical transport measurement, and from King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research award OSR-2016-CRG5-2996 for device design and fabrication. First-principles electronic structure and Berry curvature calculations by H.W. and X.Q. were conducted with the advanced computing resources provided by Texas A&M High Performance Research Computing. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF)/Stanford Nanofabrication Facility (SNF), supported by the NSF under award ECCS-1542152.

Author information




A.M.L. and X.Z. supervised the project; J.X. and A.M.L. conceived the research; J.X. and Y.W. performed the optical and electrical experiments; Y.W., J.X., S.W. and P.M. fabricated the devices; H.W. and X.Q. performed first-principles calculations on the band structure and the Berry curvature through the stacking transitions; C.D.P. conducted theoretical calculations on crystal structures under the supervision of T.P.D.; J.X., Y.W., E.J.S., C.M.N., S.W. and P.M. analysed and interpreted the data with A.M.L. and X.Z.; all authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Xiang Zhang or Aaron M. Lindenberg.

Ethics declarations

Competing interests

J.X. and A.M.L. have submitted a patent application (‘Low-energy cost Berry curvature memory based on nanometer-thick layered materials’; US no. 62/940,181) that covers a specific aspect of the manuscript. The other authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Li-kun Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, discussion and Table 1.

Supplementary Video 1

Berry curvature evolution during stacking transitions.

Source data

Source Data Fig. 1

Data used to plot Fig. 1c,d.

Source Data Fig. 2

Data used to plot Fig. 2a,b,d,e.

Source Data Fig. 3

Data used to plot Fig. 3a,b,c.

Source Data Fig. 4

Data used to plot Fig. 4b,c,d.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Wang, Y., Wang, H. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. (2020).

Download citation