Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From cavity to circuit quantum electrodynamics


Circuit quantum electrodynamics focuses on the interaction of small superconducting circuits, tailored to behave as two-level quantum systems, with a single mode of the electromagnetic field sustained by a superconducting resonator. It is thus concerned with the investigation of phenomena that arise from the coupling between the simplest non-trivial quantum system — a spin-1/2 or qubit — and a harmonic oscillator. As such, circuit quantum electrodynamics belongs to the more general field of cavity quantum electrodynamics, which deals with natural or artificial spins in the optical, microwave or radio-frequency domains interacting with all kind of resonators. Here we survey the lineage of the concepts and experiments that led first to the development of cavity and then circuit quantum electrodynamics. We discuss similarities and differences between these two fields and compare their present achievements.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cavity and circuit QED setups.
Fig. 2: Cavity and circuit QED experiments.


  1. 1.

    Raimond, J.-M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  2. 2.

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006).

  3. 3.

    Walther, H., Varcoe, B. T. H., Englert, B. G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

    ADS  Google Scholar 

  4. 4.

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    ADS  Google Scholar 

  5. 5.

    Girvin, S. M., Devoret, M. H. & Schoelkopf, R. J. Circuit QED and engineering charge-based superconducting qubits. Phys. Scripta 2009, 014012 (2009).

    Google Scholar 

  6. 6.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS  Google Scholar 

  7. 7.

    Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y.-x. & Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  8. 8.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  9. 9.

    Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981).

    ADS  Google Scholar 

  10. 10.

    Drexhage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1, 693–701 (1970).

    Google Scholar 

  11. 11.

    Goy, P., Raimond, J.-M., Gross, M. & Haroche, S. Observation of cavity-enhanced single atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983).

    ADS  Google Scholar 

  12. 12.

    Hulet, R. G., Hilfer, E. S. & Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137–2140 (1985).

    ADS  Google Scholar 

  13. 13.

    Gabrielse, G. & Dehmelt, H. Observation of inhibited spontaneous emission. Phys. Rev. Lett. 55, 67–70 (1985).

    ADS  Google Scholar 

  14. 14.

    Jhe, W. et al. Suppression of spontaneous emission decay at optical frequencies: test of vacuum-field anisotropy in confined space. Phys. Rev. Lett. 58, 666–669 (1987).

    ADS  Google Scholar 

  15. 15.

    Heinzen, D. J. & Feld, M. S. Vacuum radiative level shift and spontaneous emission linewidth of an atom in an optical resonator. Phys. Rev. Lett. 59, 2623–2626 (1987).

    ADS  Google Scholar 

  16. 16.

    Sandoghdar, V., Sukenik, C. I., Hinds, E. A. & Haroche, S. Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432–3435 (1992).

    ADS  Google Scholar 

  17. 17.

    Brune, M. et al. From Lamb shifts to light shifts: vacuum and subphoton cavity fields measured by atomic phase sensitive detection. Phys. Rev. Lett. 72, 3339–3342 (1994).

    ADS  Google Scholar 

  18. 18.

    Casimir, H. B. G. & Polder, D. The influence of retardation on the London-van der Waals force. Phys. Rev. 73, 360–372 (1948).

    ADS  MATH  Google Scholar 

  19. 19.

    Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51, 1175–1178 (1983).

    ADS  Google Scholar 

  20. 20.

    Meschede, D., Walther, H. & Müller, G. One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985).

    ADS  Google Scholar 

  21. 21.

    Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Google Scholar 

  22. 22.

    Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963).

    ADS  MathSciNet  MATH  Google Scholar 

  23. 23.

    Leibfried, G., Blatt, R., Monroe, C. & Wineland, D. J. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  Google Scholar 

  24. 24.

    Haroche, S. Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).

    ADS  Google Scholar 

  25. 25.

    Wineland, D. J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).

    ADS  Google Scholar 

  26. 26.

    Hagley, E. et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997).

    ADS  Google Scholar 

  27. 27.

    Bertet, P. et al. A complementarity experiment with an interferometer at the quantum-classical boundary. Nature 411, 166–170 (2001).

    ADS  Google Scholar 

  28. 28.

    Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007).

    ADS  Google Scholar 

  29. 29.

    Guerlin, C. et al. Progessive field state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).

    ADS  Google Scholar 

  30. 30.

    Brune, M. et al. Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996).

    ADS  Google Scholar 

  31. 31.

    Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008).

    ADS  Google Scholar 

  32. 32.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  33. 33.

    Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  34. 34.

    Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000).

    ADS  Google Scholar 

  35. 35.

    Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987).

    ADS  Google Scholar 

  36. 36.

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS  Google Scholar 

  37. 37.

    Leggett, A. J. Quantum mechanics at the macroscopic level. In Chance and Matter, Les Houches Summer School, Session XLVI (Eds. Souletie, J., Vannimenus, J. & Stora, R.) 395 (North Holland, 1987).

  38. 38.

    Leggett, A. J. Schrödinger’s cat and her laboratory cousins. Contemp. Phys. 25, 583–598 (2006).

    ADS  MATH  Google Scholar 

  39. 39.

    Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    ADS  Google Scholar 

  40. 40.

    Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    ADS  Google Scholar 

  41. 41.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    ADS  Google Scholar 

  42. 42.

    Hulet, R. G. & Kleppner, D. Rydberg atoms in “circular” states. Phys. Rev. Lett. 51, 1430–1433 (1983).

    ADS  Google Scholar 

  43. 43.

    Assemat, F. et al. Quantum Rabi oscillations in coherent and in mesoscopic cat field states. Phys. Rev. Lett. 123, 143605 (2019).

    ADS  Google Scholar 

  44. 44.

    Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011).

    ADS  Google Scholar 

  45. 45.

    Wenner, J. et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys. Rev. Lett. 112, 210501 (2014).

    ADS  Google Scholar 

  46. 46.

    Besse, J.-C. et al. Single-shot quantum nondemolition detection of individual itinerant microwave photons. Phys. Rev. X 8, 021003 (2018).

    Google Scholar 

  47. 47.

    Rolland, C. et al. Antibunched photons emitted by a dc-biased Josephson junction. Phys. Rev. Lett. 122, 186804 (2019).

    ADS  Google Scholar 

  48. 48.

    Wilson, C. M. et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011).

    ADS  Google Scholar 

  49. 49.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS  Google Scholar 

  50. 50.

    Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361, 266–270 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  51. 51.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Google Scholar 

  52. 52.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Google Scholar 

  53. 53.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  Google Scholar 

  54. 54.

    Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016).

    ADS  Google Scholar 

  55. 55.

    Lienhard, V. et al. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions. Phys. Rev. X 8, 021070 (2018).

    Google Scholar 

  56. 56.

    Zeiher, J. et al. Many-body interferometry of a Rydberg-dressed spin lattice. Nat. Phys. 12, 1095–1099 (2016).

    Google Scholar 

  57. 57.

    Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).

    ADS  Google Scholar 

  58. 58.

    Schauss, P. et al. Crystallization in Ising quantum magnets. Science 347, 1455–1458 (2015).

    ADS  Google Scholar 

  59. 59.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  Google Scholar 

  60. 60.

    Keesling, A. et al. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature 568, 207–211 (2019).

    ADS  Google Scholar 

  61. 61.

    Nguyen, T. L. et al. Towards quantum simulation with circular Rydberg atoms. Phys. Rev. X 8, 011032 (2018).

    Google Scholar 

  62. 62.

    Cortiñas, R. G. et al. Laser trapping of circular Rydberg atoms. Preprint at (2019).

  63. 63.

    Haroche, S., Brune, M. & Raimond, J. M. Atomic clocks for controlling light fields. Phys. Today 66, 27–32 (2013).

    ADS  Google Scholar 

  64. 64.

    Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013).

    ADS  Google Scholar 

  65. 65.

    Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444–448 (2014).

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Haroche.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haroche, S., Brune, M. & Raimond, J.M. From cavity to circuit quantum electrodynamics. Nat. Phys. 16, 243–246 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing