Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantum memory at telecom wavelengths

Abstract

Nanofabricated mechanical resonators are gaining significant momentum among potential quantum technologies due to their unique design freedom and independence from naturally occurring resonances. As their functionality is widely detached from material choice, they constitute ideal tools for transducers—intermediaries between different quantum systems—and as memory elements in conjunction with quantum communication and computing devices. Their capability to host ultra-long-lived phonon modes is particularity attractive for non-classical information storage, both for future quantum technologies and for fundamental tests of physics. Here, we demonstrate a Duan–Lukin–Cirac–Zoller-type mechanical quantum memory with an energy decay time of T1 ≈ 2 ms, which is controlled through an optical interface engineered to natively operate at telecom wavelengths. We further investigate the coherence of the memory, equivalent to the dephasing \({T}_{2}^{* }\) for qubits, which has a power-dependent value between 15 and 112 μs. This demonstration is enabled by an optical scheme to create a superposition state of \(\left|0\right\rangle +\left|1\right\rangle\) mechanical excitations, with an arbitrary ratio between the vacuum and single-phonon components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the optomechanical quantum memory.
Fig. 2: Characterization of the memory lifetime and optical heating.
Fig. 3: Continuous-wave measurement of the mechanical coherence.
Fig. 4: Quantum phase coherence of the mechanical memory.

Similar content being viewed by others

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The QuTiP code used for the simulations in the Supplementary Information is available on GitHub (https://github.com/GroeblacherLab/quantum_memory_code).

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  2. Simon, C. Towards a global quantum network. Nat. Photon. 11, 678–680 (2017).

    ADS  Google Scholar 

  3. Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photon. 11, 646–650 (2017).

    ADS  Google Scholar 

  4. Crocker, C. et al. High purity single photons entangled with an atomic memory. Opt. Express 27, 28143–28149 (2019).

    ADS  Google Scholar 

  5. Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016).

    ADS  Google Scholar 

  6. Saunders, D. J. et al. Cavity-enhanced room-temperature broadband Raman memory. Phys. Rev. Lett. 116, 090501 (2016).

    ADS  Google Scholar 

  7. Wang, Y. et al. Efficient quantum memory for single-photon polarization qubits. Nat. Photon. 13, 346–351 (2019).

    ADS  Google Scholar 

  8. Kalb, N., Reiserer, A., Ritter, S. & Rempe, G. Heralded storage of a photonic quantum bit in a single atom. Phys. Rev. Lett. 114, 220501 (2015).

    ADS  Google Scholar 

  9. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    Google Scholar 

  10. Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

    ADS  Google Scholar 

  11. Dajczgewand, J., Gouët, J.-L., Louchet-Chauvet, A. & Chanelière, T. Large efficiency at telecom wavelength for optical quantum memories. Opt. Lett. 39, 2711–2714 (2014).

    ADS  Google Scholar 

  12. Craiciu, I. et al. Nanophotonic quantum storage at telecommunication wavelength. Phys. Rev. Appl. 12, 024062 (2019).

    ADS  Google Scholar 

  13. Askarani, M. F. et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys. Rev. Appl. 11, 054056 (2019).

    ADS  Google Scholar 

  14. Manenti, R. et al. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017).

    ADS  Google Scholar 

  15. Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    ADS  Google Scholar 

  16. Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013).

    ADS  Google Scholar 

  17. Ockeloen-Korppi, C. F. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018).

    ADS  Google Scholar 

  18. Sletten, L. R., Moores, B. A., Viennot, J. J. & Lehnert, K. W. Resolving phonon Fock states in a multimode cavity with a double-slit qubit. Phys. Rev. X 9, 021056 (2019).

    Google Scholar 

  19. Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

    ADS  Google Scholar 

  20. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    ADS  Google Scholar 

  21. Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

    ADS  Google Scholar 

  22. Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    ADS  Google Scholar 

  23. Purdy, T. P., Grutter, K. E., Srinivasan, K. & Taylor, J. M. Quantum correlations from a room-temperature optomechanical cavity. Science 356, 1265–1268 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  24. Chen, J., Rossi, M., Mason, D. & Schliesser, A. Entanglement of propagating optical modes via a mechanical interface. Nat. Commun. 11, 943 (2020).

    ADS  Google Scholar 

  25. Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  26. Anderson, M. D. et al. Two-color pump–probe measurement of photonic quantum correlations mediated by a single phonon. Phys. Rev. Lett. 120, 233601 (2018).

    ADS  Google Scholar 

  27. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS  Google Scholar 

  28. Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    ADS  Google Scholar 

  29. Marinković, I. et al. An optomechanical Bell test. Phys. Rev. Lett. 121, 220404 (2018).

    ADS  Google Scholar 

  30. Chan J. Laser Cooling of an Optomechanical Crystal Resonator to its Quantum Ground State of Motion. PhD thesis, California Institute of Technology (2012).

  31. Kharel, P. et al. Ultra-high-Q phononic resonators on-chip at cryogenic temperatures. APL Photon. 3, 066101 (2018).

    ADS  Google Scholar 

  32. MacCabe, G. S. et al. Phononic bandgap nano-acoustic cavity with ultralong phonon lifetime. Preprint at https://arxiv.org/abs/1901.04129 (2019).

  33. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Google Scholar 

  34. Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate. Nat. Phys. 16, 69–74 (2020).

    Google Scholar 

  35. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Google Scholar 

  36. Hofer, S. G., Wieczorek, W., Aspelmeyer, M. & Hammerer, K. Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 52327 (2011).

    ADS  Google Scholar 

  37. Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).

    ADS  Google Scholar 

  38. Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012).

    ADS  Google Scholar 

  39. de Riedmatten, H. et al. Direct measurement of decoherence for entanglement between a photon and stored atomic excitation. Phys. Rev. Lett. 97, 113603 (2006).

    ADS  Google Scholar 

  40. Acín, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

    ADS  Google Scholar 

  41. Lvovsky, A. I. & Mlynek, J. Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88, 250401 (2002).

    ADS  Google Scholar 

  42. Resch, K. J., Lundeen, J. S. & Steinberg, A. M. Quantum state preparation and conditional coherence. Phys. Rev. Lett. 88, 113601 (2002).

    ADS  Google Scholar 

  43. Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657 (1987).

    ADS  Google Scholar 

  44. Müller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019).

    ADS  Google Scholar 

  45. Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    ADS  Google Scholar 

  46. Constantin, M., Yu, C. C. & Martinis, J. M. Saturation of two-level systems and charge noise in Josephson junction qubits. Phys. Rev. B 79, 094520 (2009).

    ADS  Google Scholar 

  47. Behunin, R. O., Kharel, P., Renninger, W. H. & Rakich, P. T. Engineering dissipation with phononic spectral hole burning. Nat. Mater. 16, 315–321 (2017).

    ADS  Google Scholar 

  48. Kalaee, M. et al. Quantum electromechanics of a hypersonic crystal. Nat. Nanotechnol. 14, 334–339 (2019).

    ADS  Google Scholar 

  49. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Forsch, B. Li, M. Vlassov and I. Yang for experimental support and D. Bothner for valuable discussions. We also acknowledge assistance from Kavli Nanolab Delft. This work is supported by the Foundation for Fundamental Research on Matter (FOM) Projectruimte grants (15PR3210, 16PR1054), the European Research Council (ERC StG Strong-Q, 676842) and by the Netherlands Organization for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program, as well as through a Vidi grant (680-47-541/994). B.H. and R.S. acknowledge funding from the European Union under a Marie Skłodowska-Curie COFUND fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.W., I.M. and S.G. planned the experiment and performed the device design. I.M. fabricated the sample and A.W. performed the measurements. A.W., B.H., R.S. and S.G. analysed the data and wrote the manuscript with input from all authors. S.G. supervised the project.

Corresponding author

Correspondence to Simon Gröblacher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Source data

Source Data Fig. 1

Data of plots.

Source Data Fig. 2

Data of plots.

Source Data Fig. 3

Data of plots.

Source Data Fig. 4

Data of plots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallucks, A., Marinković, I., Hensen, B. et al. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020). https://doi.org/10.1038/s41567-020-0891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0891-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing