Abstract
The Bardeen–Cooper–Schrieffer theory of superconductivity and the Landau–Fermi liquid theory form the basis of our current understanding of conventional superconductors and their parent non-superconducting phases. However, some exotic superconductors do not conform to this physical picture but instead feature an unusual ‘normal’ state that is not a Fermi liquid. One explanation of this unusual behaviour is that pre-formed pairs of electrons are established above the superconducting temperature Tc. Here, we highlight recent experiments that show the likely existence of these pre-formed pairs in two rather different materials—a high-temperature cuprate superconductor and strontium titanate. Moreover, in both materials the normal state from which superconductivity emerges has other shared properties, including a pseudogap and electronic nematicity—rotational symmetry breaking in the electron fluid that is not expected in Fermi liquid theory nor more generally from the crystal lattice symmetry. These experimental findings should provoke more interaction between the communities working on these materials and new insights into the underlying mechanism of the creation of pre-formed pairs.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Puddle formation and persistent gaps across the non-mean-field breakdown of superconductivity in overdoped (Pb,Bi)2Sr2CuO6+δ
Nature Materials Open Access 06 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


Yun-Yi Pai



References
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957).
Eagles, D. M. Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456–463 (1969).
Leggett, A. J. Diatomic molecules and cooper pairs (Springer, 1980).
Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985).
Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).
Randeria, M. & Taylor, E. Crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein Condensation and the Unitary Fermi Gas. Ann. Rev. Cond. Matt. Phys. 5, 209–232 (2014).
Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).
Ketterle, W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).
Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose–Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003).
Anderson, P. W. The theory of superconductivity in the high-T c cuprates (Princeton Univ. Press, 1997).
Friedberg, R. & Lee, T. D. Boson-Fermion model of superconductivity. Phy. Lett. A 138, 423–427 (1989).
Alexandrov, A. S. & Mott, N. F. High Temperature Superconductors and Other Superfluids (Taylor & Francis, 1994).
Zhao, G.-m, Hunt, M. B., Keller, H. & Müller, K. A. Evidence for polaronic supercarriers in the copper oxide superconductors La2–xSrxCuO4. Nature 385, 236–239 (1997).
Deutscher, G. & de Gennes, P.-G. A spatial interpretation of emerging superconductivity in lightly doped cuprates. Comp. Rend. Phys. 8, 937–941 (2007).
Andreev, A. F. Electron pairs for HTSC. J. Exp. Theor. Phys. Lett. 79, 88–90 (2004).
Jiang, S., Zou, L. & Ku, W. Non-Fermi-liquid scattering against an emergent Bose liquid: manifestations in the kink and other exotic quasiparticle behavior in the normal-state cuprate superconductors. Phys. Rev. B 99, 104507 (2019).
Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
Lee, P. A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X 4, 031017 (2014).
Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).
Božović, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).
Zhou, P. et al. Electron pairing in the pseudogap state revealed by shot noise in copper-oxide junctions. Nature 572, 493–496 (2019).
Mahmood, F., He, X., Božović, I. & Armitage, N. P. Locating the missing superconducting electrons in the overdoped cuprates La2-xSrxCuO4. Phys. Rev. Lett. 122, 027003 (2019).
Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474–475 (1964).
Koonce, C. S., Cohen, M. L., Schooley, J. F., Hosler, W. R. & Pfeiffer, E. R. Superconducting transition temperatures of semiconducting SrTiO3. Phys. Rev. 163, 380–390 (1967).
Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430, 657–661 (2004).
Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).
Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).
Lin, X., Zhu, Z., Fauqué, B. & Behnia, K. Fermi surface of the most dilute superconductor. Phys. Rev. X 3, 021002 (2013).
Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).
Cheng, G. et al. Electron pairing without superconductivity. Nature 521, 196–199 (2015).
Tuominen, M. T., Hergenrother, J. M., Tighe, T. S. & Tinkham, M. Experimental evidence for parity-based 2e periodicity in a superconducting single-electron Tunneling Transistor. Phys. Rev. Lett. 69, 1997–2000 (1992).
Annadi, A. et al. Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3 Nanowires. Nano Lett. 18, 4473–4481 (2018).
Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).
Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi Fluids in Condensed Matter Physics. Ann. Rev. Cond. Matt. Phys. 1, 153–178 (2010).
Wu, J., Bollinger, A. T., He, X. & Božović, I. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017).
Ben Shalom, M. et al. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 140403 (2009).
Fête, A., Gariglio, S., Caviglia, A. D., Triscone, J. M. & Gabay, M. Rashba induced magnetoconductance oscillations in the LaAlO3-SrTiO3 heterostructure. Phys. Rev. B 86, 201105 (2012).
Joshua, A., Ruhman, J., Pecker, S., Altman, E. & Ilani, S. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633 (2013).
Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface. Nat. Commun. 3, 1129 (2012).
Pai, Y.-Y., Tylan-Tyler, A., Irvin, P. & Levy, J. in Spintronics Handbook 2nd edn, Vol. 2 (CRC, 2019).
Maniv, E. et al. Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface. Nat. Commun. 6, 8239 (2015).
Cheng, G. et al. Tunable electron-electron interactions in LaAlO3/SrTiO3 nanostructures. Phys. Rev. X 6, 041042 (2016).
Smink, A. E. M. et al. Gate-tunable band structure of the LaAlO3/SrTiO3 Interface. Phys. Rev. Lett. 118, 106401 (2017).
Trevisan, T. V., Schütt, M. & Fernandes, R. M. Unconventional multiband superconductivity in bulk SrTiO3 and LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 121, 127002 (2018).
Pai, Y.-Y., Tylan-Tyler, A., Irvin, P. & Levy, J. Physics of SrTiO3-based heterostructures and nanostructures: a review. Rep. Prog. Phys. 81, 036503 (2018).
Kalisky, B. et al. Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces. Nat. Mater. 12, 1091–1095 (2013).
Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nat. Mater. 12, 1112–1118 (2013).
Pai, Y.-Y. et al. One-dimensional nature of superconductivity at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 120, 147001 (2018).
Pekker, D., Hellberg, C. S. & Levy, J. Theory of superconductivity at the LaAlO3/SrTiO3 heterointerface: electron pairing mediated by deformation of ferroelastic domain walls. Preprint at https://arxiv.org/abs/2002.11744 (2020).
Emery, V. J., Kivelson, S. A. & Zachar, O. Spin-gap proximity effect mechanism of high-temperature superconductivity. Phys. Rev. B 56, 6120–6147 (1997).
Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).
Ahadi, K. et al. Enhancing superconductivity in SrTiO3 films with strain. Sci. Adv. 5, eaaw0120 (2019).
Marshall, P. B., Mikheev, E., Raghavan, S. & Stemmer, S. Pseudogaps and emergence of coherence in two-dimensional electron liquids in SrTiO3. Phys. Rev. Lett. 117, 046402 (2016).
Kresin, V. Z., Ovchinnikov, Y. N. & Wolf, S. A. Inhomogeneous superconductivity and the “pseudogap” state of novel superconductors. Phys. Rep. 431, 231–259 (2006).
Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239–244 (2011).
Sacépé, B., Feigel’man, M. & Klapwijk, T. M. Quantum breakdown of superconductivity in low-dimensional materials. Nat. Phys. https://doi.org/10.1038/s41567-020-0905-x (2020).
Briggeman, M. et al. Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels. Science 367, 769–772 (2020).
Acknowledgements
The research at Brookhaven National Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The work at Yale was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF4410. The work at Pittsburgh was supported by a Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant no. N00014-15-1-2847, and NSF grant no. PHY-1913034.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Božović, I., Levy, J. Pre-formed Cooper pairs in copper oxides and LaAlO3—SrTiO3 heterostructures. Nat. Phys. 16, 712–717 (2020). https://doi.org/10.1038/s41567-020-0915-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-0915-8